2,304
Views
94
CrossRef citations to date
0
Altmetric
Trends in Molecular Medicine

Primary ciliary dyskinesia: Clinical presentation, diagnosis and genetics

&
Pages 439-449 | Published online: 08 Jul 2009

References

  • Afzelius B. A. A human syndrome caused by immotile cilia. Science 1976; 193: 317–9
  • Blouin J. L., Meeks M., Radhakrishna U., Sainsbury A., Gehring C., Sail G. D. Primary ciliary dyskinesia: a genome‐wide linkage analysis reveals extensive locus heterogeneity. Eur J Hum Genet 2000; 8: 109–18
  • Afzelius B. A. Genetics and pulmonary medicine. 6. Immotile cilia syndrome: past, present, and prospects for the future. Thorax 1998; 53: 894–7
  • Schidlow D. V. Primary ciliary dyskinesia (the immotile cilia syndrome). Ann Allergy 1994; 73: 457–68, quiz 468–70
  • Kartagener M., Stucki P. Bronchiectasis with situs inversus. Arch Pediatr 1962; 79: 193–207
  • Narayan D., Krishnan S. N., Upender M., Ravikumar T. S., Mahoney M. J., Dolan T. F Jr. Unusual inheritance of primary ciliary dyskinesia (Kartagener's syndrome). J Med Genet 1994; 31: 493–6
  • Krawczynski M. R., Witt M. PCD and RP: X‐linked inheritance of both disorders?. Pediatr Pulmonol 2004; 38: 88–9
  • Bush A., Cole P., Hariri M., Mackay I., Phillips G., O'Callaghan C. Primary ciliary dyskinesia: diagnosis and standards of care. Eur Respir J 1998; 12: 982–8
  • Meeks M., Bush A. Primary ciliary dyskinesia (PCD). Pediatr Pulmonol 2000; 29: 307–16
  • Afzelius B. A., Eliasson R. Male and female infertility problems in the immotile‐cilia syndrome. Eur J Respir Dis Suppl 1983; 127: 144–7
  • Munro N. C., Currie D. C., Lindsay K. S., Ryder T. A., Rutman A., Dewar A. Fertility in men with primary ciliary dyskinesia presenting with respiratory infection. Thorax 1994; 49: 684–7
  • Neesen J., Kirschner R., Ochs M., Schmiedl A., Habermann B., Mueller C. Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. Hum Mol Genet 2001; 10: 1117–28
  • Sapiro R., Kostetskii I., Olds‐Clarke P., Gerton G. L., Radice G. L., Strauss I. J. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm‐associated antigen 6. Mol Cell Biol 2002; 22: 6298–305
  • Afzelius B. A. Immotile Cilia Syndrome (Primary Ciliary Dyskinesia) Including Kartagener Syndrome. The Metabolic and molecular bases of inherited disease, C. R Scriver, W. S Sly. McGraw‐Hill, Inc, New York 1995
  • Canciani M., Barlocco E. G., Mastella G., de Santi M. M., Gardi C., Lungarella G. The saccharin method for testing mucociliary function in patients suspected of having primary ciliary dyskinesia. Pediatr Pulmonol 1988; 5: 210–4
  • Rutland J., Griffin W., Cole P. Nasal brushing and measurement of ciliary beat frequency. An in vitro method for evaluating pharmacologic effects on human cilia. Chest 1981; 80((6 Suppl))865–7
  • MacCormick J., Robb I., Kovesi T., Carpenter B. Optimal biopsy techniques in the diagnosis of primary ciliary dyskinesia. J Otolaryngol 2002; 31: 13–7
  • Chilvers M. A., Rutman A., O'Callaghan C. Functional analysis of cilia and ciliated epithelial ultrastructure in healthy children and young adults. Thorax 2003; 58: 333–8
  • Jorissen M., Willems T., Van der Schueren B. Nasal ciliary beat frequency is age independent. Laryngoscope 1998; 108: 1042–7
  • O'Callaghan C., Smith K., Wilkinson M., Morgan D., Priftis K. Ciliary beat frequency in newborn infants. Arch Dis Child 1991; 66: 443–4
  • Chilvers M. A., Rutman A., O'Callaghan C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol 2003; 112: 518–24
  • Jorissen M., Willems T., Van der Schueren B., Verbeken E. Secondary ciliary dyskinesia is absent after ciliogenesis in culture. Acta Otorhinolaryngol Belg 2000; 54: 333–42
  • Afzelius B. A. Genetical and ultrastructural aspects of the immotile‐cilia syndrome. Am J Hum Genet 1981; 33: 852–64
  • Rutland J., Cole P. J. Nasal mucociliary clearance and ciliary beat frequency in cystic fibrosis compared with sinusitis and bronchiectasis. Thorax 1981; 36: 654–8
  • Ibanez‐Tallon I., Heintz N., Omran H. To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet 2003; 12 Spec No 1: R27–35
  • Jorissen M., Willems T., Van der Schueren B., Verbeken E., De Boeck K. Ultrastructural expression of primary ciliary dyskinesia after ciliogenesis in culture. Acta Otorhinolaryngol Belg 2000; 54: 343–56
  • Escudier E., Couprie M., Duriez B., Roudot‐Thoraval F., Millepied M. C., Pruliere‐Escabasse V. Computer‐assisted analysis helps detect inner dynein arm abnormalities. Am J Respir Crit Care Med 2002; 166: 1257–62
  • Hibbs J. B, Jr. Synthesis of nitric oxide from L‐arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res Immunol 1991; 142: 565–9, discussion 596–8
  • Jain B., Rubinstein I., Robbins R. A., Leise K. L., Sisson J. H. Modulation of airway epithelial cell ciliary beat frequency by nitric oxide. Biochem Biophys Res Commun 1993; 191: 83–8
  • Zapol W. M., Rimar S., Gillis N., Marletta M., Bosken C. H. Nitric oxide and the lung. Am J Respir Crit Care Med 1994; 149: 1375–80
  • Lundberg J. O., Rinder J., Weitzberg E., Lundberg J. M., Alving K. Nasally exhaled nitric oxide in humans originates mainly in the paranasal sinuses. Acta Physiol Scand 1994; 152: 431–2
  • Loukides S., Kharitonov S., Wodehouse T., Cole P. J., Barnes P. J. Effect of arginine on mucociliary function in primary ciliary dyskinesia. Lancet 1998; 352: 371–2
  • Grasemann H., Gartig S. S., Wiesemann H. G., Teschler H., Konietzko N., Ratjen F. Effect of L‐arginine infusion on airway NO in cystic fibrosis and primary ciliary dyskinesia syndrome. Eur Respir J 1999; 13: 114–8
  • Karadag B., James A. J., Gultekin E., Wilson N. M., Bush A. Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. Eur Respir J 1999; 13: 1402–5
  • Wodehouse T., Kharitonov S. A., Mackay I. S., Barnes P. J., Wilson R., Cole P. J. Nasal nitric oxide measurements for the screening of primary ciliary dyskinesia. Eur Respir J 2003; 21: 43–7
  • Baraldi E., Pasquale M. F., Cangiotti A. M., Zanconato S., Zacchello F. Nasal nitric oxide is low early in life: case study of two infants with primary ciliary dyskinesia. Eur Respir J 2004; 24: 881–3
  • Noone P. G., Leigh M. W., Sannuti A., Minnix S. L., Carson J. L., Hazucha M. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 2004; 169: 459–67
  • Deja M., Busch T., Bachmann S., Riskowski K., Campean V., Wiedmann B. Reduced nitric oxide in sinus epithelium of patients with radiologic maxillary sinusitis and sepsis. Am J Respir Crit Care Med 2003; 168: 281–6
  • Corbelli R., Bringolf‐Isler B., Amacher A., Sasse B., Spycher M., Hammer J. Nasal nitric oxide measurements to screen children for primary ciliary dyskinesia. Chest 2004; 126: 1054–9
  • Wheatley D. N., Wang A. M., Strugnell G. E. Expression of primary cilia in mammalian cells. Cell Biol Int 1996; 20: 73–81
  • Nonaka S., Tanaka Y., Okada Y., Takeda S., Harada A., Kanai Y. Randomization of left‐right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998; 95: 829–37
  • Svedbergh B., Jonsson V., Afzelius B. Immotile‐cilia syndrome and the cilia of the eye. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1981; 215: 265–72
  • Bonneau D., Raymond F., Kremer C., Klossek J. M., Kaplan J., Patte F. Usher syndrome type I associated with bronchiectasis and immotile nasal cilia in two brothers. J Med Genet 1993; 30: 253–4
  • Ohga H., Suzuki T., Fujiwara H., Furutani A., Koga H. [A case of immotile cilia syndrome accompanied by retinitis pigmentosa]. Nippon Ganka Gakkai Zasshi 1991; 95: 795–801
  • Segal P., Kikiela M., Mrzyglod S., Zeromska‐Zbierska I. Kartagener's syndrome with familial eye changes. Am J Ophthalmol 1963; 55: 1043–9
  • Holzbaur E. L., Vallee R. B. DYNEINS: molecular structure and cellular function. Annu Rev Cell Biol 1994; 10: 339–72
  • Vallee R. B., Gee M. A. Make room for dynein. Trends Cell Biol 1998; 8: 490–4
  • Habura A., Tikhonenko I., Chisholm R. L., Koonce M. P. Interaction mapping of a dynein heavy chain. Identification of dimerization and intermediate‐chain binding domains. J Biol Chem 1999; 274: 15447–53
  • Asai D. J., Koonce M. P. The dynein heavy chain: structure, mechanics and evolution. Trends Cell Biol 2001; 11: 196–202
  • Gibbons I. R., Lee‐Eiford A., Mocz G., Phillipson C. A., Tang W. J., Gibbons B. H. Photosensitized cleavage of dynein heavy chains. Cleavage at the “V1 site” by irradiation at 365 nm in the presence of ATP and vanadate. J Biol Chem 1987; 262: 2780–6
  • Silflow C. D., Lefebvre P. A. Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. Plant Physiol 2001; 127: 1500–7
  • Maiti A. K., Mattei M. G., Jorissen M., Volz A., Zeigler A., Bouvagnet P. Identification, tissue specific expression, and chromosomal localisation of several human dynein heavy chain genes. Eur J Hum Genet 2000; 8: 923–32
  • Wilkerson C. G., King S. M., Witman G. B. Molecular analysis of the gamma heavy chain of Chlamydomonas flagellar outer‐arm dynein. J Cell Sci 1994; 107: 497–506
  • Kamiya R. Exploring the function of inner and outer dynein arms with Chlamydomonas mutants. Cell Motil Cytoskeleton 1995; 32: 98–102
  • Brokaw C. J., Kamiya R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton 1987; 8: 68–75
  • Omran H., Haffner K., Volkel A., Kuehr J., Ketelsen U. P., Ross U. H. Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Mol Biol 2000; 23: 696–702
  • Pennarun G., Escudier E., Chapelin C., Bridoux A. M., Cacheux V., Roger G. Loss‐of‐function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 1999; 65: 1508–19
  • Bartoloni L., Blouin J. L., Pan Y., Gehrig C., Maiti A. K., Scamuffa N. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci U S A 2002; 99: 10282–6
  • Olbrich H., Haffner K., Kispert A., Volkel A., Volz A., Sasmaz G. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left‐right asymmetry. Nat Genet 2002; 30: 143–4
  • van Dorp D. B., Wright A. F., Carothers A. D., Bleeker‐Wagemakers E. M. A family with RP3 type of X‐linked retinitis pigmentosa: an association with ciliary abnormalities. Hum Genet 1992; 88: 331–4
  • Dry K. L., Manson F. D., Lennon A., Bergen A. A., Van Dorp D. B., Wright A. F. Identification of a 5' splice site mutation in the RPGR gene in a family with X‐linked retinitis pigmentosa (RP3). Hum Mutat 1999; 13: 141–5
  • Guichard C., Harricane M. C., Lafitte J. J., Godard P., Zaegel M., Tack V. Axonemal dynein intermediate‐chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet 2001; 68: 1030–5
  • Zariwala M., Noone P. G., Sannuti A., Minnix S., Zhou Z., Leigh M. W. Germline mutations in an intermediate chain dynein cause primary ciliary dyskinesia. Am J Respir Cell Mol Biol 2001; 25: 577–83
  • Kispert A., Petry M., Olbrich H., Volz A., Ketelsen U. P., Horvath J. Genotype‐phenotype correlations in PCD patients carrying DNAH5 mutations. Thorax 2003; 58: 552–4
  • Iannaccone A., Breuer D. K., Wang X. F., Kuo S. F., Normando E. M., Filippova E. Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. J Med Genet 2003; 40: e118
  • Zito I., Downes S. M., Patel R. J., Cheetham M. E., Ebenezer N. D., Jenkins S. A. RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Med Genet 2003; 40: 609–15
  • Zhang Y. J., O'Neal W. K., Randell S. H., Blackburn K., Moyer M. B., Boucher R. C. Identification of dynein heavy chain 7 as an inner arm component of human cilia that is synthesized but not assembled in a case of primary ciliary dyskinesia. J Biol Chem 2002; 277: 17906–15
  • Bartoloni L., Blouin J. L., Maiti A. K., Sainsbury A., Rossier C., Gehrig C. Axonemal beta heavy chain dynein DNAH9: cDNA sequence, genomic structure, and investigation of its role in primary ciliary dyskinesia. Genomics 2001; 72: 21–33
  • Pennarun G., Chapelin C., Escudier E., Bridoux A. M., Dastot F., Cacheux V. The human dynein intermediate chain 2 gene (DNAI2): cloning, mapping, expression pattern, and evaluation as a candidate for primary ciliary dyskinesia. Hum Genet 2000; 107: 642–9
  • Neesen J., Drenckhahn J. D., Tiede S., Burfeind P., Grzmil M., Konietzko J. Identification of the human ortholog of the t‐complex‐encoded protein TCTE3 and evaluation as a candidate gene for primary ciliary dyskinesia. Cytogenet Genome Res 2002; 98: 38–44
  • Pennarun G., Bridoux A. M., Escudier E., Dastot‐Le Moal F., Cacheux V., Amselem S. Isolation and expression of the human hPF20 gene orthologous to Chlamydomonas PF20: evaluation as a candidate for axonemal defects of respiratory cilia and sperm flagella. Am J Respir Cell Mol Biol 2002; 26: 362–70
  • Maiti A. K., Bartoloni L., Mitchison H. M., Meeks M., Chung E., Spiden S. No deleterious mutations in the FOXJ1 (alias HFH‐4) gene in patients with primary ciliary dyskinesia (PCD). Cytogenet Cell Genet 2000; 90: 119–22
  • Ibanez‐Tallon I., Gorokhova S., Heintz N. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 2002; 11: 715–21
  • Fliegauf M., Olbrich H., Horvath J., Wildhaber J. H., Zariwala M. A., Kennedy M. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 2005; 171: 1343–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.