612
Views
0
CrossRef citations to date
0
Altmetric
Hematology

Myeloid neoplasms post cytotoxic therapy: epidemiology, pathogenesis outcomes, prognostic factors, and treatment options

ORCID Icon &
Article: 2329132 | Received 13 Aug 2023, Accepted 23 Feb 2024, Published online: 12 Apr 2024

References

  • Siegel R, DeSantis C, Virgo K, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62(4):1–9. doi:10.3322/caac.21149.
  • Gurnari C, Fabiani E, Falconi G, et al. From clonal hematopoiesis to therapy-related myeloid neoplasms: the silent way of cancer progression. Biology (Basel). 2021;10(2):128. doi:10.3390/biology10020128.
  • Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–1719. doi:10.1038/s41375-022-01613-1.
  • Abou Zahr A, Kavi AM, Mukherjee S, et al. Therapy-related myelodysplastic syndromes, or are they? Blood Rev. 2017;31(3):119–128. doi:10.1016/j.blre.2016.11.002.
  • Morton LM, Dores GM, Schonfeld SJ, et al. Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol. 2019;5(3):318–325. doi:10.1001/jamaoncol.2018.5625.
  • Radivoyevitch T, Sachs RK, Gale RP, et al. Defining AML and MDS second cancer risk dynamics after diagnoses of first cancers treated or not with radiation. Leukemia. 2016;30(2):285–294. doi:10.1038/leu.2015.258.
  • Wolff AC, Blackford AL, Visvanathan K, et al. Risk of marrow neoplasms after adjuvant breast cancer therapy: the national comprehensive cancer network experience. J Clin Oncol. 2015;33(4):340–348. doi:10.1200/JCO.2013.54.6119.
  • Smith SM, Le Beau MM, Huo D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102(1):43–52. doi:10.1182/blood-2002-11-3343.
  • Wong TN, Ramsingh G, Young AL, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518(7540):552–555. doi:10.1038/nature13968.
  • Mcnerney ME, Godley LA, Le Beau MM. Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer. 2017;17(9):513–527. doi:10.1038/nrc.2017.60.
  • Tiruneh T, Enawgaw B, Shiferaw E. Genetic pathway in the pathogenesis of therapy-related myeloid neoplasms: a literature review. Oncol Ther. 2020;8(1):45–57. doi:10.1007/s40487-020-00111-7.
  • Schulz E, Kashofer K, Heitzer E, et al. Preexisting TP53 mutation in therapy-related acute myeloid leukemia. Ann Hematol. 2015;94(3):527–529. doi:10.1007/s00277-014-2191-0.
  • Takahashi K, Wang F, Kantarjian H, et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 2017;18(1):100–111. doi:10.1016/S1470-2045(16)30626-X.
  • Gillis NK, Ball M, Zhang Q, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol. 2017;18(1):112–121. doi:10.1016/S1470-2045(16)30627-1.
  • Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoesis of indeterminate potential and its distinction from myelodysplastic synomes. Blood. 2015;126(1):9–16. doi:10.1182/blood-2015-03-631747.
  • Higgins A, Shah MV. Genetic and genomic landscape of secondary and therapy-related acute myeloid leukemia. Genes (Basel). 2020;11(7):749. doi:10.3390/genes11070749.
  • Diamond B, Ziccheddu B, Maclachlan K, et al. Tracking the evolution of therapy-related myeloid neoplasms using chemotherapy signatures. Blood. 2023;141(19):2359–2371. doi:10.1182/blood.2022018244.
  • Schwartz JR, Ma J, Kamens J, et al. The acquisition of molecular drivers in pediatric therapy-related myeloid neoplasms. Nat Commun. 2021;12(1):985. doi:10.1038/s41467-021-21255-8.
  • Jabagi MJ, Vey N, Goncalves A, et al. Risk of secondary hematologic malignancies associated with breast cancer chemotherapy and G-CSF support: a nationwide population-based cohort. Int J Cancer. 2021;148(2):375–384. doi:10.1002/ijc.33216.
  • Gramegna D, Bertoli D, Cattaneo C, et al. The role of clonal hematopoiesis as driver of therapy-related myeloid neoplasms after autologous stem cell transplantation. Ann Hematol. 2022;101(6):1227–1237. doi:10.1007/s00277-022-04806-x.
  • Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol. 2001;19(5):1405–1413. doi:10.1200/JCO.2001.19.5.1405.
  • Stefaniuk P, Szymczyk A, Podhorecka M. In pursuit of genetic prognostic factors and treatment approaches in secondary acute myeloid Leukemia-a narrative review of current knowledge. J Clin Med. 2022;11(15):4283. doi:10.3390/jcm11154283.
  • Capelli D, Menotti D, Fiorentini A, et al. Secondary acute myeloid leukemia: pathogenesis and treatment. In: Li W, editor. Leukemia [internet]. Brisbane (AU): Exon Publications; 2022. Chapter 7.
  • Guru Murthy GS, Hamadani M, Dhakal B, et al. Incidence and survival of therapy related myeloid neoplasm in United States. Leuk Res. 2018;71:95–99. doi:10.1016/j.leukres.2018.07.013.
  • Fianchi L, Pagano L, Piciocchi A, et al. Characteristics and outcome of therapy-related myeloid neoplasms: report from the Italian network on secondary leukemias. Am J Hematol. 2015;90(5):E80–5. doi:10.1002/ajh.23966.
  • Ong DM, Farrugia H, Wei A. Therapy-related acute myeloid leukaemia and myelodysplastic syndrome in Victoria, Australia 2003–2014. Intern Med J. 2018;48(7):822–829. doi:10.1111/imj.137.
  • Ha H, Kim HJ, Park JH, et al. Epidemiologic outlook of therapy-related myeloid neoplasms and selection of high-risk patients: a Korean nationwide study. Cancer. 2022;128(21):3888–3896. doi:10.1002/cncr.34453.
  • Eichenauer DA, Thielen I, Haverkamp H, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndromes in patients with Hodgkin lymphoma: a report from the German Hodgkin Study Group. Blood. 2014;123(11):1658–1664. doi:10.1182/blood-2013-07-512657.
  • Praga C, Bergh J, Bliss J, et al. Risk of acute myeloid leukemia and myelodysplastic syndrome in trials of adjuvant epirubicin for early breast cancer: correlation with doses of epirubicin and cyclophosphamide. J Clin Oncol. 2005;23(18):4179–4191. doi:10.1200/JCO.2005.05.029.
  • Maung SW, Burke C, Hayde J, et al. A review of therapy-related myelodysplastic syndromes and acute myeloid leukaemia (t-MDS/AML) in Irish patients: a single Centre experience. Hematology. 2017;22(6):341–346. Epub 2017 Feb 15. PMID: 28196450. doi:10.1080/10245332.2017.1286539.
  • Lindsley RC, Mar BG, Mazzola E, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(9):1367–1376. doi:10.1182/blood-2014-11-610543.
  • Shih AH, Chung SS, Dolezal EK, et al. Mutational analysis of therapy-related myelodysplastic syndromes and acute myelogenous leukemia. Haematologica. 2013;98(6):908–912. doi:10.3324/haematol.2012.076729.
  • Bacher U, Haferlach T, Kern W, et al. A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica. 2007;92(6):744–752. doi:10.3324/haematol.10869.
  • Chantadisai M, Kulkarni HR, Baum RP. Therapy-related myeloid neoplasm after peptide receptor radionuclide therapy (PRRT) in 1631 patients from our 20 years of experiences: prognostic parameters and overall survival. Eur J Nucl Med Mol Imaging. 2021;48(5):1390–1398. doi:10.1007/s00259-020-05127-9.
  • Kuendgen A, Nomdedeu M, Tuechler H, et al. Therapy-related myelodysplastic syndromes deserve specific diagnostic Sub-classification and risk-stratification-an approach to classification of patients with MDS-pCT. Leukemia. 2021;35(3):835–849. doi:10.1038/s41375-020-0917-7.
  • Strickland SA, Vey N. Diagnosis and treatment of therapy-related acute myeloid leukemia. Crit Rev Oncol Hematol. 2022;171:103607. doi:10.1016/j.critrevonc.2022.103607.
  • Quintás-Cardama A, Daver N, Kim H, et al. A prognostic model of therapy-related myelodysplastic syndrome for predicting survival and transformation to acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2014;14(5):401–410. doi:10.1016/j.clml.2014.03.001.
  • Zeidan AM, Al Ali N, Barnard J, et al. Comparison of clinical outcomes and prognostic utility of risk stratification tools in patients with therapy-related vs de novo myelodysplastic syndromes: a report on behalf of the MDS Clinical Research Consortium. Leukemia. 2017;31(6):1391–1397. doi:10.1038/leu.2017.33.
  • Voso MT, Falconi G, Fabiani E. What’s new in the pathogenesis and treatment of therapy-related myeloid neoplasms. Blood. 2021;138(9):749–757. doi:10.1182/blood.2021010764.
  • Lancet JE, Uy GL, Newell LF, et al. CPX-351 versus 7 + 3 cytarabine and daunorubicin chemotherapy in older adults with newly diagnosed high-risk or secondary acute myeloid leukaemia: 5-year results of a randomised, open-label, multicentre, phase 3 trial. Lancet Haematol. 2021;8(7):e481–e491. doi:10.1016/S2352-3026(21)00134-4.
  • Uy GL, Newell LF, Lin TL, et al. Transplant outcomes after CPX-351 vs 7 + 3 in older adults with newly diagnosed high-risk and/or secondary AML. Blood Adv. 2022;6(17):4989–4993. doi:10.1182/bloodadvances.2023010005.
  • Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291–299. doi:10.1182/blood-2015-01-621664.
  • Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012;30(21):2670–2677. doi:10.1200/JCO.2011.38.9429.
  • Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6(10):1106–1117. doi:10.1158/2159-8290.CD-16-0313.
  • DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–629. doi:10.1056/NEJMoa2012971.
  • Wei AH, Montesinos P, Ivanov V, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood. 2020;135(24):2137–2145. doi:10.1182/blood.2020004856.
  • Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov. 2019;9(3):370–383. doi:10.1158/2159-8290.CD-18-0774.
  • Paschka P, Schlenk RF, Weber D, et al. Adding dasatinib to intensive treatment in core-binding factor acute myeloid leukemia-results of the AMLSG 11-08 trial. Leukemia. 2018;32(7):1621–1630. doi:10.1038/s41375-018-0129-6.
  • Sallman DA, DeZern AE, Steensma DP, et al. Phase 1b/2 combination study of APR-246 and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Blood. 2018;132(Supplement 1):3091–3091. doi:10.1182/blood-2018-99-119990.
  • Cluzeau T, Sebert M, Rahm’e R, et al. APR-246 combined with azacitidine (AZA) in TP53 mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). A phase 2 study by the Groupe Francophone Des Mýelodysplasies (GFM). Blood. 2019;134(Supplement_1):677–677. doi:10.1182/blood-2019-125579.
  • Sallman DA, Asch AS, Al Malki MM, et al. The first-in-CD47 class antibody magrolimab combined with azacitidine is well-tolerated and effective in AML patients: phase 1b results. Blood. 2019;134(Supplement_1):569–569. doi:10.1182/blood-2019-126271.
  • Aldoss I, Uy GL, Vey N, et al. Flotetuzumab as salvage therapy for primary induction failure and early relapse acute myeloid leukemia. Blood. 2021;136(Supplement 1):16–18. doi:10.1182/blood-2020-134576.
  • Klimek VM, Dolezal EK, Tees MT, et al. Efficacy of hypomethylating agents in therapy-related myelodysplastic syndromes. Leuk Res. 2012;36(9):1093–1097. doi:10.1016/j.leukres.2012.04.025.
  • Syndax. Syndax announces positive interim data demonstrating robust clinical activity in phase 1 portion of the AUGMENT-101 trial of SNDX-5613 in patients with genetically-defined acute leukemias (Press release). Waltham (MA): Syndax Pharmaceuticals, Inc.; 2021.
  • Litzow MR, Tarima S, Pérez WS, et al. Allogeneic transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood. 2010;115(9):1850–1857. doi:10.1182/blood-2009-10-249128.
  • Kröger N, Brand R, van Biezen A, et al. Risk factors for therapy-related myelodysplastic syndrome and acute myeloid leukemia treated with allogeneic stem cell transplantation. Haematologica. 2009;94(4):542–549. doi:10.3324/haematol.2008.000927.
  • Metheny L, Callander NS, Hall AC, et al. Allogeneic transplantation to treat therapy-related myelodysplastic syndrome and acute myelogenous leukemia in adults. Transplant Cell Ther. 2021;27(11):923.e1–923.e12. doi:10.1016/j.jtct.2021.08.010.