2,297
Views
149
CrossRef citations to date
0
Altmetric
Review Article

Complex disease, gender and epigenetics

, &
Pages 530-544 | Published online: 08 Jul 2009

References

  • Petronis A. Epigenetics and twins: three variations on the theme. Trends Genet 2006; 22: 347–50
  • Petronis A. Human morbid genetics revisited: relevance of epigenetics. Trends Genet 2001; 17: 142–6
  • Ostrer H. Sex‐based differences in gene transmission and gene expression. Lupus 1999; 8: 365–9
  • Seeman M. V. Psychopathology in women and men: focus on female hormones. Am J Psychiatry 1997; 154: 1641–7
  • Committee on Understanding the Biology of Sex and Gender Differences, Board on Health Science Policy, Institute of Medicine;. Exploring the Biological Contributions to Human Health, Does Sex Matter? 2001, Theresa M. Wizemann, Mary‐Lou Pardue, eds. Washington D.C. National Academy Press
  • Simerly R. B. Wired on hormones: endocrine regulation of hypothalamic development. Curr Opin Neurobiol 2005; 15: 81–5
  • Simerly R. B. Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci 2002; 25: 507–36
  • Lustig R. H. Sex hormone modulation of neural development in vitro. Horm Behav 1994; 28: 383–95
  • Kudwa A. E., Michopoulos V., Gatewood J. D., Rissman E. F. Roles of estrogen receptors alpha and beta in differentiation of mouse sexual behavior. Neuroscience 2006; 138: 921–8
  • Bolduc C., Larose M., Yoshioka M., Ye P., Belleau P., Labrie C., et al. Effects of dihydrotestosterone on adipose tissue measured by serial analysis of gene expression. J Mol Endocrinol 2004; 33: 429–44
  • Mayes J. S., Watson G. H. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev 2004; 5: 197–216
  • Tan Z. S., Seshadri S., Beiser A., Zhang Y., Felson D., Hannan M. T., et al. Bone mineral density and the risk of Alzheimer disease. Arch Neurol 2005; 62: 107–11
  • Rosario E. R., Chang L., Stanczyk F. Z., Pike C. J. Age‐related testosterone depletion and the development of Alzheimer disease. JAMA 2004; 292: 1431–2
  • Ivakine E. A., Fox C. J., Paterson A. D., Mortin‐Toth S. M., Canty A., Walton D. S., et al. Sex‐specific effect of insulin‐dependent diabetes 4 on regulation of diabetes pathogenesis in the nonobese diabetic mouse. J Immunol 2005; 174: 7129–40
  • Hawkins T., Gala R. R., Dunbar J. C. The effect of neonatal sex hormone manipulation on the incidence of diabetes in nonobese diabetic mice. Proc Soc Exp Biol Med 1993; 202: 201–5
  • Stone J. L., Merriman B., Cantor R. M., Yonan A. L., Gilliam T. C., Geschwind D. H., et al. Evidence for sex‐specific risk alleles in autism spectrum disorder. Am J Hum Genet 2004; 75: 1117–23
  • Lamb J. A., Barnby G., Bonora E., Sykes N., Bacchelli E., Blasi F., et al. Analysis of IMGSAC autism susceptibility loci: evidence for sex limited and parent of origin specific effects. J Med Genet 2005; 42: 132–7
  • Abkevich V., Camp N. J., Hensel C. H., Neff C. D., Russell D. L., Hughes D. C., et al. Predisposition locus for major depression at chromosome 12q22‐12q23.2. Am J Hum Genet 2003; 73: 1271–81
  • Zubenko G. S., Maher B., Hughes H. B 3rd., Zubenko W. N., Stiffler J. S., Kaplan B. B., et al. Genome‐wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early‐onset, major depression. Am J Med Genet B Neuropsychiatr Genet 2003; 123B: 1–18
  • Thomson P. A., Wray N. R., Millar J. K., Evans K. L., Hellard S. L., Condie A., et al. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 2005; 10: 657–68; 616
  • Hennah W., Varilo T., Kestila M., Paunio T., Arajarvi R., Haukka J., et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex‐dependent effects. Hum Mol Genet 2003; 12: 3151–9
  • Weiss L. A., Pan L., Abney M., Ober C. The sex‐specific genetic architecture of quantitative traits in humans. Nat Genet 2006; 38: 218–22
  • Henikoff S., Matzke M. A. Exploring and explaining epigenetic effects. Trends Genet 1997; 13: 293–5
  • Jenuwein T., Allis C. D. Translating the histone code. Science 2001; 293: 1074–80
  • Takai D., Jones P. A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 2002; 99: 3740–5
  • Siegfried Z., Eden S., Mendelsohn M., Feng X., Tsuberi B. Z., Cedar H. DNA methylation represses transcription in vivo. Nat Genet 1999; 22: 203–6
  • Razin A., Shemer R. Epigenetic control of gene expression. Results Probl Cell Differ 1999; 25: 189–204
  • Ehrlich M., Ehrlich K. Effect of DNA methylation and the binding of vertebrate and plant proteins to DNA. DNA Methylation: Molecular Biology and Biological Significance, J Jost, P Saluz. Birkhauser Verlag, Basel, Switzerland 1993; 145–68
  • Jones P. L., Veenstra G. J., Wade P. A., Vermaak D., Kass S. U., Landsberger N., et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998; 19: 187–91
  • Nan X., Ng H. H., Johnson C. A., Laherty C. D., Turner B. M., Eisenman R. N., et al. Transcriptional repression by the methyl‐CpG‐binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393: 386–9
  • Riggs A. D., Xiong Z., Wang L., LeBon J. M. Methylation dynamics, epigenetic fidelity and X chromosome structure. Epigenetics 1998; 214–27, In: Wolffe A, ed. Chistester. John Wiley & Sons
  • Constancia M., Pickard B., Kelsey G., Reik W. Imprinting mechanisms. Genome Res 1998; 8: 881–900
  • Bestor T., Chandler V. L., Feinberg A. P. Epigenetic effects in eukaryotic gene expression. Develop Genet 1994; 15: 458
  • Riggs A., Porter T. Overview of epigenetic mehanisms. Epigenetic mechanisms of gene regulation, V. E. A Russo, R. A Martienssen, A. D Riggs. Cold Spring Harbor Laboratory Press, Plainview, N.Y., 29–45
  • Petronis A. Genomic imprinting in unstable DNA diseases. Bioessays 1996; 18: 587–90
  • Yang A. S., Jones P. A., Shibata A. The mutational burden of 5‐methylcytosine. Epigenetic mechanisms of gene regulation 1996; 77–94, In: Russo V. E. A, Martienssen R. A, Riggs A. D, eds. Plainview, N.Y. Cold Spring Harbor Laboratory Press
  • Bestor T. H. The DNA methyltransferases of mammals. Hum Mol Genet 2000; 9: 2395–402
  • Li E., Bestor T. H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69: 915–26
  • Yeivin A., Razin A. Gene methylation patterns and expression. DNA Methylation: Molecular Biology and Biological Significance, J Jost, H Saluz. Birkhauser Verlag, Basel 1993; 523–68
  • Holliday R., Ho T., Paulin R. Gene silencing in mammalian cells. Epigenetic mechanisms of gene regulation, V. E. A Russo, R. A Martienssen, A. D Riggs. Cold Spring Harbor Laboratory Press, Plainview, N.Y. 1996; 47–59
  • Schotta G., Lachner M., Peters A. H., Jenuwein T. The indexing potential of histone lysine methylation. Novartis Found Symp 2004; 259: 22–37; discussion 37–47, 163–9
  • Wang Y., Fischle W., Cheung W., Jacobs S., Khorasanizadeh S., Allis C. D. Beyond the double helix: writing and reading the histone code. Novartis Found Symp 2004; 259: 3–17; discussion 17‐21, 163–9
  • Robertson K. D. DNA methylation and chromatin—unraveling the tangled web. Oncogene 2002; 21: 5361–79
  • Geiman T. M., Robertson K. D. Chromatin remodeling, histone modifications, and DNA methylation—how does it all fit together?. J Cell Biochem 2002; 87: 117–25
  • Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002; 3: 662–73
  • Druker R., Whitelaw E. Retrotransposon‐derived elements in the mammalian genome: a potential source of disease. J Inherit Metab Dis 2004; 27: 319–30
  • Ekwall K. The roles of histone modifications and small RNA in centromere function. Chromosome Res 2004; 12: 535–42
  • El‐Osta A., Wolffe A. P. DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr 2000; 9: 63–75
  • Dobosy J. R., Selker E. U. Emerging connections between DNA methylation and histone acetylation. Cell Mol Life Sci 2001; 58: 721–7
  • Baylin S. B., Esteller M., Rountree M. R., Bachman K. E., Schuebel K., Herman J. G. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001; 10: 687–92
  • Yamada Y., Watanabe H., Miura F., Soejima H., Uchiyama M., Iwasaka T., et al. A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res 2004; 14: 247–66
  • Polesskaya O. O., Aston C., Sokolov B. P. Allele C‐specific methylation of the 5‐HT2A receptor gene: evidence for correlation with its expression and expression of DNA methylase DNMT1. J Neurosci Res 2006; 83: 362–73
  • Murrell A., Heeson S., Cooper W. N., Douglas E., Apostolidou S., Moore G. E., et al. An association between variants in the IGF2 gene and Beckwith‐Wiedemann syndrome: interaction between genotype and epigenotype. Hum Mol Genet 2004; 13: 247–55
  • Huang T. H., Perry M. R., Laux D. E. Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 1999; 8: 459–70
  • Shi H., Wei S. H., Leu Y. W., Rahmatpanah F., Liu J. C., Yan P. S., et al. Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res 2003; 63: 2164–71
  • Yan P. S., Efferth T., Chen H. L., Lin J., Rodel F., Fuzesi L., et al. Use of CpG island microarrays to identify colorectal tumors with a high degree of concurrent methylation. Methods 2002; 27: 162–9
  • Yan P. S., Chen C. M., Shi H., Rahmatpanah F., Wei S. H., Huang T. H. Applications of CpG island microarrays for high‐throughput analysis of DNA methylation. J Nutr 2002; 132: 2430S–4S
  • Schumacher A., Kapranov P., Kaminsky Z., Flanagan J., Assadzadeh A., Yau P., et al. Microarray‐based DNA methylation profiling: technology and applications. Nucleic Acids Res 2006; 34: 528–42
  • Schumacher A., Petronis A. Epigenetics of Complex Disease: from the General Theory to Laboratory Experiment. Curr Top Microbiol Immunol 2006; 310: 81–115
  • Jablonka E., Lamb M. Epigenetic Inheritance and Evolution. Oxford University Press, Oxford; New York 1995
  • Flanagan J. M., Popendikyte V., Pozdniakovaite N., Sobolev M., Assadzadeh A., Schumacher A., et al. Intra‐ and Interindividual Epigenetic Variation in Human Germ Cells. Am J Hum Genet 2006; 79: 67–84
  • Sutherland J. E., Costa M. Epigenetics and the environment. Ann N Y Acad Sci 2003; 983: 151–60
  • Jaenisch R., Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33
  • Petronis A. The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol Psychiatry 2004; 55: 965–70
  • Jantzen K., Fritton H. P., Igo‐Kemenes T., Espel E., Janich S., Cato A. C., et al. Partial overlapping of binding sequences for steroid hormone receptors and DNaseI hypersensitive sites in the rabbit uteroglobin gene region. Nucleic Acids Res 1987; 15: 4535–52
  • Truss M., Chalepakis G., Pina B., Barettino D., Bruggemeier U., Kalff M., et al. Transcriptional control by steroid hormones. J Steroid Biochem Mol Biol 1992; 41: 241–8
  • Csordas A., Puschendorf B., Grunicke H. Increased acetylation of histones at an early stage of oestradiol‐mediated gene activation in the liver of immature chicks. J Steroid Biochem 1986; 24: 437–42
  • Pasqualini J. R., Mercat P., Giambiagi N. Histone acetylation decreased by estradiol in the MCF‐7 human mammary cancer cell line. Breast Cancer Res Treat 1989; 14: 101–5
  • Saluz H. P., Jiricny J., Jost J. P. Genomic sequencing reveals a positive correlation between the kinetics of strand‐specific DNA demethylation of the overlapping estradiol/glucocorticoid‐receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc Natl Acad Sci U S A 1986; 83: 7167–71
  • Yokomori N., Moore R., Negishi M. Sexually dimorphic DNA demethylation in the promoter of the Slp (sex‐limited protein) gene in mouse liver. Proc Natl Acad Sci U S A 1995; 92: 1302–6
  • Wilks A., Seldran M., Jost J. P. An estrogen‐dependent demethylation at the 5' end of the chicken vitellogenin gene is independent of DNA synthesis. Nucleic Acids Res 1984; 12: 1163–77
  • Meijlink F. C., Philipsen J. N., Gruber M., Ab G. Methylation of the chicken vitellogenin gene: influence of estradiol administration. Nucleic Acids Res 1983; 11: 1361–73
  • Wilks A. F., Cozens P. J., Mattaj I. W., Jost J. P. Estrogen induces a demethylation at the 5' end region of the chicken vitellogenin gene. Proc Natl Acad Sci U S A 1982; 79: 4252–5
  • Strahl B. D., Allis C. D. The language of covalent histone modifications. Nature 2000; 403: 41–5
  • Rice J. C., Allis C. D. Code of silence. Nature 2001; 414: 258–61
  • Nemeth A., Langst G. Chromatin higher order structure: opening up chromatin for transcription. Brief Funct Genomic Proteomic 2004; 2: 334–43
  • Kinyamu H. K., Archer T. K. Modifying chromatin to permit steroid hormone receptor‐dependent transcription. Biochim Biophys Acta 2004; 1677: 30–45
  • Fu M., Wang C., Zhang X., Pestell R. G. Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem Pharmacol 2004; 68: 1199–208
  • Xu L., Glass C. K., Rosenfeld M. G. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 1999; 9: 140–7
  • Fu M., Rao M., Wang C., Sakamaki T., Wang J., Di Vizio D., et al. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol 2003; 23: 8563–75
  • Gross D. S., Garrard W. T. Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 1988; 57: 159–97
  • Cartwright I. L., Hertzberg R. P., Dervan P. B., Elgin S. C. Cleavage of chromatin with methidiumpropyl‐EDTA. iron(II). Proc Natl Acad Sci U S A 1983; 80: 3213–7
  • Lusser A., Kadonaga J. T. Chromatin remodeling by ATP‐dependent molecular machines. Bioessays 2003; 25: 1192–200
  • Harikrishnan K. N., Chow M. Z., Baker E. K., Pal S., Bassal S., Brasacchio D., et al. Brahma links the SWI/SNF chromatin‐remodeling complex with MeCP2‐dependent transcriptional silencing. Nat Genet 2005; 37: 254–64
  • Kiskinis E., Garcia‐Pedrero J. M., Villaronga M. A., Parker M. G., Belandia B. Identification of BAF57 mutations in human breast cancer cell lines. Breast Cancer Res Treat 2006; 98: 191–8
  • Kraus W. L., Wong J. Nuclear receptor‐dependent transcription with chromatin. Is it all about enzymes?. Eur J Biochem 2002; 269: 2275–83
  • Misiti S., Schomburg L., Yen P. M., Chin W. W. Expression and hormonal regulation of coactivator and corepressor genes. Endocrinology 1998; 139: 2493–500
  • Dubbink H. J., Hersmus R., Verma C. S., van der Korput H. A., Berrevoets C. A., van Tol J., et al. Distinct recognition modes of FXXLF and LXXLL motifs by the androgen receptor. Mol Endocrinol 2004; 18: 2132–50
  • Needham M., Raines S., McPheat J., Stacey C., Ellston J., Hoare S., et al. Differential interaction of steroid hormone receptors with LXXLL motifs in SRC‐1a depends on residues flanking the motif. J Steroid Biochem Mol Biol 2000; 72: 35–46
  • Baek S. H., Ohgi K. A., Nelson C. A., Welsbie D., Chen C., Sawyers C. L., et al. Ligand‐specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells. Proc Natl Acad Sci U S A 2006; 103: 3100–5
  • Ko Y. J., Balk S. P. Targeting steroid hormone receptor pathways in the treatment of hormone dependent cancers. Curr Pharm Biotechnol 2004; 5: 459–70
  • Azzi L., El‐Alfy M., Labrie F. Gender differences and effects of sex steroids and dehydroepiandrosterone on androgen and oestrogen alpha receptors in mouse sebaceous glands. Br J Dermatol 2006; 154: 21–7
  • Liu J. C., Baker R. E., Chow W., Sun C. K., Elsholtz H. P. Epigenetic mechanisms in the dopamine D2 receptor‐dependent inhibition of the prolactin gene. Mol Endocrinol 2005; 19: 1904–17
  • Chakrabarti S. K., Francis J., Ziesmann S. M., Garmey J. C., Mirmira R. G. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J Biol Chem 2003; 278: 23617–23
  • Metivier R., Penot G., Hubner M. R., Reid G., Brand H., Kos M., et al. Estrogen receptor‐alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 2003; 115: 751–63
  • Kulig E., Landefeld T. D., Lloyd R. V. The effects of estrogen on prolactin gene methylation in normal and neoplastic rat pituitary tissues. Am J Pathol 1992; 140: 207–14
  • Reddy P. M., Reddy P. R. Effect of prolactin on DNA methylation in the liver and kidney of rat. Mol Cell Biochem 1990; 95: 43–7
  • Li S., Hansman R., Newbold R., Davis B., McLachlan J. A., Barrett J. C. Neonatal diethylstilbestrol exposure induces persistent elevation of c‐fos expression and hypomethylation in its exon‐4 in mouse uterus. Mol Carcinog 2003; 38: 78–84
  • Mani S. T., Thakur M. K. In the cerebral cortex of female and male mice, amyloid precursor protein (APP) promoter methylation is higher in females and differentially regulated by sex steroids. Brain Res 2006; 1067: 43–7
  • Tekmal R. R., Kirma N., Gill K., Fowler K. Aromatase overexpression and breast hyperplasia, an in vivo model—continued overexpression of aromatase is sufficient to maintain hyperplasia without circulating estrogens, and aromatase inhibitors abrogate these preneoplastic changes in mammary glands. Endocr Relat Cancer 1999; 6: 307–14
  • Contractor R. G., Foran C. M., Li S., Willett K. L. Evidence of gender‐and tissue‐specific promoter methylation and the potential for ethinylestradiol‐induced changes in Japanese medaka (Oryzias latipes) estrogen receptor and aromatase genes. J Toxicol Environ Health A 2004; 67: 1–22
  • Petronis A., Gottesman I. I., Kan P., Kennedy J. L., Basile V. S., Paterson A. D., Popendikyte V. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance?. Schizophr Bull 2003; 29: 169–78
  • Dahl C., Guldberg P. DNA methylation analysis techniques. Biogerontology 2003; 4: 233–50
  • Tost J., Schatz P., Schuster M., Berlin K., Gut I. G. Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry. Nucleic Acids Res 2003; 31: e50
  • Sauer S., Lechner D., Berlin K., Plancon C., Heuermann A., Lehrach H., et al. Full flexibility genotyping of single nucleotide polymorphisms by the GOOD assay. Nucleic Acids Res 2000; 28: e100
  • Kaminsky Z. A., Assadzadeh A., Flanagan J., Petronis A. Single nucleotide extension technology for quantitative site‐specific evaluation of metC/C in GC‐rich regions. Nucleic Acids Res 2005; 33: e95
  • Puppo F., Musso M., Pirulli D., Griseri P., Bachetti T., Crovella S., et al. Comparative genomic sequence analysis coupled to chromatin immunoprecipitation: a screening procedure applied to search for regulatory elements at the RET locus. Physiol Genomics 2005; 23: 269–74
  • van Steensel B., Henikoff S. Epigenomic profiling using microarrays. Biotechniques 2003; 35: 346–50; 52–4; 56–7
  • Weber M., Davies J. J., Wittig D., Oakeley E. J., Haase M., Lam W. L., et al. Chromosome‐wide and promoter‐specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005; 37: 853–62
  • Flanagan J., Petronis A. Pharmacoepigenetics: from the basic mechanisms to therapeutic applications. Pharmacogenomics, W Kalow, U. A Meyer, R Tyndale. Marcel Dekker, Inc., New York 2006; 461–90
  • Harrison's Principles of Internal Medicine. 15th ed, E Braunwald. McGraw‐Hill Medical Publishing, New York 2001
  • Wodarz N., Bobbe G., Eichhammer P., Weijers H. G., Wiesbeck G. A., Johann M. The candidate gene approach in alcoholism: are there gender‐specific differences?. Arch Women Ment Health 2003; 6: 225–30
  • Gunther C., von Hadeln K., Muller‐Thomsen T., Alberici A., Binetti G., Hock C., et al. Possible association of mitochondrial transcription factor A (TFAM) genotype with sporadic Alzheimer disease. Neurosci Lett 2004; 369: 219–23
  • Sweet R. A., Devlin B., Pollock B. G., Sukonick D. L., Kastango K. B., Bacanu S. A., et al. Catechol‐O‐methyltransferase haplotypes are associated with psychosis in Alzheimer disease. Mol Psychiatry 2005; 10: 1026–36
  • Szczeklik W., Sanak M., Szczeklik A. Functional effects and gender association of COX‐2 gene polymorphism G‐765C in bronchial asthma. J Allergy Clin Immunol 2004; 114: 248–53
  • Vaskuring A., Izakovicova Holla L., Vaskuring V. V., Tschoplova S., Stejskalova A. Polymorphisms in angiotensinogen gene (M235T and G(‐6)A) in multifactorial diseases. Pathophysiology 2001; 8: 113–8
  • Sutcliffe J. S., Delahanty R. J., Prasad H. C., McCauley J. L., Han Q., Jiang L., et al. Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid‐compulsive behaviors. Am J Hum Genet 2005; 77: 265–79
  • Chen Y., Vaughan R. W., Kondeatis E., Fortune F., Graham E. M., Stanford M. R., et al. Chemokine gene polymorphisms associate with gender in patients with uveitis. Tissue Antigens 2004; 63: 41–5
  • Underwood S. L., Christoforou A., Thomson P. A., Wray N. R., Tenesa A., Whittaker J., et al. Association analysis of the chromosome 4p‐located G protein‐coupled receptor 78 (GPR78) gene in bipolar affective disorder and schizophrenia. Mol Psychiatry 2006; 11: 384–94
  • Mukherjee M., Joshi S., Bagadi S., Dalvi M., Rao A., Shetty K. R. A low prevalence of the C677T mutation in the methylenetetrahydrofolate reductase gene in Asian Indians. Clin Genet 2002; 61: 155–9
  • de Andrade F. M., Silveira F. R., Arsand M., Antunes A. L., Torres M. R., Zago A. J., et al. Association between ‐250G/A polymorphism of the hepatic lipase gene promoter and coronary artery disease and HDL‐C levels in a Southern Brazilian population. Clin Genet 2004; 65: 390–5
  • McCarthy J. J., Meyer J., Moliterno D. J., Newby L. K., Rogers W. J., Topol E. J. Evidence for substantial effect modification by gender in a large‐scale genetic association study of the metabolic syndrome among coronary heart disease patients. Hum Genet 2003; 114: 87–98
  • Kantarci O. H., Goris A., Hebrink D. D., Heggarty S., Cunningham S., Alloza I., et al. IFNG polymorphisms are associated with gender differences in susceptibility to multiple sclerosis. Genes Immun 2005; 6: 153–61
  • Denys D., Van Nieuwerburgh F., Deforce D., Westenberg H. Association between the dopamine D(2) receptor TaqI A2 allele and low activity COMT allele with obsessive‐compulsive disorder in males. Eur Neuropsychopharmacol 2006; 16: 446–50
  • Villadsen M. M., Bunger M. H., Carstens M., Stenkjaer L., Langdahl B. L. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is associated with osteoporotic vertebral fractures, but is a weak predictor of BMD. Osteoporos Int 2005; 16: 411–6
  • Long J. R., Liu P. Y., Liu Y. J., Lu Y., Shen H., Zhao L. J., et al. APOE haplotypes influence bone mineral density in Caucasian males but not females. Calcif Tissue Int 2004; 75: 299–304
  • Maraganore D. M., Wilkes K., Lesnick T. G., Strain K. J., de Andrade M., Rocca W. A., et al. A limited role for DJ1 in Parkinson disease susceptibility. Neurology 2004; 63: 550–3
  • Qin W., Gao J., Xing Q., Yang J., Qian X., Li X., et al. A family‐based association study of PLP1 and schizophrenia. Neurosci Lett 2005; 375: 207–10
  • Gombos Z., Hermann R., Veijola R., Knip M., Simell O., Pollanen P., et al. Androgen receptor gene exon 1 CAG repeat polymorphism in Finnish patients with childhood‐onset type 1 diabetes. Eur J Endocrinol 2003; 149: 597–600
  • Galinsky D., Tysoe C., Brayne C. E., Easton D. F., Huppert F. A., Dening T. R., et al. Analysis of the apo E/apo C‐I, angiotensin converting enzyme and methylenetetrahydrofolate reductase genes as candidates affecting human longevity. Atherosclerosis 1997; 129: 177–83
  • Butt C., Zheng H., Randell E., Robb D., Parfrey P., Xie Y. G. Combined carrier status of prothrombin 20210A and factor XIII‐A Leu34 alleles as a strong risk factor for myocardial infarction: evidence of a gene‐gene interaction. Blood 2003; 101: 3037–41
  • Shearman A. M., Cupples L. A., Demissie S., Peter I., Schmid C. H., Karas R. H., et al. Association between estrogen receptor alpha gene variation and cardiovascular disease. JAMA 2003; 290: 2263–70
  • Petrkova J., Cermakova Z., Drabek J., Lukl J., Petrek M. CC chemokine receptor (CCR)2 polymorphism in Czech patients with myocardial infarction. Immunol Lett 2003; 88: 53–5
  • Weiss L. A., Abney M., Cook EH J. r., Ober C. Sex‐specific genetic architecture of whole blood serotonin levels. Am J Hum Genet 2005; 76: 33–41
  • Camp N. J., Lowry M. R., Richards R. L., Plenk A. M., Carter C., Hensel C. H., et al. Genome‐wide linkage analyses of extended Utah pedigrees identifies loci that influence recurrent, early‐onset major depression and anxiety disorders. Am J Med Genet B Neuropsychiatr Genet 2005; 135: 85–93
  • McGuffin P., Knight J., Breen G., Brewster S., Boyd P. R., Craddock N., et al. Whole genome linkage scan of recurrent depressive disorder from the depression network study. Hum Mol Genet 2005; 14: 3337–45
  • Ralston S. H., Galwey N., MacKay I., Albagha O. M., Cardon L., Compston J. E., et al. Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet 2005; 14: 943–51
  • Peacock M., Koller D. L., Lai D., Hui S., Foroud T., Econs M. J. Sex‐specific quantitative trait loci contribute to normal variation in bone structure at the proximal femur in men. Bone 2005; 37: 467–73
  • Wilson S. G., Reed P. W., Bansal A., Chiano M., Lindersson M., Langdown M., et al. Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet 2003; 72: 144–55
  • Kammerer C. M., Schneider J. L., Cole S. A., Hixson J. E., Samollow P. B., O'Connell J. R., et al. Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans. J Bone Miner Res 2003; 18: 2245–52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.