1,664
Views
103
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Genetics of dilated cardiomyopathy

&
Pages 91-107 | Published online: 08 Jul 2009

References

  • Richardson P., McKenna W., Bristow M., Maisch B., Mautner B., O'Connell J., et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 1996; 93: 841–2
  • Abelmann W. H. Doxorubicin cardiomyopathy. Hosp Pract 1982; 17: 17–8
  • Valantine H. A., Hunt S. A., Fowler M. B., Billingham M. E., Schroeder J. S. Frequency of familial nature of dilated cardiomyopathy and usefulness of cardiac transplantation in this subset. Am J Cardiol 1989; 63: 959–63
  • Codd M. B., Sugrue D. D., Gersh B. J., Melton L. J., 3rd. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population‐based study in Olmsted County, Minnesota, 1975–1984. Circulation 1989; 80: 564–72
  • Williams D., Olsen E. G. Prevalence of overt dilated cardiomyopathy in two regions of England. Br Heart J 1985; 54: 153–55
  • Bagger J., Baandrup U., Rasmussen K., Moller M., Vesterlund T. Cardiomyopathy in western Denmark. Br Heart J 1984; 52: 327–31
  • Gillum R. Idiopathic dilated cardiomyopathy. Epidemiolgy 1994; 5: 383–5
  • Dec G. W., Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med 1994; 331: 1564–75
  • Towbin J., Lowe A., Colan S., Sleeper L., Orav E., Clunie S., et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 2006; 296: 1867–76
  • Arola A., Jokinen E., Ruuskanen O., Saraste M., Pesonen E., Kuusela A., et al. Epidemiology of idiopathic cardiomyopathies in children and adolescents. A nationwide study in Finland. Am J Epidemiol 1997; 146: 385–93
  • Gregori D., Rocco C., Miocic S., Mestroni L. Estimating th efrequency of familial dilated cardiomyopathy in the presence of misclassification errors. J Appl Stat 2001; 28: 53–62
  • Grunig E., Tasman J. A., Kucherer H., Franz W., Kubler W., Katus H. A. Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol 1998; 31: 186–94
  • Keeling P. J., Gang Y., Smith G., Seo H., Bent S. E., Murday V., et al. Familial dilated cardiomyopathy in the United Kingdom. Br Heart J 1995; 73: 417–21
  • Baig M. K., Goldman J. H., Caforio A. L., Coonar A. S., Keeling P. J., McKenna W. J. Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol 1998; 31: 195–201
  • Mestroni L., Rocco C., Gregori D., Sinagra G., Di Lenarda A., Miocic S., et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J Am Coll Cardiol 1999; 34: 181–90
  • Michels V. V., Moll P. P., Miller F. A., Tajik A. J., Chu J. S., Driscoll D. J., et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med 1992; 326: 77–82
  • Evans W. Familial cardiomegaly. Br Heart J 1949; 11: 68–82
  • Muntoni F., Cau M., Ganau A., Congiu R., Arvedi G., Mateddu A., et al. Brief report: deletion of the dystrophin muscle‐promoter region associated with X‐linked dilated cardiomyopathy. N Engl J Med 1993; 329: 921–5
  • Towbin J. A., Hejtmancik J. F., Brink P., Gelb B., Zhu X. M., Chamberlain J. S., et al. X‐linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 1993; 87: 1854–65
  • Arbustini E., Pilotto A., Repetto A., Grasso M., Negri A., Diegoli M., et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect‐related disease. J Am Coll Cardiol 2002; 39: 981–90
  • Bione S., D'Adamo P., Maestrini E., Gedeon A. K., Bolhuis P. A., Toniolo D. A novel X‐linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 1996; 12: 385–9
  • Brodsky G. L., Muntoni F., Miocic S., Sinagra G., Sewry C., Mestroni L. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 2000; 101: 473–6
  • Daehmlow S., Erdmann J., Knueppel T., Gille C., Froemmel C., Hummel M., et al. Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochem Biophys Res Commun 2002; 298: 116
  • D'Adamo P., Fassone L., Gedeon A., Janssen E. A., Bione S., Bolhuis P. A., et al. The X‐linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet 1997; 61: 862–7
  • Fatkin D., MacRae C., Sasaki T., Wolff M. R., Porcu M., Frenneaux M., et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction‐system disease. N Engl J Med 1999; 341: 1715–24
  • Genschel J., Schmidt H. H. Mutations in the LMNA gene encoding lamin A/C. Hum Mutat 2000; 16: 451–9
  • Gerull B., Gramlich M., Atherton J., McNabb M., Trombitas K., Sasse‐Klaassen S., et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 2002; 14: 14
  • Hanson E. L., Jakobs P. M., Keegan H., Coates K., Bousman S., Dienel N. H., et al. Cardiac troponin T lysine 210 deletion in a family with dilated cardiomyopathy. J Card Fail 2002; 8: 28–32
  • Jakobs P. M., Hanson E. L., Crispell K. A., Toy W., Keegan H., Schilling K., et al. Novel lamin A/C mutations in two families with dilated cardiomyopathy and conduction system disease. J Card Fail 2001; 7: 249–56
  • Kamisago M., Sharma S. D., DePalma S. R., Solomon S., Sharma P., McDonough B., et al. Mutations in Sarcomere Protein Genes as a Cause of Dilated Cardiomyopathy. N Engl J Med 2000; 343: 1688–96
  • Karkkainen S., Miettinen R., Tuomainen P., Karkkainen P., Helio T., Reissell E., et al. A novel mutation, Arg71Thr, in the delta‐sarcoglycan gene is associated with dilated cardiomyopathy. J Mol Med 2003; 81: 795–800
  • Kärkkäinen S., Heliö T., Miettinen R., Tuomainen P., Peltola P., Rummukainen J., et al. A novel mutation, Ser143Pro, in the lamin A/C gene is common in finnish patients with familial dilated cardiomyopathy. Eur Heart J 2004; 25: 885–93
  • Knöll R., Hoshijima M., Hoffman H., Person V., Lorenzen‐Schmidt I., Bang M. The cardiac mechanical stretch sensor machinery involves a z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 2002; 111: 943–55
  • Li D., Tapscoft T., Gonzalez O., Burch P. E., Quinones M. A., Zoghbi W. A., et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 1999; 100: 461–4
  • Li D., Czernuszewicz G. Z., Gonzalez O., Tapscott T., Karibe A., Durand J. B., et al. Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation 2001; 104: 2188–93
  • Olson T. M., Michels V. V., Thibodeau S. N., Tai Y. S., Keating M. T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 1998; 280: 750–2
  • Olson T. M., Kishimoto N. Y., Whitby F. G., Michels V. V. Mutations that Alter the Surface Charge of Alpha‐tropomyosin are Associated with Dilated Cardiomyopathy. J Mol Cell Cardiol 2001; 33: 723–32
  • Olson T. M., Illenberger S., Kishimoto N. Y., Huttelmaier S., Keating M. T., Jockusch B. M. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 2002; 105: 431–7
  • Ortiz‐Lopez R., Li H., Su J., Goytia V., Towbin J. A. Evidence for a dystrophin missense mutation as a cause of X‐linked dilated cardiomyopathy. Circulation 1997; 95: 2434–40
  • Schmitt J. P., Kamisago M., Asahi M., Li G. H., Ahmad F., Mende U., et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 2003; 299: 1410–3
  • Mohapatra B., Jimenez S., Lin J. H., Bowles K. R., Coveler K. J., Marx J. G., et al. Mutations in the muscle LIM protein and alpha‐actinin‐2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 2003; 80: 207–15
  • Murphy R. T., Mogensen J., Shaw A., Kubo T., Hughes S., McKenna W. J. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet 2004; 363: 371–2
  • Taylor M. R., Fain P. R., Sinagra G., Robinson M. L., Robertson A. D., Carniel E., et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol 2003; 41: 771–80
  • Mogensen J., Klausen I. C., Pedersen A. K., Egeblad H., Bross P., Kruse T. A., et al. Alpha‐cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 1999; 103: R39–43
  • McNair W., Ku T., Taylor M., Fain P., Dao D., Wolfel E., et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 2004; 110: 2163–7
  • Mogensen J., Murphy R., Shaw T., Bahl A., Redwood C., Watkins H., et al. Severe disease expressing of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2004; 44: 2033–40
  • Taylor M., Slavov D., Gajewski A., Vlcek S., Ku L., Fain P., et al. Thymopoietin (lamina‐associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 2005; 26: 566–74
  • Vatta M., Mohapatra B., Jimenez S., Sanchez X., Faulkner G., Perles Z., et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non‐compaction. J Am Coll Cardiol 2003; 42: 2014–17
  • Bienengraeber M., Olson T. M., Selivanov V. A., Kathmann E. C., O'Cochlain F., Gao F., et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic K(ATP) channel gating. Nat Genet 2004; 36: 382–7
  • Hershberger R. E., Hanson E. L., Jakobs P. M., Keegan H., Coates K., Bousman S., et al. A novel lamin A/C mutation in a family with dilated cardiomyopathy, prominent conduction system disease, and need for permanent pacemaker implantation. Am Heart J 2002; 144: 1081–6
  • MacLeod H. M., Culley M. R., Huber J. M., McNally E. M. Lamin A/C truncation in dilated cardiomyopathy with conduction disease. BMC Med Genet 2003; 4: 4
  • Verga L., Concardi M., Pilotto A., Bellini O., Pasotti M., Repetto A., et al. Loss of lamin A/C expression revealed by immuno‐electron microscopy in dilated cardiomyopathy with atrioventricular block caused by LMNA gene defects. Virchows Arch 2003; 443: 664–71
  • Sinagra G., Di Lenarda A., Brodsky G. L., Taylor M. R., Muntoni F., Pinamonti B., et al. Current perspective new insights into the molecular basis of familial dilated cardiomyopathy. Ital Heart J 2001; 2: 280–6
  • Karkkainen S., Reissell E., Helio T., Kaartinen M., Tuomainen P., Toivonen L., et al. Novel mutations in the lamin A/C gene in heart transplant recipients with end stage dilated cardiomyopathy. Heart 2006; 92: 524–526
  • Muntoni F., Wilson L., Marrosu G., Marrosu M. G., Cianchetti C., Mestroni L., et al. A mutation in the dystrophin gene selectively affecting dystrophin expression in the heart. J Clin Invest 1995; 96: 693–9
  • Tsubata S., Bowles K. R., Vatta M., Zintz C., Titus J., Muhonen L., et al. Mutations in the human delta‐sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest 2000; 106: 655–62
  • Komajda M., Charron P., Tesson F. Genetic aspects of heart failure. Eur J Heart Fail 1999; 1: 121–6
  • Mayosi B. M., Khogali S., Zhang B., Watkins H. Cardiac and skeletal actin gene mutations are not a common cause of dilated cardiomyopathy. J Med Genet 1999; 36: 796–7
  • Takai E., Akita H., Shiga N., Kanazawa K., Yamada S., Terashima M., et al. Mutational analysis of the cardiac actin gene in familial and sporadic dilated cardiomyopathy. Am J Med Genet 1999; 86: 325–7
  • Tesson F., Sylvius N., Pilotto A., Dubosq‐Bidot L., Peuchmaurd M., Bouchier C., et al. Epidemiology of desmin and cardiac actin gene mutations in a european population of dilated cardiomyopathy. Eur Heart J 2000; 21: 1872–6
  • Blair E., Redwood C., de Jesus Oliveira M., Moolman‐Smook J. C., Brink P., Corfield V. A., et al. Mutations of the light meromyosin domain of the beta‐myosin heavy chain rod in hypertrophic cardiomyopathy. Circ Res 2002; 90: 263–9
  • Kärkkäinen S., Heliö T., Jääskeläinen P., Miettinen R., Tuomainen P., Ylitalo K., et al. Two novel mutations in the beta‐myosin heavy chain gene associated with dilated cardiomyopathy. Eur J Heart Fail 2004; 6: 861–8
  • Villard E., Duboscq‐Bidot L., Charron P., Benaiche A., Conraads V., Sylvius N., et al. Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur Heart J 2005; 26: 794–803
  • Robinson P., Mirza M., Knott A., Abdulrazzak H., Willott R., Marston S., et al. Alterations in thin filament regulation induced by a human cardiac troponin T mutant that causes dilated cardiomyopathy are distinct from those induced by troponin T mutants that cause hypertrophic cardiomyopathy. J Biol Chem 2002; 277: 40710–6
  • Stefanelli C., Rosenthal A., Borisov A., Ensing G., Russell M. Novel troponin T mutation in familial dilated cardiomyopathy with gender‐dependant severity. Mol Genet Metab 2004; 83: 188–96
  • Fatkin D., Graham R. M. Molecular mechanisms of inherited cardiomyopathies. Physiol Rev 2002; 82: 945–80
  • Hein S., Kostin S., Heling A., Maeno Y., Schaper J. The role of the cytoskeleton in heart failure. Cardiovasc Res 2000; 45: 273–8
  • Itoh‐Satoh M., Hayashi T., Nishi H., Koga Y., Arimura T., Koyanagi T., et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 2002; 291: 385–93
  • Maruyama K. Connectin/titin, giant elastic protein of muscle. FASEB J 1997; 11: 341–5
  • Labeit S., Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 1995; 270: 293–6
  • Gerull B., Atherton J., Geupel A., Sasse‐Klaassen S., Heuser A., Frenneaux M., et al. Identification of a novel frameshift mutation in the giant muscle filament titin in a large Australian family with dilated cardiomyopathy. J Mol Med 2006; 84: 478–83
  • Valle G., Faulkner G., De Antoni A., Pacchioni B., Pallavicini A., Pandolfo D., et al. Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett 1997; 415: 163–8
  • Hayashi T., Arimura T., Itoh‐Satoh M., Ueda K., Hohda S., Inagaki N., et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 2004; 44: 2192–201
  • Fuchs E., Cleveland D. W. A structural scaffolding of intermediate filaments in health and disease. Science 1998; 279: 514–9
  • Miyamoto Y., Akita H., Shiga N., Takai E., Iwai C., Mizutani K., et al. Frequency and clinical characteristics of dilated cardiomyopathy caused by desmin gene mutation in a Japanese population. Eur Heart J 2001; 22: 2284–9
  • Schonberger J., Seidman C. E. Many roads lead to a broken heart: the genetics of dilated cardiomyopathy. Am J Hum Genet 2001; 69: 249–60
  • Dalakas M. C., Park K. Y., Semino‐Mora C., Lee H. S., Sivakumar K., Goldfarb L. G. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 2000; 342: 770–80
  • Goldfarb L. G., Park K. Y., Cervenakova L., Gorokhova S., Lee H. S., Vasconcelos O., et al. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet 1998; 19: 402–3
  • Sjoberg G., Saavedra‐Matiz C. A., Rosen D. R., Wijsman E. M., Borg K., Horowitz S. H., et al. A missense mutation in the desmin rod domain is associated with autosomal dominant distal myopathy, and exerts a dominant negative effect on filament formation. Hum Mol Genet 1999; 8: 2191–8
  • Cox G. F., Kunkel L. M. Dystrophies and heart disease. Curr Opin Cardiol 1997; 12: 329–43
  • Badorff C., Berkely N., Mehrotra S., Talhouk J. W., Rhoads R. E., Knowlton K. U. Enteroviral protease 2A directly cleaves dystrophin and is inhibited by a dystrophin‐based substrate analogue. J Biol Chem 2000; 275: 11191–7
  • Hart K. A., Hodgson S., Walker A., Cole C. G., Johnson L., Dubowitz V., et al. DNA deletions in mild and severe Becker muscular dystrophy. Hum Genet 1987; 75: 281–5
  • Koenig M., Hoffman E. P., Bertelson C. J., Monaco A. P., Feener C., Kunkel L. M. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987; 50: 509–17
  • Berko B. A., Swift M. X‐linked dilated cardiomyopathy. N Engl J Med 1987; 316: 1186–91
  • Arbustini E., Diegoli M., Morbini P., Dal Bello B., Banchieri N., Pilotto A., et al. Prevalence and characteristics of dystrophin defects in adult male patients with dilated cardiomyopathy. J Am Coll Cardiol 2000; 35: 1760–8
  • Milasin J., Muntoni F., Severini G. M., Bartoloni L., Vatta M., Krajinovic M., et al. A point mutation in the 5′ splice site of the dystrophin gene first intron responsible for X‐linked dilated cardiomyopathy. Hum Mol Genet 1996; 5: 73–9
  • Feng J., Yan J., Buzin C., Towbin J., Sommer S. Mutations in the dystrophin gene are associated with sporadic dilated cardiomyopathy. Mol Genet Metab 2002; 77: 119
  • Feng J., Yan J. Y., Buzin C. H., Sommer S. S., Towbin J. A. Comprehensive mutation scanning of the dystrophin gene in patients with nonsyndromic X‐linked dilated cardiomyopathy. J Am Coll Cardiol 2002; 40: 1120–4
  • Bies R. D., Maeda M., Roberds S. L., Holder E., Bohlmeyer T., Young J. B., et al. A 5′ dystrophin duplication mutation causes membrane deficiency of alpha‐dystroglycan in a family with X‐linked cardiomyopathy. J Mol Cell Cardiol 1997; 29: 3175–88
  • Franz W. M., Muller M., Muller O. J., Herrmann R., Rothmann T., Cremer M., et al. Association of nonsense mutation of dystrophin gene with disruption of sarcoglycan complex in X‐linked dilated cardiomyopathy. Lancet 2000; 355: 1781–5
  • Muntoni F., Di Lenarda A., Porcu M., Sinagra G., Mateddu A., Marrosu G., et al. Dystrophin gene abnormalities in two patients with idiopathic dilated cardiomyopathy. Heart 1997; 78: 608–12
  • Kostin S., Scholz D., Shimada T., Maeno Y., Mollnau H., Hein S., et al. The internal and external protein scaffold of the T‐tubular system in cardiomyocytes. Cell Tissue Res 1998; 294: 449–60
  • Belkin A. M., Ornatsky O. I., Glukhova M. A., Koteliansky V. E. Immunolocalization of meta‐vinculin in human smooth and cardiac muscles. J Cell Biol 1988; 107: 545–53
  • Simpson D. G., Terracio L., Terracio M., Price R. L., Turner D. C., Borg T. K. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol 1994; 161: 89–105
  • Maeda M., Holder E., Lowes B., Valent S., Bies R. D. Dilated cardiomyopathy associated with deficiency of the cytoskeletal protein metavinculin. Circulation 1997; 95: 17–20
  • Vasile V., Will M., Ommen S., Edwards W., Olson T., Ackerman M. Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol Genet Metab 2005; 87: 169–74
  • Delta‐sarcoglycan (SGCD), Leiden muscular dystrophy pages. Available from: http://www.dmd.nl/sgcd_home.html
  • Nigro V., de Sa Moreira E., Piluso G., Vainzof M., Belsito A., Politano L., et al. Autosomal recessive limb‐girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta‐sarcoglycan gene. Nat Genet 1996; 14: 195–8
  • Nigro V., Okazaki Y., Belsito A., Piluso G., Matsuda Y., Politano L., et al. Identification of the Syrian hamster cardiomyopathy gene. Hum Mol Genet 1997; 6: 601–7
  • Kong Y., Flick M. J., Kudla A. J., Konieczny S. F. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol 1997; 17: 4750–60
  • Yoshida K., Nakamura A., Yazaki M., Ikeda S., Takeda S. Insertional mutation by transposable element, L1, in the DMD gene results in X‐linked dilated cardiomyopathy. Hum Mol Genet 1998; 7: 1129–32
  • Zhou Q., Ruiz‐Lozano P., Martone M. E., Chen J. Ablation of Cypher, a PDZ‐LIM domain Z‐line protein, causes a severe form of congenital myopathy. J Cell Biol 2001; 155: 605–12
  • Arimura T., Hayashi T., Terada H., Lee S‐Y., Zhou Q., Takahashi M., et al. A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase. J Biol Chem 2004; 279: 6746–52
  • Goldman R. D., Gruenbaum Y., Moir R. D., Shumaker D. K., Spann T. P. Nuclear lamins: building blocks of nuclear architecture. Genes Dev 2002; 16: 533–47
  • Franz W. M., Muller O. J., Katus H. A. Cardiomyopathies: from genetics to the prospect of treatment. Lancet 2001; 358: 1627–37
  • Stuurman N., Heins S., Aebi U. Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 1998; 122: 42–66
  • Mounkes L. C., Burke B., Stewart C. L. The A‐type lamins: nuclear structural proteins as a focus for muscular dystrophy and cardiovascular diseases. Trends Cardiovasc Med 2001; 11: 280–5
  • Hutchison C. J., Alvarez‐Reyes M., Vaughan O. A. Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue‐specific disease phenotypes?. J Cell Sci 2001; 114: 9–19
  • Bonne G., Di Barletta M. R., Varnous S., Becane H. M., Hammouda E. H., Merlini L., et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery‐Dreifuss muscular dystrophy. Nat Genet 1999; 21: 285–8
  • Emery A. E. Emery‐Dreifuss syndrome. J Med Genet 1989; 26: 637–41
  • van der Kooi A. J., van Meegen M., Ledderhof T. M., McNally E. M., de Visser M., Bolhuis P. A. Genetic localization of a newly recognized autosomal dominant limb‐girdle muscular dystrophy with cardiac involvement (LGMD1B) to chromosome 1q11‐21. Am J Hum Genet 1997; 60: 891–5
  • Chaouch M., Allal Y., De Sandre‐Giovannoli A., Vallat J. M., Amer‐el‐Khedoud A., Kassouri N., et al. The phenotypic manifestations of autosomal recessive axonal Charcot‐Marie‐Tooth due to a mutation in Lamin A/C gene. Neuromuscul Disord 2003; 13: 60–7
  • Cao H., Hegele R. A. LMNA is mutated in Hutchinson‐Gilford progeria (MIM 176670) but not in Wiedemann‐Rautenstrauch progeroid syndrome (MIM 264090). J Hum Genet 2003; 48: 271–4
  • Novelli G., Muchir A., Sangiuolo F., Helbling‐Leclerc A., D'Apice M. R., Massart C., et al. Mandibuloacral dysplasia is caused by a mutation in LMNA‐encoding lamin A/C. Am J Hum Genet 2002; 71: 426–31
  • Nikolova V., Leimena C., McMahon A. C., Tan J. C., Chandar S., Jogia D., et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C‐deficient mice. J Clin Invest 2004; 113: 357–69
  • van Berlo J. H., deVoogt W. G., van der Kooi A. J., van Tintelen J. P., Bonne G., Yaou R. B., et al. Meta‐analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death?. J Mol Med 2005; 83: 79–83
  • Meune C., Van Berlo J., Anselme F., Bonne G., Pinto Y. M., Duboc D. Primary prevention of sudden death in patients with lamin A/C gene mutations. N Engl J Med 2006; 354: 209–10
  • Foisner R., Gerace L. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 1993; 73: 1267–79
  • Dechat T., Gotzmann J., Stockinger A., Harris C., Talle M., Siekierka J., et al. Detergent‐salt resistance of LAP2alpha in interphase nuclei and phosphorylation‐dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J 1998; 17: 4887–902
  • Vlcek S., Korbei B., Foisner R. Distinct functions of the unique C terminus of LAP2alpha in cell proliferation and nuclear assembly. J Biol Chem 2002; 277: 18898–907
  • Bezzina C., Veldkamp M. W., van den Berg M. P., Postma A. V., Rook M. B., Viersma J‐W., et al. A single Na+ channel mutation causing both long‐QT and Brugada syndromes. Circ Res 1999; 85: 1206–13
  • Johns D. R. The other human genome: mitochondrial DNA and disease. Nat Med 1996; 2: 1065–8
  • Majamaa‐Voltti K., Peuhkurinen K., Kortelainen M. L., Hassinen I. E., Majamaa K. Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovasc Disord 2002; 2: 12
  • Mestroni L., Giacca M. Molecular genetics of dilated cardiomyopathy. Curr Opin Cardiol 1997; 12: 303–9
  • Marin‐Garcia J., Goldenthal M. J., Ananthakrishnan R., Pierpont M. E., Fricker F. J., Lipshultz S. E., et al. Specific mitochondrial DNA deletions in idiopathic dilated cardiomyopathy. Cardiovasc Res 1996; 31: 306–13
  • Anan R., Nakagawa M., Miyata M., Higuchi I., Nakao S., Suehara M., et al. Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation 1995; 91: 955–61
  • Schowengerdt K. O., Jr., Towbin J. A. Genetic basis of inherited cardiomyopathies. Curr Opin Cardiol 1995; 10: 312–21
  • Suomalainen A., Paetau A., Leinonen H., Majander A., Peltonen L., Somer H. Inherited idiopathic dilated cardiomyopathy with multiple deletions of mitochondrial DNA. Lancet 1992; 340: 1319–20
  • Dimauro S., Davidzon G. Mitochondrial DNA and disease. Ann Med 2005; 37: 222–32
  • Manolio T. A., Baughman K. L., Rodeheffer R., Pearson T. A., Bristow J. D., Michels V. V., et al. Prevalence and etiology of idiopathic dilated cardiomyopathy (summary of a National Heart, Lung, and Blood Institute workshop). Am J Cardiol 1992; 69: 1458–66
  • Sugrue D. D., Rodeheffer R. J., Codd M. B., Ballard D. J., Fuster V., Gersh B. J. The clinical course of idiopathic dilated cardiomyopathy. A population‐based study. Ann Intern Med 1992; 117: 117–23
  • Hofmann T., Meinertz T., Kasper W., Geibel A., Zehender M., Hohnloser S., et al. Mode of death in idiopathic dilated cardiomyopathy: a multivariate analysis of prognostic determinants. Am Heart J 1988; 116: 1455–63
  • Schoeller R., Andresen D., Buttner P., Oezcelik K., Vey G., Schroder R. First‐ or second‐degree atrioventricular block as a risk factor in idiopathic dilated cardiomyopathy. Am J Cardiol 1993; 71: 720–6
  • Baldasseroni S., De Biase L., Fresco C., Marchionni N., Marini M., Masotti G., et al. Cumulative effect of complete left bundle‐branch block and chronic atrial fibrillation on 1‐year mortality and hospitalization in patients with congestive heart failure. A report from the Italian network on congestive heart failure (in‐CHF database). Eur Heart J 2002; 23: 1692–8
  • Goedel‐Meinen L., Hofmann M., Ryba S., Schömig A. Prognostic value of an abnormal signal‐averaged electrocardiogram in patients with nonischemic dilated cardiomyopathy. Am J Cardiol 2001; 87: 809–12
  • Mancini M., Eisen H., Kussmaul W., Mull R., Edmunds L., Wilson J. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 1991; 83: 778–86
  • Junker A., Thayssen P., Nielsen B., Andersen P. E. The hemodynamic and prognostic significance of echo‐Doppler‐proven mitral regurgitation in patients with dilated cardiomyopathy. Cardiology 1993; 83: 14–20
  • Stelken A., Younis L., Jennison T., Miller D., Miller L., Shaw L. Prognostiv value of cardiopulmonary exercise testing using percent achieved of predicted peak oxygen uptake for patients with ischemic and dilated cardiomyopathy. J Am Coll Cardiol 1996; 27: 345–52
  • Blondheim D. S., Jacobs L. E., Kotler M. N., Costacurta G. A., Parry W. R. Dilated cardiomyopathy with mitral regurgitation: decreased survival despite a low frequency of left ventricular thrombus. Am Heart J 1991; 122: 763–71
  • Hung J., Koelling T., Semigran M. J., Dec G. W., Levine R. A., Di Salvo T. G. Usefulness of echocardiographic determined tricuspid regurgitation in predicting event‐free survival in severe heart failure secondary to idiopathic‐dilated cardiomyopathy or to ischemic cardiomyopathy. Am J Cardiol 1998; 82: 1301–3, A10
  • Koelling T. M., Aaronson K. D., Cody R. J., Bach D. S., Armstrong W. F. Prognostic significance of mitral regurgitation and tricuspid regurgitation in patients with left ventricular systolic dysfunction. Am Heart J 2002; 144: 524–9
  • Gavazzi A., De Maria R., Parolini M., Porcu M. Alcohol abuse and dilated cardiomyopathy in men. Am J Cardiol 2000; 85: 1114–8
  • Fauchier L., Babuty D., Poret P., Casset‐Senon D., Autret M. L., Cosnay P., et al. Comparison of long‐term outcome of alcoholic and idiopathic dilated cardiomyopathy. Eur Heart J 2000; 21: 306–14
  • Keogh A. M., Baron D. W., Hickie J. B. Prognostic guides in patients with idiopathic or ischemic dilated cardiomyopathy assessed for cardiac transplantation. Am J Cardiol 1990; 65: 903–8
  • Klappacher G., Franzen P., Haab D., Mehrabi M., Binder M., Plesch K., et al. Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. Am J Cardiol 1995; 75: 913–8
  • Zannad F., Dousset B., Alla F. Treatment of congestive heart failure: interfering the aldosterone‐cardiac extracellular matrix relationship. Hypertension 2001; 38: 1227–32
  • Niebauer J., Volk H. D., Kemp M., Dominguez M., Schumann R. R., Rauchhaus M., et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 1999; 353: 1838–42
  • Mestroni L., Maisch B., McKenna W. J., Schwartz K., Charron P., Rocco C., et al. Guidelines for the study of familial dilated cardiomyopathies. Collaborative Research Group of the European Human and Capital Mobility Project on Familial Dilated Cardiomyopathy. Eur Heart J 1999; 20: 93–102
  • Vatta M., Stetson S., Jimenez S., Entman M., Noon G., Bowles N., et al. Molecular normalization of dystrophin in the failing left and right ventricle of patients treated with either pulsatile or continuous flow‐type ventricular assist devices. J Am Coll Cardiol 2004; 43: 811–17
  • Andersson B., Sylven C. The DD genotype of the angiotensin‐converting enzyme gene is associated with increased mortality in idiopathic heart failure. J Am Coll Cardiol 1996; 28: 162–7
  • Liggett S. B., Wagoner L. E., Craft L. L., Hornung R. W., Hoit B. D., McIntosh T. C., et al. The Ile164 beta2‐adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 1998; 102: 1534–9
  • McNamara D., Holubkov R., Postava L., Janosko K., MacGowan G., Mathier M., et al. Pharmacogenetic interactions between angiotensin‐converting enzyme inhibitor therapy and the angiotensin‐converting enzyme deletion polymorphism in patients with congestive heart failure. J Am Coll Cardiol 2004; 44: 2019–26
  • O'Toole L., Stewart M., Padfield P., Channer K. Effect of the insertion/deletion polymorphism of the angiotensin‐converting enzyme gene on response to angiotensin‐converting enzyme inhibitors in patients with heart failure. J Cardiovasc Pharmacol 1998; 32: 988–94
  • Sebillon P., Bouchier C., Bidot L., Bonne G., Ahamed K., Charron P. Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J Med Genet 2003; 40: 560–7
  • Durand J. B., Bachinski L. L., Bieling L. C., Czernuszewicz G. Z., Abchee A. B., Yu Q. T., et al. Localization of a gene responsible for familial dilated cardiomyopathy to chromosome 1q32. Circulation 1995; 92: 3387–9
  • Jung M., Poepping I., Perrot A., Ellmer A. E., Wienker T. F., Dietz R., et al. Investigation of a Family with Autosomal Dominant Dilated Cardiomyopathy Defines a Novel Locus on Chromosome 2q14–q22. Am J Hum Genet 1999; 65: 1068–77
  • Siu B. L., Niimura H., Osborne J. A., Fatkin D., MacRae C., Solomon S., et al. Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation 1999; 99: 1022–6
  • Olson T. M., Keating M. T. Mapping a cardiomyopathy locus to chromosome 3p22-p25. J Clin Invest 1996; 97: 528–32
  • Sylvius N., Tesson F., Gayet C., Charron P., Benaiche A., Peuchmaurd M., et al. A New Locus for Autosomal Dominant Dilated Cardiomyopathy Identified on Chromosome 6q12–q16. Am J Hum Genet 2001; 68: 241–6
  • Messina D. N., Speer M. C., Pericak‐Vance M. A., McNally E. M. Linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23. Am J Hum Genet 1997; 61: 909–17
  • Krajinovic M., Pinamonti B., Sinagra G., Vatta M., Severini G. M., Milasin J., et al. Linkage of familial dilated cardiomyopathy to chromosome 9. Heart Muscle Disease Study Group. Am J Hum Genet 1995; 57: 846–52
  • Bowles K. R., Gajarski R., Porter P., Goytia V., Bachinski L., Roberts R., et al. Gene mapping of familial autosomal dominant dilated cardiomyopathy to chromosome 10q21–23. J Clin Invest 1996; 98: 1355–60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.