949
Views
0
CrossRef citations to date
0
Altmetric
Infectious Diseases

A differential diagnosis method for systemic CAEBV and the prospect of EBV-related immune cell markers via flow cytometry

, & ORCID Icon
Article: 2329136 | Received 03 Aug 2023, Accepted 23 Feb 2024, Published online: 19 Mar 2024

References

  • Cohen JI. Epstein-Barr virus infection. N Engl J Med. 2000;343(7):1–18. doi: 10.1056/NEJM200008173430707.
  • Fujiwara S, Nakamura H. Chronic active Epstein-Barr virus infection: is it immunodeficiency, malignancy, or both? Cancers (Basel). 2020;12(11):3202. doi: 10.3390/cancers12113202.
  • Kimura H. EBV in T-/NK-cell tumorigenesis. Adv Exp Med Biol. 2018;1045:459–475.
  • Fernandez-Pol S, Silva O, Natkunam Y. Defining the elusive boundaries of chronic active Epstein-Barr virus infection. Haematologica. 2018;103(6):924–927. doi: 10.3324/haematol.2018.193714.
  • Zhang P, Zeng C, Cheng J, et al. Determination of Epstein-Barr virus-infected lymphocyte cell types in peripheral blood mononuclear cells as a valuable diagnostic tool in hematological diseases. Open Forum Infect Dis. 2019;6(5):ofz171.
  • Kimura H, Ito Y, Kawabe S, et al. EBV-associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts: prospective analysis of 108 cases. Blood. 2012;119(3):673–686. doi: 10.1182/blood-2011-10-381921.
  • Cohen JI, Jaffe ES, Dale JK, et al. Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. Blood. 2011;117(22):5835–5849. doi: 10.1182/blood-2010-11-316745.
  • Cohen JI, Iwatsuki K, Ko YH, et al. Epstein-Barr virus NK and T cell lymphoproliferative disease: report of a 2018 international meeting. Leuk Lymphoma. 2020;61(4):808–819. doi: 10.1080/10428194.2019.1699080.
  • Bollard CM, Cohen JI. How I treat T-cell chronic active Epstein-Barr virus disease. Blood. 2018;131(26):2899–2905. doi: 10.1182/blood-2018-03-785931.
  • Campo E, Jaffe ES, Cook JR, et al. The international consensus classification of mature lymphoid neoplasms: a report from the clinical advisory committee. Blood. 2022;140(11):1229–1253. doi: 10.1182/blood.2022015851.
  • Quintanilla-Martinez L, Swerdlow SH, Tousseyn T, et al. New concepts in EBV-associated B, T, and NK cell lymphoproliferative disorders. Virchows Arch. 2022;482(1):227–244. doi: 10.1007/s00428-022-03414-4.
  • Zambello R, Teramo A, Barilà G, et al. Activating KIRs in chronic lymphoproliferative disorder of NK cells: protection from viruses and disease induction? Front Immunol. 2014;5:72. doi: 10.3389/fimmu.2014.00072.
  • Swerdlow SH CE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (Eds). WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. IARC: Lyon; 2017.
  • Dávila Saldaña BJ, John T, Bonifant C, et al. High risk of relapsed disease in patients with NK/T-cell chronic active Epstein-Barr virus disease outside of asia. Blood Adv. 2022;6(2):452–459. doi: 10.1182/bloodadvances.2021005291.
  • Quintanilla-Martinez LKY-H, Kimura H, Jaffe ES. EBV-positive T-cell and NK-cell lymphoproliferative diseases of childhood: IARC, Lyon, France, 2017.
  • Sawada A, Inoue M, Kawa K. How we treat chronic active Epstein-Barr virus infection. Int J Hematol. 2017;105(4):406–418. doi: 10.1007/s12185-017-2192-6.
  • Kimura H, Cohen JI. Chronic active Epstein-Barr virus disease. Front Immunol. 2017;8:1867. doi: 10.3389/fimmu.2017.01867.
  • Collins PJ, Fox CP, George L, et al. Characterizing EBV-associated lymphoproliferative diseases and the role of myeloid-derived suppressor cells. Blood. 2021;137(2):203–215. doi: 10.1182/blood.2020005611.
  • Yonese I, Sakashita C, Imadome KI, et al. Nationwide survey of systemic chronic active EBV infection in Japan in accordance with the new WHO classification. Blood Adv. 2020;4(13):2918–2926. doi: 10.1182/bloodadvances.2020001451.
  • Arai A. Chronic active Epstein-Barr virus infection: a bi-faceted disease with inflammatory and neoplastic elements. Immunol Med. 2018;41(4):162–169. doi: 10.1080/25785826.2018.1556030.
  • Arai A. Chronic active Epstein-Barr virus infection: the elucidation of the pathophysiology and the development of therapeutic methods. Microorganisms. 2021;9(1):180. doi: 10.3390/microorganisms9010180.
  • Zheng M, Bao Y, Wang J, et al. The superiority of Epstein-Barr virus DNA in plasma over in peripheral blood mononuclear cells for monitoring EBV-positive NK-cell lymphoproliferative diseases. Hematol Oncol. 2022;40(3):381–389. doi: 10.1002/hon.2998.
  • Yosuke A, Kei M, Naotaka S, et al. Chronic active EBV infection in refractory enteritis with longitudinal ulcers with a cobblestone appearance: an autopsied case report. J BMC Gastroenterol. 2021;21(1):6.
  • Richter J, Quintanilla-Martinez L, Bienemann K, et al. An unusual presentation of a common infection. Infection. 2013;41(2):565–569. doi: 10.1007/s15010-012-0321-y.
  • Henter JI, Horne A, Aricó M, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–131. doi: 10.1002/pbc.21039.
  • Wang Z, Kimura S, Iwasaki H, et al. Clinicopathological findings of systemic Epstein-Barr virus-positive T-lymphoproliferative diseases in younger and older adults. Diagn Pathol. 2021;16(1):48. doi: 10.1186/s13000-021-01107-1.
  • Suzuki R, Suzumiya J, Nakamura S, et al. Aggressive natural killer-cell leukemia revisited: large granular lymphocyte leukemia of cytotoxic NK cells. Leukemia. 2004;18(4):763–770. doi: 10.1038/sj.leu.2403262.
  • Chan JJE, Ralfkiaer E, et al. Aggressive NK-cell. Leukemia: IARC, Lyon, France; 2008.
  • Oshimi K. Leukemia and lymphoma of natural killer lineage cells. Int J Hematol. 2003;78(1):18–23. doi: 10.1007/BF02983235.
  • Tse E, Kwong YL. How I treat NK/T-cell lymphomas. Blood. 2013;121(25):4997–5005. doi: 10.1182/blood-2013-01-453233.
  • Chan JQ, Ferry J, et al. Extranodal NK/T-cell lymphoma, nasal type: IARC, Lyon, France, 2008.
  • Pileri SAW, Sng I, Nakamura S, et al. Peripheral T-cell lymphoma, NOS: IARC, Lyon, France, 2017.
  • Montes-Mojarro IA, Kim WY, Fend F, et al. Epstein - Barr virus positive T and NK-cell lymphoproliferations: morphological features and differential diagnosis. Semin Diagn Pathol. 2020;37(1):32–46. doi: 10.1053/j.semdp.2019.12.004.
  • El-Mallawany NK, Curry CV, Allen CE. Haemophagocytic lymphohistiocytosis and Epstein-Barr virus: a complex relationship with diverse origins, expression and outcomes. Br J Haematol. 2022;196(1):31–44. doi: 10.1111/bjh.17638.
  • Cho EY, Kim KH, Kim WS, et al. The spectrum of Epstein-Barr virus-associated lymphoproliferative disease in korea: incidence of disease entities by age groups. J Korean Med Sci. 2008;23(2):185–192. doi: 10.3346/jkms.2008.23.2.185.
  • Lin J, Wu H, Gu L, et al. Clinicopathologic findings of chronic active Epstein-Barr virus infection in adults: a single-center retrospective study in China. Clin Exp Med. 2021;21(3):369–377. doi: 10.1007/s10238-021-00689-w.
  • Kawamoto K, Miyoshi H, Suzuki T, et al. A distinct subtype of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorder: adult patients with chronic active Epstein-Barr virus infection-like features. Haematologica. 2018;103(6):1018–1028. doi: 10.3324/haematol.2017.174177.
  • Wu X, Wang K, Gao Y, et al. Acute fibrinous and organizing pneumonia complicated with hemophagocytic lymphohistiocytosis caused by chronic active Epstein-Barr virus infection: a case report. BMC Infect Dis. 2021;21(1):1207. doi: 10.1186/s12879-021-06868-0.
  • Kimura H, Hoshino Y, Hara S, et al. Differences between T cell-type and natural killer cell-type chronic active Epstein-Barr virus infection. J Infect Dis. 2005;191(4):531–539. doi: 10.1086/427239.
  • Kimura H, Morishima T, Kanegane H, et al. Prognostic factors for chronic active Epstein-Barr virus infection. J Infect Dis. 2003;187(4):527–533. doi: 10.1086/367988.
  • de Lima M, Oran B, Champlin RE, et al. CC-486 maintenance after stem cell transplantation in patients with acute myeloid leukemia or myelodysplastic syndromes. Biol Blood Marrow Transplant. 2018;24(10):2017–2024. doi: 10.1016/j.bbmt.2018.06.016.
  • Shafiee A, Shamsi S, Kohandel Gargari O, et al. EBV associated T- and NK-cell lymphoproliferative diseases: a comprehensive overview of clinical manifestations and novel therapeutic insights. Rev Med Virol. 2022;32(4):e2328.
  • Ondrejka SL, Hsi ED. Chronic active Epstein-Barr virus infection: a heterogeneous entity requiring a high index of suspicion for diagnosis. Int J Lab Hematol. 2020;42 Suppl 1:99–106. doi: 10.1111/ijlh.13199.
  • Kim WY, Montes-Mojarro IA, Fend F, et al. Epstein-Barr virus-associated T and NK-cell lymphoproliferative diseases. Front Pediatr. 2019;7:71. doi: 10.3389/fped.2019.00071.
  • Yu S, Yang Q, Wu J, et al. Clinical application of Epstein-Barr virus DNA loads in Epstein-Barr virus-associated diseases: a cohort study. J Infect. 2021;82(1):105–111. doi: 10.1016/j.jinf.2020.11.027.
  • Swerdlow SH, Jaffe ES, Brousset P, et al. Cytotoxic T-cell and NK-cell lymphomas: current questions and controversies. Am J Surg Pathol. 2014;38(10):e60-71–e71. doi: 10.1097/PAS.0000000000000295.
  • Arai A. Advances in the study of chronic active Epstein-Barr virus infection: clinical features under the 2016 WHO classification and mechanisms of development. Front Pediatr. 2019;7:14. doi: 10.3389/fped.2019.00014.
  • Chen S, Wei A, Ma H, et al. Clinical features and prognostic factors of children with chronic active Epstein-Barr virus infection: a retrospective analysis of a single center. J Pediatr. 2021;238:268–274.e262. doi: 10.1016/j.jpeds.2021.07.009.
  • Lin J, Chen X, Wu H, et al. Peripheral blood lymphocyte counts in patients with infectious mononucleosis or chronic active Epstein-Barr virus infection and prognostic risk factors of chronic active Epstein-Barr virus infection. Am J Transl Res. 2021;13(11):12797–12806.
  • Arai A, Sakashita C, Hirose C, et al. Hematopoietic stem cell transplantation for adults with EBV-positive T- or NK-cell lymphoproliferative disorders: efficacy and predictive markers. Bone Marrow Transplant. 2016;51(6):879–882. doi: 10.1038/bmt.2016.3.
  • Kimura H, Hoshino Y, Kanegane H, et al. Clinical and virologic characteristics of chronic active Epstein-Barr virus infection. Blood. 2001;98(2):280–286. doi: 10.1182/blood.v98.2.280.
  • Arai A, Nogami A, Imadome K, et al. Sequential monitoring of serum IL-6, TNF-α, and IFN-γ levels in a CAEBV patient treated by plasma exchange and immunochemotherapy. Int J Hematol. 2012;96(5):669–673. doi: 10.1007/s12185-012-1170-2.
  • Onozawa E, Shibayama H, Imadome KI, et al. [Inflammatory cytokine production in chronic active Epstein-Barr virus infection]. [Rinsho Ketsueki] Jpn J Clin Hematol. 2017;58(3):189–196.
  • Tsuchiya S. Diagnosis of Epstein-Barr virus-associated diseases. Crit Rev Oncol Hematol. 2002;44(3):227–238. doi: 10.1016/s1040-8428(02)00114-2.
  • Nicolae A, Ganapathi KA, Pham TH, et al. EBV-negative aggressive NK-cell leukemia/lymphoma: clinical, pathologic, and genetic features. Am J Surg Pathol. 2017;41(1):67–74. doi: 10.1097/PAS.0000000000000735.
  • Kimura H, Kwong YL. EBV viral loads in diagnosis, monitoring, and response assessment. Front Oncol. 2019;9:62. doi: 10.3389/fonc.2019.00062.
  • Kawada JI, Kamiya Y, Sawada A, et al. Viral DNA loads in various blood components of patients with Epstein-Barr virus-positive T-cell/natural killer cell lymphoproliferative diseases. J Infect Dis. 2019;220(8):1307–1311. doi: 10.1093/infdis/jiz315.
  • Kanakry JA, Hegde AM, Durand CM, et al. The clinical significance of EBV DNA in the plasma and peripheral blood mononuclear cells of patients with or without EBV diseases. Blood. 2016;127(16):2007–2017. doi: 10.1182/blood-2015-09-672030.
  • Au WY, Pang A, Choy C, et al. Quantification of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients. Blood. 2004;104(1):243–249. doi: 10.1182/blood-2003-12-4197.
  • Tse E, Kwong YL. Diagnosis and management of extranodal NK/T cell lymphoma nasal type. Expert Rev Hematol. 2016;9(9):861–871. doi: 10.1080/17474086.2016.1206465.
  • Suzuki R, Yamaguchi M, Izutsu K, et al. Prospective measurement of Epstein-Barr virus-DNA in plasma and peripheral blood mononuclear cells of extranodal NK/T-cell lymphoma, nasal type. Blood. 2011;118(23):6018–6022. doi: 10.1182/blood-2011-05-354142.
  • Fournier B, Boutboul D, Bruneau J, et al. Rapid identification and characterization of infected cells in blood during chronic active Epstein-Barr virus infection. J Exp Med. 2020;217(11):e20192262. doi: 10.1084/jem.20192262.
  • Abe N, Fujieda Y. Chronic active Epstein-Barr virus infection. Blood. 2020;136(18):2090–2090. doi: 10.1182/blood.2020008157.
  • Syrykh C, Péricart S, Lamaison C, et al. Epstein-Barr virus-associated T- and NK-cell lymphoproliferative diseases: a review of clinical and pathological features. Cancers (Basel). 2021;13(13):3315. doi: 10.3390/cancers13133315.
  • Tripodi SA, Rocca BJ, Hako L, et al. Quality control by tissue microarray in immunohistochemistry. J Clin Pathol. 2012;65(7):635–637. doi: 10.1136/jclinpath-2011-200551.
  • Dojcinov SD, Fend F, Quintanilla-Martinez L. EBV-Positive lymphoproliferations of B- T- and NK-cell derivation in Non-Immunocompromised hosts. Pathogens. 2018;7(1):28. doi: 10.3390/pathogens7010028.
  • Takahashi E, Ohshima K, Kimura H, et al. Clinicopathological analysis of the age-related differences in patients with Epstein-Barr virus (EBV)-associated extranasal natural killer (NK)/T-cell lymphoma with reference to the relationship with aggressive NK cell leukaemia and chronic active EBV infection-associated lymphoproliferative disorders. Histopathology. 2011;59(4):660–671. doi: 10.1111/j.1365-2559.2011.03976.x.
  • Hu X, Yang Y, Chen L, et al. Chronic active Epstein-Barr virus infection progresses to aggressive NK cell leukemia with a poor prognosis. Am J Transl Res. 2021;13(10):12006–12015.
  • Fox CP, Haigh TA, Taylor GS, et al. A novel latent membrane 2 transcript expressed in Epstein-Barr virus-positive NK- and T-cell lymphoproliferative disease encodes a target for cellular immunotherapy. Blood. 2010;116(19):3695–3704. doi: 10.1182/blood-2010-06-292268.
  • Nakashima Y, Tagawa H, Suzuki R, et al. Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal Nk/T-cell lymphoma, nasal type. Genes Chromosomes Cancer. 2005;44(3):247–255. doi: 10.1002/gcc.20245.
  • Montes-Mojarro IA, Fend F, Quintanilla-Martinez L. EBV and the pathogenesis of NK/T cell lymphoma. Cancers (Basel). 2021;13(6):1414. doi: 10.3390/cancers13061414.
  • Palendira U, Rickinson AB. Primary immunodeficiencies and the control of Epstein-Barr virus infection. Ann N Y Acad Sci. 2015;1356(1):22–44. doi: 10.1111/nyas.12937.
  • Li Z, Tsai MH, Shumilov A, et al. Epstein-Barr virus ncRNA from a nasopharyngeal carcinoma induces an inflammatory response that promotes virus production. Nat Microbiol. 2019;4(12):2475–2486. doi: 10.1038/s41564-019-0546-y.
  • Cohen JI. Primary immunodeficiencies associated with EBV disease. Curr Top Microbiol Immunol. 2015;390(Pt 1):241–265. doi: 10.1007/978-3-319-22822-8_10.
  • Tangye SG, Palendira U, Edwards ES. Human immunity against EBV-lessons from the clinic. J Exp Med. 2017;214(2):269–283. doi: 10.1084/jem.20161846.
  • Cai Q, Chen K, Young KH. Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorders. Exp Mol Med. 2015;47(1):e133–e133. doi: 10.1038/emm.2014.105.
  • Guan YQ, Shen KF, Yang L, et al. Inherited genetic susceptibility to nonimmunosuppressed Epstein-Barr virus-associated T/NK-cell lymphoproliferative diseases in chinese patients. Curr Med Sci. 2021;41(3):482–490. doi: 10.1007/s11596-021-2375-5.
  • Rodriguez R, Fournier B, Cordeiro DJ, et al. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. J Exp Med. 2019;216(12):2800–2818. doi: 10.1084/jem.20190678.
  • Okuno Y, Murata T, Sato Y, et al. Genetic background of chronic active Epstein-Barr virus disease. Blood. 2017;130(Supplement 1):1468–1468.
  • Ishimura M, Eguchi K, Shiraishi A, et al. Systemic Epstein-Barr virus-positive T/NK lymphoproliferative diseases with SH2D1A/XIAP hypomorphic gene variants. Front Pediatr. 2019;7:183. doi: 10.3389/fped.2019.00183.
  • Gao LM, Zhao S, Zhang WY, et al. Somatic mutations in KMT2D and TET2 associated with worse prognosis in Epstein-Barr virus-associated T or natural killer-cell lymphoproliferative disorders. Cancer Biol Ther. 2019;20(10):1319–1327. doi: 10.1080/15384047.2019.1638670.
  • Li Z, Xia Y, Feng LN, et al. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol. 2016;17(9):1240–1247. doi: 10.1016/S1470-2045(16)30148-6.
  • Jiang L, Gu ZH, Yan ZX, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 2015;47(9):1061–1066. doi: 10.1038/ng.3358.
  • Huang L, Liu D, Wang N, et al. Integrated genomic analysis identifies deregulated JAK/STAT-MYC-biosynthesis axis in aggressive NK-cell leukemia. Cell Res. 2018;28(2):172–186. doi: 10.1038/cr.2017.146.
  • Yuan L, Kan Y, Meeks JK, et al. 18F-FDG PET/CT for identifying the potential causes and extent of secondary hemophagocytic lymphohistiocytosis. Diagn Interv Radiol. 2016;22(5):471–475. doi: 10.5152/dir.2016.15226.
  • Tse E, Kwong YL. The diagnosis and management of NK/T-cell lymphomas. J Hematol Oncol. 2017;10(1):85. doi: 10.1186/s13045-017-0452-9.
  • Lu X, Kan Y, Wang W, et al. Primary cutaneous natural killer/T-cell lymphoma: a posttransplant lymphoproliferative disorder demonstrated by 18F-FDG PET/CT. Clin Nucl Med. 2021;46(7):595–598. doi: 10.1097/RLU.0000000000003524.
  • Hao R, Yang X, Liu Z, et al. EBV-Associated T-cell lymphoproliferative disorders demonstrated on FDG PET/CT in a patient with hemophagocytic lymphohistiocytosis. Clin Nucl Med. 2019;44(10):829–830. doi: 10.1097/RLU.0000000000002649.
  • Toriihara A, Nakajima R, Arai A, et al. Pathogenesis and FDG-PET/CT findings of Epstein-Barr virus-related lymphoid neoplasms. Ann Nucl Med. 2017;31(6):425–436. doi: 10.1007/s12149-017-1180-5.
  • Wass M, Bauer M, Pfannes R, et al. Chronic active Epstein-Barr virus infection of T-cell type, systemic form in an african migrant: case report and review of the literature on diagnostics standards and therapeutic options. BMC Cancer. 2018;18(1):941. doi: 10.1186/s12885-018-4861-0.
  • Yang X, Lu X, Kan Y, et al. Muscle involvement caused by chronic active Epstein-Barr virus infection on 18F-FDG PET/CT in a pediatric patient. Clin Nucl Med. 2022;47(3):268–270. doi: 10.1097/RLU.0000000000003899.
  • Tseng YJ, Ding WQ, Zhong L, et al. Chronic active Epstein-Barr virus (CAEBV) enteritis. Int J Infect Dis. 2019;82:15–17. doi: 10.1016/j.ijid.2019.02.020.
  • Pu Q, Cao X, Liu Y, et al. Comprehensive analysis and summary of the value of immunophenotypes of mature NK cell tumors for differential diagnosis, treatment, and prognosis. Front Immunol. 2022;13:918487. doi: 10.3389/fimmu.2022.918487.
  • Yachie A. Cytologic analysis of Epstein-Barr virus-associated T/natural Killer-Cell lymphoproliferative diseases. Front Pediatr. 2018;6:327. doi: 10.3389/fped.2018.00327.
  • Jevremovic D, Olteanu H. Flow cytometry applications in the diagnosis of T/NK-cell lymphoproliferative disorders. Cytometry B Clin Cytom. 2019;96(2):99–115. doi: 10.1002/cyto.b.21768.
  • Carvelli J, Piperoglou C, Farnarier C, et al. Functional and genetic testing in adults with HLH reveals an inflammatory profile rather than a cytotoxicity defect. Blood. 2020;136(5):542–552. doi: 10.1182/blood.2019003664.
  • Perussia B, Starr S, Abraham S, et al. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol. 1983;130(5):2133–2141. doi: 10.4049/jimmunol.130.5.2133.
  • Lanier LL, Chang C, Azuma M, et al. Molecular and functional analysis of human natural killer cell-associated neural cell adhesion molecule (N-CAM/CD56). J Immunol (Baltimore, Md, 1950). 1991;146(12):4421–4426. doi: 10.4049/jimmunol.146.12.4421.
  • Morice WG. The immunophenotypic attributes of NK cells and NK-cell lineage lymphoproliferative disorders. Am J Clin Pathol. 2007;127(6):881–886. doi: 10.1309/Q49CRJ030L22MHLF.
  • Morice WG, Kurtin PJ, Leibson PJ, et al. Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocytic leukaemia. Br J Haematol. 2003;120(6):1026–1036. doi: 10.1046/j.1365-2141.2003.04201.x.
  • Heibein JA, Goping IS, Barry M, et al. Granzyme B-mediated cytochrome c release is regulated by the bcl-2 family members bid and bax. J Exp Med. 2000;192(10):1391–1402. doi: 10.1084/jem.192.10.1391.
  • Doroshow DB, Bhalla S, Beasley MB, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18(6):345–362. doi: 10.1038/s41571-021-00473-5.
  • Dębska-Zielkowska J, Moszkowska G, Zieliński M, et al. KIR receptors as key regulators of NK cells activity in health and disease. Cells. 2021;10(7):1777. doi: 10.3390/cells10071777.
  • Montaldo E, Del Zotto G, Della Chiesa M, et al. Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A. 2013;83(8):702–713. doi: 10.1002/cyto.a.22302.
  • Caligiuri MA, Zmuidzinas A, Manley TJ, et al. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J Exp Med. 1990;171(5):1509–1526. doi: 10.1084/jem.171.5.1509.
  • Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood. 2001;97(10):3146–3151. doi: 10.1182/blood.v97.10.3146.
  • Carson WE, Fehniger TA, Caligiuri MA. CD56bright natural killer cell subsets: characterization of distinct functional responses to interleukin-2 and the c-kit ligand. Eur J Immunol. 1997;27(2):354–360. doi: 10.1002/eji.1830270203.
  • Chan A, Hong DL, Atzberger A, et al. CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J Immunol. 2007;179(1):89–94. doi: 10.4049/jimmunol.179.1.89.
  • Björkström NK, Riese P, Heuts F, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood. 2010;116(19):3853–3864. doi: 10.1182/blood-2010-04-281675.
  • Trotta R, Parihar R, Yu J, et al. Differential expression of SHIP1 in CD56bright and CD56dim NK cells provides a molecular basis for distinct functional responses to monokine costimulation. Blood. 2005;105(8):3011–3018. doi: 10.1182/blood-2004-10-4072.
  • Luetke-Eversloh M, Killig M, Romagnani C. Signatures of human NK cell development and terminal differentiation. Front Immunol. 2013;4:499. doi: 10.3389/fimmu.2013.00499.
  • Lünemann A, Vanoaica LD, Azzi T, et al. A distinct subpopulation of human NK cells restricts B cell transformation by EBV. J Immunol. 2013;191(10):4989–4995. doi: 10.4049/jimmunol.1301046.
  • Forconi CS, Oduor CI, Oluoch PO, et al. A new hope for CD56(neg)CD16(pos) NK cells as unconventional cytotoxic mediators: an adaptation to chronic diseases. Front Cell Infect Microbiol. 2020;10:162. doi: 10.3389/fcimb.2020.00162.
  • Jiang NG, Jin YM, Niu Q, et al. Flow cytometric immunophenotyping is of great value to diagnosis of natural killer cell neoplasms involving bone marrow and peripheral blood. Ann Hematol. 2013;92(1):89–96. doi: 10.1007/s00277-012-1574-3.
  • Müller-Durovic B, Grählert J, Devine OP, et al. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging (Albany NY). 2019;11(2):724–740. doi: 10.18632/aging.101774.
  • Lu G, Xie ZD, Zhao SY, et al. Clinical analysis and follow-up study of chronic active Epstein-Barr virus infection in 53 pediatric cases. Chin Med J. 2009;122(3):262–266. doi: 10.3760/cma.j.issn.0366-6999.2009.03.005.
  • Luo L, Wang H, Fan H, et al. The clinical characteristics and the features of immunophenotype of peripheral lymphocytes of adult onset chronic active Epstein-Barr virus disease at a tertiary care hospital in beijing. Medicine (Baltimore). 2018;97(9):e9854. doi: 10.1097/MD.0000000000009854.
  • Wada T, Kurokawa T, Toma T, et al. Immunophenotypic analysis of Epstein-Barr virus (EBV)-infected CD8(+) T cells in a patient with EBV-associated hemophagocytic lymphohistiocytosis. Eur J Haematol. 2007;79(1):72–75. doi: 10.1111/j.1600-0609.2007.00868.x.
  • Miyawaki T, Kasahara Y, Kanegane H, et al. Expression of CD45R0 (UCHL1) by CD4+ and CD8+ T cells as a sign of in vivo activation in infectious mononucleosis. Clin Exp Immunol. 1991;83(3):447–451. doi: 10.1111/j.1365-2249.1991.tb05659.x.
  • Hirai Y, Yamamoto T, Kimura H, et al. Hydroa vacciniforme is associated with increased numbers of Epstein-Barr virus-infected γδT cells. J Invest Dermatol. 2012;132(5):1401–1408. doi: 10.1038/jid.2011.461.
  • Lima M. Extranodal NK/T cell lymphoma and aggressive NK cell leukaemia: evidence for their origin on CD56 + bright CD16-/+dim NK cells. Pathology. 2015;47(6):503–514. doi: 10.1097/PAT.0000000000000275.
  • Ng SB, Lai KW, Murugaya S, et al. Nasal-type extranodal natural killer/T-cell lymphomas: a clinicopathologic and genotypic study of 42 cases in Singapore. Mod Pathol. 2004;17(9):1097–1107. doi: 10.1038/modpathol.3800157.
  • de Mel S, Li JB, Abid MB, et al. The utility of flow cytometry in differentiating NK/T cell lymphoma from indolent and reactive NK cell proliferations. Cytometry B Clin Cytom. 2018;94(1):159–168. doi: 10.1002/cyto.b.21529.
  • Li C, Tian Y, Wang J, et al. Abnormal immunophenotype provides a key diagnostic marker: a report of 29 cases of de novo aggressive natural killer cell leukemia. Transl Res. 2014;163(6):565–577. doi: 10.1016/j.trsl.2014.01.010.
  • Ishida F. Aggressive NK-cell leukemia. Front Pediatr. 2018;6:292. doi: 10.3389/fped.2018.00292.
  • Rashidi A, Fisher SI. EBV-associated aggressive natural killer cell leukemia. Blood. 2016;127(20):2502–2502. doi: 10.1182/blood-2016-02-700682.
  • Falcão RP, Rizzatti EG, Saggioro FP, et al. Flow cytometry characterization of leukemic phase of nasal NK/T-cell lymphoma in tumor biopsies and peripheral blood. Haematologica. 2007;92(2):e24-25–e25. doi: 10.3324/haematol.10654.
  • Lima M, Spínola A, Fonseca S, et al. Aggressive mature natural killer cell neoplasms: report on a series of 12 european patients with emphasis on flow cytometry based immunophenotype and DNA content of neoplastic natural killer cells. Leuk Lymphoma. 2015;56(1):103–112. doi: 10.3109/10428194.2014.905772.
  • Raspadori D, Damiani D, Lenoci M, et al. CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia. 2001;15(8):1161–1164. doi: 10.1038/sj.leu.2402174.
  • Aloysius MM, Zaitoun AM, Awad S, et al. Mucins and CD56 as markers of tumour invasion and prognosis in periampullary cancer. Br J Surg. 2010;97(8):1269–1278. doi: 10.1002/bjs.7107.
  • Au WY, Ma SY, Chim CS, et al. Clinicopathologic features and treatment outcome of mature T-cell and natural killer-cell lymphomas diagnosed according to the world health organization classification scheme: a single center experience of 10 years. Ann Oncol. 2005;16(2):206–214. doi: 10.1093/annonc/mdi037.
  • Feng Y, Feng X, Jing C, et al. The expression and clinical significance of programmed cell death receptor 1 and its ligand in tumor tissues of patients with extranodal nasal NK/T cell lymphoma. Sci Rep. 2022;12(1):36. doi: 10.1038/s41598-021-02515-5.