5,340
Views
295
CrossRef citations to date
0
Altmetric
TRENDS IN CLINICAL PRACTICE

Targeting the ERK signaling pathway in cancer therapy

&
Pages 200-211 | Published online: 26 Aug 2009

References

  • Pages G., Lenormand P., L'Allemain G., Chambard J. C., Meloche S., Pouyssegur J. Mitogen‐activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci 1993; 90: 8319–23
  • Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J 1995; 9: 726–35
  • Lewis T. S., Shapiro P. S., Ahn N. G. Signal transduction through MAP kinase cascades. Adv Cancer Res 1998; 74: 49–139
  • Pouyssegur J., Lenormand P. Fidelity and Spatio‐temporal control in MAP kinase (ERKs) signaling. Eur J Biochem 2003; 270: 3291–9
  • Hoshino R., Chatani Y., Yamori T., Tsuruo T., Oka H., Yoshida O., et al. Constitutive activation of the 41‐/43‐kDa mitogen‐activated protein kinase signaling pathway in human tumors. Oncogene 1999; 18: 813–22
  • Gioeli D., Mandell J. W., Petroni G. R., Frierson HF J. r., Weber M. J. Activation of mitogen‐activated protein kinase associated with prostate cancer progression. Cancer Res 1999; 59: 279–84
  • Oka H., Chatani Y., Hoshino R., Ogawa O., Kakehi Y., Terachi T., et al. Constitutive activation of mitogen‐activated protein (MAP) kinases in human renal cell carcinoma. Cancer Res 1995; 55: 4182–7
  • English J. M., Cobb M. H. Pharmacological inhibitors of MAPK pathway. Trend Pharmacol Sci 2002; 23: 40–5
  • Kohno M., Pouyssegur J. Pharmacological inhibitors of the ERK signaling pathway: application as an anticancer drugs. Prog Cell Cycle Res 2003; 5: 219–24
  • Sebolt‐Leopold J. S., Herrera R. Targeting the mitogen‐activated protein kinase cascade to treat cancer. Nature Rev Cancer 2004; 4: 937–47
  • Arteaga C. L. Epidermal growth factor receptor dependence in human tumors: more than just expression?. Oncologist 2002; 7: 31–9
  • Paez J. G., Janne P. A., Lee J. C., Tracy S., Greulich H., Gabriel S., et al. EGFR mutations in lung cancer: correlation with clinical response to Gefitinib therapy. Science 2004; 304: 1497–500
  • Cox A. D., Der C. J. Ras family signaling: therapeutic targeting. Cancer Biol Ther 2002; 1: 599–606
  • Downward J. Targeting RAS signaling pathways in cancer therapy. Nature Rev. Cancer 2003; 3: 11–2
  • Davies H., Bignell G. R., Cox C., Stephens P., Edkins S., Clegg S., et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–54
  • Wan P. T. C., Garnett M. J., Roe S. M., Lee S., Niculescu‐Duvaz D., Good V. M., et al. Mechanism of activation of the RAF‐ERK signaling pathway by oncogenic mutations of B‐RAF. Cell 2004; 116: 855–67
  • Theodosiou A., Ashworth A. MAP kinase phosphatases. Genome Biol 2002; 3: Reviews 3009
  • Kim H. J., Bar‐Sagi D. Modulation of signaling by Sprouty: a developing story. Nature Rev Mol Cell Biol 2004; 5: 441–50
  • Kwabi‐Addo B., Wang J., Erdem H., Vaid A., Castro P., Ayala G., et al. The expression of sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Res 2004; 64: 4728–35
  • Lo T. L., Yusoff P., Fong C. W., Guo K., McCaw B. J., Phillips W. A., et al. The Ras/mitogen‐activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty1 and Sprouty2 are deregulated in breast cancer. Cancer Res 2004; 64: 6127–36
  • Manzano R. G., Montuenga L. M., Dayton M., Dent P., Kinoshita I., Vicent S., et al. CL100 expression is down‐regulated in advanced epithelial ovarian cancer and its re‐expression decreases its malignant potential. Oncogene 2002; 21: 4435–47
  • Cobb M. H., Goldsmith E. J. How MAP kinases are regulated. J Biol Chem 1995; 270: 14843–6
  • Herbst R. S., Fukuoka M., Baselga J. Gefitinib—a novel targeted approach to treating cancer. Nature Rev Cancer 2004; 4: 956–65
  • Sebti S. M., Der C. J. Searching for the elusive targets of farnesyltransferase inhibitors. Nature Rev Cancer 2003; 3: 945–51
  • Zhu K., Hamilton A. D., Sebti S. M. Farnesyltransferase inhibitors as anticancer agents: current status. Curr Opin Investig Drugs 2003; 4: 1428–35
  • Lackner M. R., Kindt R. M., Carroll P. M., Brown K., Cancilla M. R., Chen C., et al. Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell 2005; 7: 325–36
  • Hoshino R., Tanimura S., Watanabe K., Kataoka T., Kohno M. Blockade of the extracellular signal‐regulated kinase pathway induces marked G1 cell cycle arrest and apoptosis in tumor cells in which the pathway is constitutively activated: up‐regulation of p27Kip1. J Biol Chem 2001; 276: 2686–92
  • Lauffenburger D. A., Horwitz A. F. Cell migration: a physically integrated molecular process. Cell 1996; 84: 359–69
  • Tanimura S., Chatani Y., Hoshino R., Sato M., Watanabe S., Kataoka T., et al. Activation of the 41/43·kDa mitogen‐activated protein kinase signaling pathway is required for hepatocyte growth factor‐induced cell scattering. Oncogene 1998; 17: 57–65
  • Tanimura S., Nomura K., Ozaki K., Tsujimoto M., Kondo T., Kohno M. Prolonged nuclear retention of activated extracellular signal‐regulated kinase 1/2 is required for hepatocyte growth factor‐induced cell motility. J Biol Chem 2002; 277: 28256–64
  • Reddy K. B., Nabha S. M., Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev 2003; 22: 395–403
  • Welch D. R., Sakamaki T., Pioquinto R., Leonard T. O., Goldberg S. F., Hon Q., et al. Transfection of Constitutively Active Mitogen‐activated Protein/Extracellular Signal‐regulated Kinase Kinase Confers Tumorigenic and Metastatic Potentials to NIH3T3 Cells. Cancer Res 2000; 60: 1552–6
  • Klemke R. L., Cai S., Giannini A. L., Gallagher P. J., de Lanerolle P., Cheresh D. A. Regulation of cell motility by mitogen‐activated protein kinase. J Cell Biol 1997; 137: 481–92
  • Semenza G. L. Targeting HIF‐α for cancer therapy. Nature Rev Cancer 2003; 3: 721–32
  • Pages G., Pouyssegur J. Transcriptional regulation of the Vascular Endothelial Growth Factor gene—a concert of activating factors. Cardiovasc Res 2005; 65: 564–73
  • Richard D. E., Berra E., Gothie E., Roux D., Pouyssegur J. p42/p44 mitogen‐activated protein kinases phosphorylate hypoxia‐inducible factor 1α (HIF‐1α) and enhance the transcriptional activity of HIF‐1. J Biol Chem 1999; 274: 2631–7
  • Brahimi‐Horn C., Mazure N., Pouyssegur J. Signalling via the hypoxia‐inducible factor 1α requires multiple posttranslational modifications. Cell Signal 2005; 17: 1–9
  • Eliceiri B. P., Klemke R., Stromblad S., Cheresh., D. A. Integrin αvβ3 requirement for sustained mitogen‐activated protein kinase activity during angiogenesis. J Cell Biol 1998; 140: 1255–63
  • Sebolt‐Leopold J. S., Dudley D. T., Herrera R., Van Becelaera K., Wiland A., Gowan R. C., et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nature Med 1999; 5: 810–6
  • Tanimura S., Asato K., Fujishro S., Kohno M. Specific blockade of the ERK pathway inhibits the invasiveness of tumor cells: down‐regulation of matrix metalloproteinase‐3/‐9/‐14 and CD44. Biochem Biophys Res Commun 2003; 304: 801–6
  • Kimura E. T., Nikiforova N. M., Zhu Z., Knauf J. A., Nikiforov Y. E., Fagin J. A. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC‐RAS‐BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003; 63: 1454–7
  • Rajagopalan H., Bardelli A., Lengauer C., Kinzler K. W., Vogelstein B., Velculescu V. E. Tumorigenesis: RAF/RAS oncogenes and mismatch‐repair status. Nature 2002; 418: 934
  • Wan P. T. C., Garnett M. J., Roe S. M., Lee S., Niculescu‐Duvaz D., Good V. M., et al. Mechanism of activation of the RAF‐ERK signaling pathway by oncogenic mutations of B‐RAF. Cell 2004; 116: 855–67
  • Wellbrock C., Ogilvie L., Hedley D., Karasarides M., Martin J., Niculescu‐Duvaz D., et al. V599EB‐RAF is an oncogene in melanocytes. Cancer Res 2004; 64: 2338–42
  • Hingorani S. R., Jacobetz M. A., Robertson G. P., Herlyn M., Tuveson D. A. Suppression of BRAFV599E in human melanoma abrogates transformation. Cancer Res 2003; 63: 5198–202
  • Lyons J. F., Wilhelm S., Hibner B., Bollag G. Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001; 8: 219–25
  • Wilhelm S. M., Carter C., Tang L. Y., Wilkie D., McNabola A., Rong H., et al. BAY 43‐9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–109
  • Clark J. W., Eder J. P., Ryan D., Lathia C., Lenz H‐J. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43‐9006, in patients with advanced, refractory solid tumors. Clin Cancer Res 2005; 11: 5472–80
  • Strumberg D., Richly H., Hilger R. A., Schleucher N., Korfee S., Tewes M., et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43‐9006 in patients with advanced refractory solid tumors. J Clin Oncol 2005; 23: 965–72
  • Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel., A. R. A synthetic inhibitor of the mitogen‐activated protein kinase cascade. Proc Natl Acad Sci USA 1995; 92: 7686–9
  • Favata M. F., Horiuchi K. Y., Manos E. J., Daulerio A. J., Stradley D. A., Feeser W. S., et al. Identification of a Novel Inhibitor of Mitogen‐activated Protein Kinase Kinase. J Biol Chem 1998; 273: 18623–32
  • Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351: 95–105
  • Ohren J. F., Chen H., Pavlovsky A., Whitehead C., Zhang E., Kuffa P., et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nature Struct Mol Biol 2004; 11: 1192–7
  • LoRusso P. M., Adjei A. A., Varterasian M., Gadgeel S., Reid J., Mitchell D. Y., et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI‐1040 in patients with advanced malignancies. J Clin Oncol 2005; 23: 5281–93
  • Rinehart J., Adjei A. A., LoRusso P. M., Waterhouse D., Hecht J. R., Natale R. B., et al. Multicenter phase II study of the oral MEK inhibitor, CI‐1040, in patients with advanced non‐small‐cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 2004; 22: 4456–62
  • Menon S. S., Whitfield L. R., Sadis S., Meyer M. B., Leopold J., Lorusso P. M., et al. Pharmacokinetics (PK) and pharmacodynamics (PD) of PD 0325901, a second generation MEK inhibitor after multiple oral doses of PD 0325901 to advanced cancer patients. Proc Am Soc Clin Oncol 2005; 23: 3066
  • Lyssikatos J., Yeh T., Wallace E., Marsh V., Bernat B., Gross S., et al. ARRY‐14886, a potent and selective MEK inhibitor: I) ATP‐independent inhibition results in high enzymatic and cellular selectivity. Proc Am Assoc Cancer Res 2004; 45: 3888
  • Yeh T., Walace E., Lyssikatos J., Winkler J. ARRY‐14886, a potent and selective MEK inhibitor: II) Potency against cellular MEK leads to inhibition of cellular proliferation and induction of apoptosis in cell lines with mutant Ras or B‐Raf. Proc Am Assoc Cancer Res 2004; 45: 3889
  • Lee P., Wallace E., Yeh T., Poch G., Litwiler K., Pheneger T., et al. ARRY‐14886, a potent and selective MEK inhibitor: III) Efficacy against human xenograft models correlates with decreased ERK phosphorylation. Proc Am Assoc Cancer Res 2004; 45: 3890
  • Dent P., Grant S. Pharmacologic interruption of the mitogen‐activated extracellular‐regulated kinase/mitogen‐activated protein kinase signal transduction pathway: Potential role in promoting cytotoxic drug action. Clin Cancer Res 2001; 7: 775–83
  • Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK‐p38 MAP kinases on apoptosis. Science 1995; 270: 1326–31
  • Lavoie J. N., L'Allemain G., Brunet A., Muller R., Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996; 271: 20608–16
  • Deng X., Ruvolo P., Carr B., May W. S., Jr. Survival function of ERK1/2 as IL‐3‐activated, staurosporine‐resistant Bcl2 kinases. Proc Natl Acad Sci USA 2000; 97: 1578–83
  • Hayakawa J., Ohmichi M., Kurachi H., Kanda Y., Hisamoto K., Nishio Y., et al. Inhibition of Bcl‐2 associated death agonist (BAD) phosphorylation either at serine 112 via extracellular signal‐regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res 2000; 60: 5988–94
  • Persons D. L., Yazlovitskaya E. M., Pelling J. C. Effect of extracellular signal‐regulated kinase on p53 accumulation in response to cisplatin. J Biol Chem 2000; 275: 35778–85
  • Townsend K. J., Trusty J. L., Traupman M. A., Eastman A., Craig R. W. Expression of the antiapoptotic MCL1 gene product is regulated by a mitogen activated protein kinase‐mediated pathway triggered through microtubule disruption and protein kinase C. Oncogene 1998; 17: 1223–34
  • McDaid H. M., Lopez‐Barcons L., Grossman A., Lia M., Keller S., Román Pérez‐Soler R., et al. Enhancement of the therapeutic efficacy of taxol by the mitogen‐activated protein kinase kinase inhibitor CI‐1040 in nude mice bearing human heterotransplants. Cancer Res 2005; 65: 2854–60
  • Watanabe K., Noda S., Iwashita K., Tanimura S., Ozaki K., Kohno M. Blockade of the extracellular signal‐regulated kinase pathway enhances the anti‐tumor activity of microtubule depolymerizing agents in tumor cells in which the pathway is constitutively activated. Proc Am Assoc Cancer Res 2002; 43: 2891
  • Ozaki K., Minoda A., Kishikawa F., Kohno M. Blockade of the ERK pathway markedly sensitizes tumor cells to HDAC inhibitor‐induced cell death. Biochem Biophys Res Commun 2006; 339: 1171–7
  • Vivanco I., Sawyers C. L. The phosphatidylinositol 3‐kinase–AKT pathway in human cancer. Nature Rev Cancer 2002; 489–501, 2
  • Nicholson K. M., Anderson N. G. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14: 381–95
  • Guo W., Giancotti F. G. Integrin signaling during tumour progression. Nature Rev Mol Cell Biol 2004; 5: 816–26
  • Schlaepfer D. D., Mitra S. K. Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 2004; 14: 92–101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.