642
Views
0
CrossRef citations to date
0
Altmetric
Ophthalmology

A classification of idiopathic epiretinal membrane based on foveal avascular zone area using optical coherence tomography angiography

, , , , , , , & show all
Article: 2316008 | Received 01 Dec 2022, Accepted 04 Feb 2024, Published online: 19 Mar 2024

References

  • Sakai D.., Takagi S.., Hirami Y.., et al. Correlation between tangential distortion of the outer retinal layer and metamorphopsia in patients with epiretinal membrane. Graefes Arch Clin Exp Ophthalmol. 2021;259(7):1–9. doi: 10.1007/s00417-021-05077-4.
  • Moon BG, Yang YS, Chung H, et al. Correlation between macular microstructures and aniseikonia after idiopathic epiretinal membrane removal. Retina. 2020;40(6):1160–1168. doi: 10.1097/IAE.0000000000002530.
  • Ozdek S.., Ozdemir Zeydanli E.., Karabas L.., et al. Relation of anatomy with function following the surgical treatment of idiopathic epiretinal membrane: a multicenter retrospective study. Graefes Arch Clin Exp Ophthalmol. 2021;259(4):891–904. doi: 10.1007/s00417-020-05002-1.
  • Kim M, Lee Y, Kim RY, et al. Choroidoscleral interface irregularity index: a novel optical coherence tomography-based parameter in patients with epiretinal membrane. Sci Rep. 2020;10(1):696. doi: 10.1038/s41598-020-57656-w.
  • Bae K, Choi JH, Kim KT, et al. En-face optical coherence tomography in patients with epiretinal membrane: an an intuitive method for predicting functional outcomes. Retina. 2020;40(10):1972–1979. doi: 10.1097/IAE.0000000000002686.
  • Govetto A, Lalane RA, 3rd, Sarraf D, et al. Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme. Am J Ophthalmol. 2017;175:99–113. doi: 10.1016/j.ajo.2016.12.006.
  • Zur D, Iglicki M, Feldinger L, et al. Disorganization of retinal inner layers as a biomarker for idiopathic epiretinal membrane after macular surgery—the DREAM study. Am J Ophthalmol. 2018;196:129–135. doi: 10.1016/j.ajo.2018.08.037.
  • Mao J.., Lao J.., Liu C.., et al. A study analyzed macular microvasculature features after vitrectomy using OCT angiography in patients with idiopathic macular epiretinal membrane. BMC Ophthalmol. 2020;20(1):165. doi: 10.1186/s12886-020-01429-6.
  • Govetto A, Bhavsar KV, Virgili G, et al. Tractional abnormalities of the central foveal bouquet in epiretinal membranes: clinical spectrum and pathophysiological perspectives. Am J Ophthalmol. 2017;184:167–180. doi: 10.1016/j.ajo.2017.10.011.
  • Stevenson W, Prospero Ponce CM, Agarwal DR, et al. Epiretinal membrane: optical coherence tomography-based diagnosis and classification. Clin Ophthalmol. 2016;10:527–534. doi: 10.2147/OPTH.S97722.
  • Ulfik-Dembska K, Teper S, Dembski M, et al. Idiopathic epiretinal membrane: microvasculature analysis with optical coherence tomography and optical coherence tomography angiography. Tomography. 2022;8(1):189–199. doi: 10.3390/tomography8010016.
  • Gabriel M, Djavid D, Innauer F, et al. Changes of optical coherence tomography angiography parameters after internal limiting membrane peeling compared with nonpeeling in epiretinal membrane surgery. Retina. 2022;42(10):1867–1873. doi: 10.1097/IAE.0000000000003567.
  • Kim J.., Park KH. Temporal changes of parafoveal microvasculature after epiretinal membrane surgery: an optical coherence tomography angiography study. Retina. 2021;41(9):1839–1850. doi: 10.1097/IAE.0000000000003132.
  • Mao J, Xu Z, Lao J, et al. Assessment of macular microvasculature features before and after vitrectomy in the idiopathic macular epiretinal membrane using a grading system: an optical coherence tomography angiography study. Acta Ophthalmol. 2021;99(7):e1168–e75. doi: 10.1111/aos.14753.
  • Yuce B.., Cinar E.., Aslan F.., et al. Evaluation of retinal vascular structure after epiretinal membrane surgery by optical coherence tomography and and angiography. Int Ophthalmol. 2021;41(2):621–627. doi: 10.1007/s10792-020-01617-9.
  • Bae BJ, Ryoo NK. Effect of foveal pit restoration in the the foveal avascular zone after surgery for idiopathic epiretinal membrane. Korean J Ophthalmol. 2022;36(1):44–53. doi: 10.3341/kjo.2021.0114.
  • Liao X, Keyal K, Li H, et al. One-year outcomes of 27G core-pars plana vitrectomy of the the idiopathic epiretinal membrane. Exp Ther Med. 2020;20(3):2721–2729. doi: 10.3892/etm.2020.8995.
  • Isik-Ericek P, Sizmaz S, Esen E, et al. The effect of epiretinal membrane surgery on macular microvasculature: an optical coherence tomography angiography study. Int Ophthalmol. 2021;41(3):777–786. doi: 10.1007/s10792-020-01630-y.
  • Yoshida H, Terashima H, Ueda E, et al. Relationship between morphological changes in the foveal avascular zone of the epiretinal membrane and postoperative visual function. BMJ Open Ophthalmol. 2020;5(1):e000636. doi: 10.1136/bmjophth-2020-000636.
  • Ersoz MG, Hocaoglu M, Sayman Muslubas I, et al. Quantitative assessment of the foveal avascular zone using optical coherence tomography and and angiography before and after surgery for idiopathic epiretinal membrane. Retina. 2021;41(1):54–59. doi: 10.1097/IAE.0000000000002794.
  • Chen H.., Chi W.., Cai X.., et al. Macular microvasculature features before and after vitrectomy in idiopathic macular epiretinal membrane: an OCT angiography analysis. Eye. 2019;33(4):619–628. doi: 10.1038/s41433-018-0272-3.
  • Kim YJ, Kim S, Lee JY, et al. Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study. Br J Ophthalmol. 2018;102(8):1086–1091. doi: 10.1136/bjophthalmol-2017-311188.
  • Feng J, Yang X, Xu M, et al. Association of microvasculature and macular sensitivity in idiopathic macular epiretinal membrane: using OCT angiography and microperimetry. Front Med. 2021;8:655013. doi: 10.3389/fmed.2021.655013.
  • Hasegawa T.., Kawaguchi A.., Arakawa H.., et al. Misalignment between the the center of the the foveal avascular zone and the the center of the the foveal photoreceptors in eyes with idiopathic epiretinal membrane. Retina. 2021;41(8):1635–1643. doi: 10.1097/IAE.0000000000003064.
  • Okawa Y, Maruko I, Kawai M, et al. Foveal structure and vasculature in eyes with idiopathic epiretinal membrane. PLOS One. 2019;14(4):e0214881. doi: 10.1371/journal.pone.0214881.
  • Yoon YS, Woo JM, Woo JE, et al. The superficial foveal avascular zone area changes before and after idiopathic epiretinal membrane surgery. Int J Ophthalmol. 2018;11(10):1711–1715.
  • Zou J, Tan W, Huang W, et al. Association between individual retinal layer thickness and visual acuity in patients with epiretinal membrane: a pilot study. PeerJ. 2020;8:e9481. doi: 10.7717/peerj.9481.
  • Kauffmann Y, Ramel JC, Lefebvre A, et al. Preoperative prognostic factors and predictive score in patients operated on for combined cataract and idiopathic epiretinal membrane. Am J Ophthalmol. 2015;160(1):185–192.e5. doi: 10.1016/j.ajo.2015.03.027.
  • Kim JY, Kim DY, Kim KT, et al. Visual prognostic factors of epiretinal membrane surgery in patients with pseudophakia. Ophthalmologica. 2020;243(1):43–50. doi: 10.1159/000502748.
  • Hosoda Y, Ooto S, Hangai M, et al. Foveal photoreceptor deformation as a significant predictor of postoperative visual outcome in idiopathic epiretinal membrane surgery. Invest Ophthalmol Vis Sci. 2015;56(11):6387–6393. doi: 10.1167/iovs.15-16679.
  • Azzolini C, Congiu T, Donati S, et al. Multilayer microstructure of idiopathic epiretinal macular membranes. Eur J Ophthalmol. 2017 27(6):762–768. doi: 10.5301/ejo.5000982.
  • Shiihara H, Terasaki H, Sonoda S, et al. Association of the the foveal avascular zone with the metamorphopsia in the the epiretinal membrane. Sci Rep. 2020;10(1):17092. doi: 10.1038/s41598-020-74190-x.
  • Kinoshita H.., Suzuma K.., Maki T.., et al. Cyclic stretch and hypertension increase retinal succinate: potential mechanisms for exacerbation of ocular neovascularization by mechanical stress. Invest Ophthalmol Vis Sci. 2014;55(7):4320–4326. doi: 10.1167/iovs.13-13839.
  • Kadonosono K, Itoh N, Nomura E, et al. Capillary blood flow velocity in patients with idiopathic epiretinal membranes. Retina. 1999;19(6):536–539. doi: 10.1097/00006982-199911000-00010.
  • Fang IM, Hsu HY, Chiang WL, et al. Correlation between visual acuity and optical coherence tomography angiography parameters in unilateral idiopathic epiretinal membrane. J Clin Med. 2020;10(1):26. doi: 10.3390/jcm10010026.
  • Cicinelli MV, Post M, Brambati M, et al. Associated factors and surgical outcomes of microcystoid macular edema and cone bouquet abnormalities in eyes with epiretinal membrane. Retina. 2022;42(8):1455–1464. doi: 10.1097/IAE.0000000000003492.
  • Saidha S, Sotirchos ES, Ibrahim MA, et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol. 2012;11(11):963–972. doi: 10.1016/S1474-4422(12)70213-2.
  • Sigler EJ, Randolph JC, and Charles S. Delayed-onset inner nuclear layer cystic changes following internal limiting membrane removal for the the epimacular membrane. Graefes Arch Clin Exp Ophthalmol. 2013;251(7):1679–1685. doi: 10.1007/s00417-012-2253-8.
  • Franze K, Grosche J, Skatchkov SN, et al. Muller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci U S A. 2007;104(20):8287–8292. doi: 10.1073/pnas.0611180104.
  • Reichenbach A, Bringmann A. New functions of Müller cells. Glia. 2013;61(5):651–678. doi: 10.1002/glia.22477.
  • Colakoglu A, Balci Akar S. Potential role of Müller cells in the pathogenesis of macropsia associated with epiretinal membrane: a hypothesis revisited. Int J Ophthalmol. 2017;10(11):1759–1767. doi: 10.18240/ijo.2017.11.19.
  • Lu Y, Wang JC, Zeng R, et al. Quantitative comparison of microvascular metrics on three optical coherence tomography angiography devices in chorioretinal disease. Clin Ophthalmol. 2019;13:2063–2069. doi: 10.2147/OPTH.S215322.
  • Lu Y, Wang JC, Cui Y, et al. A quantitative comparison of four optical coherence tomography angiography devices in healthy eyes. Graefes Arch Clin Exp Ophthalmol. 2021;259(6):1493–1501. doi: 10.1007/s00417-020-04945-9.
  • Spooner K, Phan L, Cozzi M, et al. Comparison between two multimodal imaging platforms: Nidek Mirante and Heidelberg Spectralis. Graefes Arch Clin Exp Ophthalmol. 2021;259(7):1791–1802. doi: 10.1007/s00417-020-05050-7.
  • Mihailovic N, Brand C, Lahme L, et al. Repeatability, reproducibility,, and agreement of foveal avascular zone measurements using three different optical coherence tomography angiography devices. PLOS One. 2018;13(10):e0206045. doi: 10.1371/journal.pone.0206045.
  • Anvari P, Najafi A, Mirshahi R, et al. Superficial and deep foveal avascular zone area measurement in healthy subjects using two different spectral domain optical coherence tomography angiography devices. JOphthal Vis Res. 2020;15(4):517–523.