2,052
Views
84
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Molecular pathogenesis of inflammatory bowel disease: Genotypes, phenotypes and personalized medicine

, , , &
Pages 177-199 | Published online: 08 Jul 2009

References

  • Bouma G., Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 2003; 3: 521–33
  • Darfeuille‐Michaud A., Boudeau J., Bulois P., Neut C., Glasser A. L., Barnich N., et al. High prevalence of adherent‐invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 2004; 127: 412–21
  • Sartor R. B. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 2004; 126: 1620–33
  • Binder V. Genetic epidemiology in inflammatory bowel disease. Dig Dis 1998; 16: 351–5
  • Orholm M., Munkholm P., Langholz E., Nielsen O. H., Sorensen T. I., Binder V. Familial occurrence of inflammatory bowel disease. N Engl J Med 1991; 324: 84–8
  • Peeters M., Nevens H., Baert F., Hiele M., de Meyer A. M., Vlietinck R., et al. Familial aggregation in Crohn's disease: increased age‐adjusted risk and concordance in clinical characteristics. Gastroenterology 1996; 111: 597–603
  • Tysk C. Genetic susceptibility in Crohn's disease—review of clinical studies. Eur J Surg 1998; 164: 893–6
  • Halfvarson J., Bodin L., Tysk C., Lindberg E., Jarnerot G. Inflammatory bowel disease in a Swedish twin cohort: a long‐term follow‐up of concordance and clinical characteristics. Gastroenterology 2003; 124: 1767–73
  • Bayless T. M., Tokayer A. Z., Polito J. M 2nd., Quaskey S. A., Mellits E. D., Harris M. L. Crohn's disease: concordance for site and clinical type in affected family members—potential hereditary influences. Gastroenterology 1996; 111: 573–9
  • Probert C. S., Jayanthi V., Hughes A. O., Thompson J. R., Wicks A. C., Mayberry J. F. Prevalence and family risk of ulcerative colitis and Crohn's disease: an epidemiological study among Europeans and south Asians in Leicestershire. Gut 1993; 34: 1547–51
  • Plenge R., Rioux J. D. Identifying susceptibility genes for immunological disorders: patterns, power, and proof. Immunol Rev 2006; 210: 40–51
  • Gabriel S. B., Schaffner S. F., Nguyen H., Moore J. M., Roy J., Blumenstiel B., et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–9
  • A haplotype map of the human genome,. Nature 2005; 437: 1299–320
  • Daly M. J., Rioux J. D., Schaffner S. F., Hudson T. J., Lander E. S. High‐resolution haplotype structure in the human genome. Nat Genet 2001; 29: 229–32
  • Byrne F. R., Viney J. L. Mouse models of inflammatory bowel disease. Curr Opin Drug Discov Devel 2006; 9: 207–17
  • Satsangi J., Parkes M., Louis E., Hashimoto L., Kato N., Welsh K., et al. Two stage genome‐wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 1996; 14: 199–202
  • Hampe J., Schreiber S., Shaw S. H., Lau K. F., Bridger S., Macpherson A. J., et al. A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am J Hum Genet 1999; 64: 808–16
  • Cho J. H., Nicolae D. L., Gold L. H., Fields C. T., LaBuda M. C., Rohal P. M., et al. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci U S A 1998; 95: 7502–7
  • Ma Y., Ohmen J. D., Li Z., Bentley L. G., McElree C., Pressman S., et al. A genome‐wide search identifies potential new susceptibility loci for Crohn's disease. Inflamm Bowel Dis 1999; 5: 271–8
  • Rioux J. D., Silverberg M. S., Daly M. J., Steinhart A. H., McLeod R. S., Griffiths A. M., et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 2000; 66: 1863–70
  • Duerr R. H., Barmada M. M., Zhang L., Pfutzer R., Weeks D. E. High‐density genome scan in Crohn disease shows confirmed linkage to chromosome 14q11‐12. Am J Hum Genet 2000; 66: 1857–62
  • Hugot J. P., Laurent‐Puig P., Gower‐Rousseau C., Olson J. M., Lee J. C., Beaugerie L., et al. Mapping of a susceptibility locus for Crohn's disease on chromosome 16. Nature 1996; 379: 821–3
  • Hugot J. P., Chamaillard M., Zouali H., Lesage S., Cezard J. P., Belaiche J., et al. Association of NOD2 leucine‐rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411: 599–603
  • Mirza M. M., Fisher S. A., King K., Cuthbert A. P., Hampe J., Sanderson J., et al. Genetic evidence for interaction of the 5q31 cytokine locus and the CARD15 gene in Crohn disease. Am J Hum Genet 2003; 72: 1018–22
  • Negoro K., McGovern D. P., Kinouchi Y., Takahashi S., Lench N. J., Shimosegawa T., et al. Analysis of the IBD5 locus and potential gene‐gene interactions in Crohn's disease. Gut 2003; 52: 541–6
  • Giallourakis C., Stoll M., Miller K., Hampe J., Lander E. S., Daly M. J., et al. IBD5 is a general risk factor for inflammatory bowel disease: replication of association with Crohn disease and identification of a novel association with ulcerative colitis. Am J Hum Genet 2003; 73: 205–11
  • Peltekova V. D., Wintle R. F., Rubin L. A., Amos C. I., Huang Q., Gu X., et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004; 36: 471–5
  • Armuzzi A., Ahmad T., Ling K. L., de Silva A., Cullen S., van Heel D., et al. Genotype‐phenotype analysis of the Crohn's disease susceptibility haplotype on chromosome 5q31. Gut 2003; 52: 1133–9
  • Rioux J. D., Daly M. J., Silverberg M. S., Lindblad K., Steinhart H., Cohen Z., et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29: 223–8
  • Yamamoto‐Furusho J. K., Uscanga L. F., Vargas‐Alarcon G., Ruiz‐Morales J. A., Higuera L., Cutino T., et al. Clinical and genetic heterogeneity in Mexican patients with ulcerative colitis. Hum Immunol 2003; 64: 119–23
  • Yap L. M., Ahmad T., Jewell D. P. The contribution of HLA genes to IBD susceptibility and phenotype. Best Pract Res Clin Gastroenterol 2004; 18: 577–96
  • Ahmad T., Armuzzi A., Bunce M., Mulcahy‐Hawes K., Marshall S. E., Orchard T. R., et al. The molecular classification of the clinical manifestations of Crohn's disease. Gastroenterology 2002; 122: 854–66
  • Ahmad T., Armuzzi A., Neville M., Bunce M., Ling K. L., Welsh K. I., et al. The contribution of human leucocyte antigen complex genes to disease phenotype in ulcerative colitis. Tissue Antigens 2003; 62: 527–35
  • Satsangi J., Welsh K. I., Bunce M., Julier C., Farrant J. M., Bell J. I., et al. Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease. Lancet 1996; 347: 1212–7
  • Stokkers P. C., Reitsma P. H., Tytgat G. N., van Deventer S. J. HLA‐DR and ‐DQ phenotypes in inflammatory bowel disease: a meta‐analysis. Gut 1999; 45: 395–401
  • Roussomoustakaki M., Satsangi J., Welsh K., Louis E., Fanning G., Targan S., et al. Genetic markers may predict disease behavior in patients with ulcerative colitis. Gastroenterology 1997; 112: 1845–53
  • Bouma G., Crusius J. B., Garcia‐Gonzalez M. A., Meijer B. U., Hellemans H. P., Hakvoort R. J., et al. Genetic markers in clinically well defined patients with ulcerative colitis (UC). Clin Exp Immunol 1999; 115: 294–300
  • Daly M. J., Pearce A. V., Farwell L., Fisher S. A., Latiano A., Prescott N. J., et al. Association of DLG5 R30Q variant with inflammatory bowel disease. Eur J Hum Genet 2005; 13: 835–9
  • Noble C. L., Nimmo E. R., Drummond H., Smith L., Arnott I. D., Satsangi J. DLG5 variants do not influence susceptibility to inflammatory bowel disease in the Scottish population. Gut 2005; 54: 1416–20
  • Stoll M., Corneliussen B., Costello C. M., Waetzig G. H., Mellgard B., Koch W. A., et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet 2004; 36: 476–80
  • Torok H. P., Glas J., Tonenchi L., Lohse P., Muller‐Myhsok B., Limbersky O., et al. Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn's disease. Gut 2005; 54: 1421–7
  • Arnott I. D., Nimmo E. R., Drummond H. E., Fennell J., Smith B. R., MacKinlay E., et al. NOD2/CARD15, TLR4 and CD14 mutations in Scottish and Irish Crohn's disease patients: evidence for genetic heterogeneity within Europe?. Genes Immun 2004; 5: 417–25
  • Franchimont D., Vermeire S., El Housni H., Pierik M., Van Steen K., Gustot T., et al. Deficient host‐bacteria interactions in inflammatory bowel disease? The toll‐like receptor (TLR)‐4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut 2004; 53: 987–92
  • Lakatos P. L., Lakatos L., Szalay F., Willheim‐Polli C., Osterreicher C., Tulassay Z., et al. Toll‐like receptor 4 and NOD2/CARD15 mutations in Hungarian patients with Crohn's disease: phenotype‐genotype correlations. World J Gastroenterol 2005; 11: 1489–95
  • Oostenbrug L. E., Drenth J. P., de Jong D. J., Nolte I. M., Oosterom E., van Dullemen H. M., et al. Association between Toll‐like receptor 4 and inflammatory bowel disease. Inflamm Bowel Dis 2005; 11: 567–75
  • Torok H. P., Glas J., Tonenchi L., Mussack T., Folwaczny C. Polymorphisms of the lipopolysaccharide‐signaling complex in inflammatory bowel disease: association of a mutation in the Toll‐like receptor 4 gene with ulcerative colitis. Clin Immunol 2004; 112: 85–91
  • Takeda K., Akira S. Toll‐like receptors in innate immunity. Int Immunol 2005; 17: 1–14
  • Werts C., Girardin S. E., Philpott D. J. TIR, CARD and PYRIN: three domains for an antimicrobial triad. Cell Death Differ 2006; 13: 798–815
  • Elphick D. A., Mahida Y. R. Paneth cells: their role in innate immunity and inflammatory disease. Gut 2005; 54: 1802–9
  • Lievin‐Le Moal V., Servin A. L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 2006; 19: 315–37
  • Ayabe T., Satchell D. P., Wilson C. L., Parks W. C., Selsted M. E., Ouellette A. J. Secretion of microbicidal alpha‐defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 2000; 1: 113–8
  • Beutler B., Jiang Z., Georgel P., Crozat K., Croker B., Rutschmann S., et al. Genetic analysis of host resistance: Toll‐like receptor signaling and immunity at large. Annu Rev Immunol 2006; 24: 353–89
  • Hampe J., Cuthbert A., Croucher P. J., Mirza M. M., Mascheretti S., Fisher S., et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 2001; 357: 1925–8
  • Ogura Y., Bonen D. K., Inohara N., Nicolae D. L., Chen F. F., Ramos R., et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–6
  • Economou M., Trikalinos T. A., Loizou K. T., Tsianos E. V., Ioannidis J. P. Differential effects of NOD2 variants on Crohn's disease risk and phenotype in diverse populations: a metaanalysis. Am J Gastroenterol 2004; 99: 2393–404
  • Brant S. R., Picco M. F., Achkar J. P., Bayless T. M., Kane S. V., Brzezinski A., et al. Defining complex contributions of NOD2/CARD15 gene mutations, age at onset, and tobacco use on Crohn's disease phenotypes. Inflamm Bowel Dis 2003; 9: 281–9
  • Lesage S., Zouali H., Cezard J. P., Colombel J. F., Belaiche J., Almer S., et al. CARD15/NOD2 mutational analysis and genotype‐phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 2002; 70: 845–57
  • Rioux J. D., Abbas A. K. Paths to understanding the genetic basis of autoimmune disease. Nature 2005; 435: 584–9
  • Watanabe T., Kitani A., Murray P. J., Strober W. NOD2 is a negative regulator of Toll‐like receptor 2‐mediated T helper type 1 responses. Nat Immunol 2004; 5: 800–8
  • Strober W., Murray P. J., Kitani A., Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 2006; 6: 9–20
  • van Heel D. A., Ghosh S., Butler M., Hunt K. A., Lundberg A. M., Ahmad T., et al. Muramyl dipeptide and toll‐like receptor sensitivity in NOD2‐associated Crohn's disease. Lancet 2005; 365: 1794–6
  • Kobayashi K. S., Chamaillard M., Ogura Y., Henegariu O., Inohara N., Nunez G., et al. Nod2‐dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005; 307: 731–4
  • Wehkamp J., Fellermann K., Stange E. F. Human defensins in Crohn's disease. Chem Immunol Allergy 2005; 86: 42–54
  • Wehkamp J., Harder J., Weichenthal M., Schwab M., Schaffeler E., Schlee M., et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha‐defensin expression. Gut 2004; 53: 1658–64
  • Vermeire S., Wild G., Kocher K., Cousineau J., Dufresne L., Bitton A., et al. CARD15 genetic variation in a Quebec population: prevalence, genotype‐phenotype relationship, and haplotype structure. Am J Hum Genet 2002; 71: 74–83
  • Cuthbert A. P., Fisher S. A., Mirza M. M., King K., Hampe J., Croucher P. J., et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 2002; 122: 867–74
  • Maeda S., Hsu L. C., Liu H., Bankston L. A., Iimura M., Kagnoff M. F., et al. Nod2 mutation in Crohn's disease potentiates NF‐kappaB activity and IL‐1beta processing. Science 2005; 307: 734–8
  • Zouali H., Lesage S., Merlin F., Cezard J. P., Colombel J. F., Belaiche J., et al. CARD4/NOD1 is not involved in inflammatory bowel disease. Gut 2003; 52: 71–4
  • Girardin S. E., Boneca I. G., Carneiro L. A., Antignac A., Jehanno M., Viala J., et al. Nod1 detects a unique muropeptide from gram‐negative bacterial peptidoglycan. Science 2003; 300: 1584–7
  • McGovern D. P., Hysi P., Ahmad T., van Heel D. A., Moffatt M. F., Carey A., et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet 2005; 14: 1245–50
  • Cario E., Podolsky D. K. Differential alteration in intestinal epithelial cell expression of toll‐like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000; 68: 7010–7
  • Lange S., Delbro D. S., Jennische E., Mattsby‐Baltzer I. The role of the Lps gene in experimental ulcerative colitis in mice. APMIS 1996; 104: 823–33
  • Fort M. M., Mozaffarian A., Stover A. G., Correia Jda S., Johnson D. A., Crane R. T., et al. A synthetic TLR4 antagonist has anti‐inflammatory effects in two murine models of inflammatory bowel disease. J Immunol 2005; 174: 6416–23
  • Arbour N. C., Lorenz E., Schutte B. C., Zabner J., Kline J. N., Jones M., et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25: 187–91
  • Ouburg S., Mallant‐Hent R., Crusius J. B., van Bodegraven A. A., Mulder C. J., Linskens R., et al. The toll‐like receptor 4 (TLR4) Asp299Gly polymorphism is associated with colonic localisation of Crohn's disease without a major role for the Saccharomyces cerevisiae mannan‐LBP‐CD14‐TLR4 pathway. Gut 2005; 54: 439–40
  • Gazouli M., Mantzaris G., Kotsinas A., Zacharatos P., Papalambros E., Archimandritis A., et al. Association between polymorphisms in the Toll‐like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World J Gastroenterol 2005; 11: 681–5
  • Brand S., Staudinger T., Schnitzler F., Pfennig S., Hofbauer K., Dambacher J., et al. The role of Toll‐like receptor 4 Asp299Gly and Thr399Ile polymorphisms and CARD15/NOD2 mutations in the susceptibility and phenotype of Crohn's disease. Inflamm Bowel Dis 2005; 11: 645–52
  • Klein W., Tromm A., Griga T., Fricke H., Folwaczny C., Hocke M., et al. A polymorphism in the CD14 gene is associated with Crohn disease. Scand J Gastroenterol 2002; 37: 189–91
  • Klein W., Tromm A., Griga T., Folwaczny C., Hocke M., Eitner K., et al. Interaction of polymorphisms in the CARD15 and CD14 genes in patients with Crohn disease. Scand J Gastroenterol 2003; 38: 834–6
  • Klausz G., Molnar T., Nagy F., Gyulai Z., Boda K., Lonovics J., et al. Polymorphism of the heat‐shock protein gene Hsp70‐2, but not polymorphisms of the IL‐10 and CD14 genes, is associated with the outcome of Crohn's disease. Scand J Gastroenterol 2005; 40: 1197–204
  • Leung E., Hong J., Fraser A. G., Merriman T. R., Vishnu P., Abbott W. G., et al. Polymorphisms of CARD15/NOD2 and CD14 genes in New Zealand Crohn's disease patients. Immunol Cell Biol 2005; 83: 498–503
  • Peters K. E., O'Callaghan N. J., Cavanaugh J. A. Lack of association of the CD14 promoter polymorphism—159C/T with Caucasian inflammatory bowel disease. Scand J Gastroenterol 2005; 40: 194–7
  • Obana N., Takahashi S., Kinouchi Y., Negoro K., Takagi S., Hiwatashi N., et al. Ulcerative colitis is associated with a promoter polymorphism of lipopolysaccharide receptor gene, CD14. Scand J Gastroenterol 2002; 37: 699–704
  • Lohmueller K. E., Pearce C. L., Pike M., Lander E. S., Hirschhorn J. N. Meta‐analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177–82
  • Gewirtz A. T., Navas T. A., Lyons S., Godowski P. J., Madara J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 2001; 167: 1882–5
  • Gewirtz A. T., Vijay‐Kumar M., Brant S. R., Duerr R. H., Nicolae D. L., Cho J. H. Dominant‐negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn's disease. Am J Physiol Gastrointest Liver Physiol 2006; 290: G1157–63
  • Lodes M. J., Cong Y., Elson C. O., Mohamath R., Landers C. J., Targan S. R., et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 2004; 113: 1296–306
  • Targan S. R., Landers C. J., Yang H., Lodes M. J., Cong Y., Papadakis K. A., et al. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn's disease. Gastroenterology 2005; 128: 2020–8
  • Sitaraman S. V., Klapproth J. M., Moore D. A 3rd., Landers C., Targan S., Williams I. R., et al. Elevated flagellin‐specific immunoglobulins in Crohn's disease. Am J Physiol Gastrointest Liver Physiol 2005; 288: G403–6
  • Duerr R. H., Barmada M. M., Zhang L., Achkar J. P., Cho J. H., Hanauer S. B., et al. Evidence for an inflammatory bowel disease locus on chromosome 3p26: linkage, transmission/disequilibrium and partitioning of linkage. Hum Mol Genet 2002; 11: 2599–606
  • Torok H. P., Glas J., Tonenchi L., Bruennler G., Folwaczny M., Folwaczny C. Crohn's disease is associated with a toll‐like receptor‐9 polymorphism. Gastroenterology 2004; 127: 365–6
  • Rachmilewitz D., Katakura K., Karmeli F., Hayashi T., Reinus C., Rudensky B., et al. Toll‐like receptor 9 signaling mediates the anti‐inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 2004; 126: 520–8
  • Rachmilewitz D., Karmeli F., Shteingart S., Lee J., Takabayashi K., Raz E. Immunostimulatory Oligonucleotides Inhibit Colonic Proinflammatory Cytokine Production in Ulcerative Colitis. Inflamm Bowel Dis 2006; 12: 339–45
  • Pierik M., Joossens S., Van Steen K., Van Schuerbeek N., Vlietinck R., Rutgeerts P., et al. Toll‐like receptor‐1, ‐2, and ‐6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis 2006; 12: 1–8
  • Baldwin A. S., Jr. Series introduction: the transcription factor NF‐kappaB and human disease. J Clin Invest 2001; 107: 3–6
  • Schreiber S., Nikolaus S., Hampe J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut 1998; 42: 477–84
  • Vermeire S., Rutgeerts P., Van Steen K., Joossens S., Claessens G., Pierik M., et al. Genome wide scan in a Flemish inflammatory bowel disease population: support for the IBD4 locus, population heterogeneity, and epistasis. Gut 2004; 53: 980–6
  • Karban A. S., Okazaki T., Panhuysen C. I., Gallegos T., Potter J. J., Bailey‐Wilson J. E., et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 2004; 13: 35–45
  • Borm M. E., van Bodegraven A. A., Mulder C. J., Kraal G., Bouma G. A NFKB1 promoter polymorphism is involved in susceptibility to ulcerative colitis. Int J Immunogenet 2005; 32: 401–5
  • Oliver J., Gomez‐Garcia M., Paco L., Lopez‐Nevot M. A., Pinero A., Correro F., et al. A functional polymorphism of the NFKB1 promoter is not associated with ulcerative colitis in a Spanish population. Inflamm Bowel Dis 2005; 11: 576–9
  • Glas J., Torok H. P., Tonenchi L., Muller‐Myhsok B., Mussack T., Wetzke M., et al. Role of the NFKB1 ‐94ins/delATTG promoter polymorphism in IBD and potential interactions with polymorphisms in the CARD15/NOD2, IKBL, and IL‐1RN genes. Inflamm Bowel Dis 2006; 12: 606–11
  • Katz K. D., Hollander D., Vadheim C. M., McElree C., Delahunty T., Dadufalza V. D., et al. Intestinal permeability in patients with Crohn's disease and their healthy relatives. Gastroenterology 1989; 97: 927–31
  • Teahon K., Smethurst P., Levi A. J., Menzies I. S., Bjarnason I. Intestinal permeability in patients with Crohn's disease and their first degree relatives. Gut 1992; 33: 320–3
  • Hollander D. Permeability in Crohn's disease: altered barrier functions in healthy relatives?. Gastroenterology 1993; 104: 1848–51
  • Meddings J. B SL., May G. R. Intestinal permeability in patients with Crohn's disease. Gut 1994; 35: 1675–6
  • Wyatt J., Vogelsang H., Hubl W., Waldhoer T., Lochs H. Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet 1993; 341: 1437–9
  • Soderholm J. D., Olaison G., Lindberg E., Hannestad U., Vindels A., Tysk C., et al. Different intestinal permeability patterns in relatives and spouses of patients with Crohn's disease: an inherited defect in mucosal defence?. Gut 1999; 44: 96–100
  • Podolsky D. K. Inflammatory bowel disease. N Engl J Med 2002; 347: 417–29
  • DeMeo M. T., Mutlu E. A., Keshavarzian A., Tobin M. C. Intestinal permeation and gastrointestinal disease. J Clin Gastroenterol 2002; 34: 385–96
  • Irvine E. J., Marshall J. K. Increased intestinal permeability precedes the onset of Crohn's disease in a subject with familial risk. Gastroenterology 2000; 119: 1740–4
  • Meddings J. B. Review article: intestinal permeability in Crohn's disease. Aliment Pharmacol Ther 1997; 11(Suppl 3)47–53
  • Wyatt J., Oberhuber G., Pongratz S., Puspok A., Moser G., Novacek G., et al. Increased gastric and intestinal permeability in patients with Crohn's disease. Am J Gastroenterol 1997; 92: 1891–6
  • Murphy M. S., Easham E. J., Nelson R., Pearson A. D., Laker M. F. Intestinal permeability in Crohn's disease. Arch Dis Child 1989; 64: 321–5
  • Ma T. Intestinal epithelial barrier dysfunction in Crohn's disease. Proc Soc Exp Biol Med 1997; 214: 318–27
  • Latiano A., Palmieri O., Valvano R. M., D'Inca R., Vecchi M., Ferraris A., et al. Contribution of IBD5 locus to clinical features of IBD patients. Am J Gastroenterol 2006; 101: 318–25
  • Waller S., Tremelling M., Bredin F., Godfrey L., Howson J., Parkes M. Evidence for association of OCTN genes and IBD5 with ulcerative colitis. Gut 2006; 55: 809–14
  • Russell R. K., Drummond H., Nimmo E., Anderson N., Noble C., Wilson D., et al. Analysis of the influence of OCTN1/2 variants within the IBD5 locus on disease susceptibility and growth indices in early‐onset inflammatory bowel disease. Gut 2006; 55: 1114–23
  • Noble C. L., Nimmo E. R., Drummond H., Ho G. T., Tenesa A., Smith L., et al. The contribution of OCTN1/2 variants within the IBD5 locus to disease susceptibility and severity in Crohn's disease. Gastroenterology 2005; 129((6))1854–64
  • Fisher S. A., Hampe J., Onnie C. M., Daly M. J., Curley C., Purcell S., et al. Direct or indirect association in a complex disease: the role of SLC22A4 and SLC22A5 functional variants in Crohn disease. Hum Mutat 2006; 27: 778–85
  • Buning C., Geerdts L., Fiedler T., Gentz E., Pitre G., Reuter W., et al. DLG5 variants in inflammatory bowel disease. Am J Gastroenterol 2006; 101: 786–92
  • Ferraris A., Torres B., Knafelz D., Barabino A., Lionetti P., de Angelis G. L., et al. Relationship Between CARD15, SLC22A4/5, and DLG5 Polymorphisms and Early‐Onset Inflammatory Bowel Diseases: An Italian Multicentric Study. Inflamm Bowel Dis 2006; 12: 355–61
  • Medici V., Mascheretti S., Croucher P. J., Stoll M., Hampe J., Grebe J., et al. Extreme heterogeneity in CARD15 and DLG5 Crohn disease‐associated polymorphisms between German and Norwegian populations. Eur J Hum Genet 2006; 14: 459–68
  • Tremelling M., Waller S., Bredin F., Greenfield S., Parkes M. Genetic variants in TNF‐alpha but not DLG5 are associated with inflammatory bowel disease in a large United Kingdom cohort. Inflamm Bowel Dis 2006; 12: 178–84
  • Urcelay E., Mendoza J. L., Martinez A., Fernandez L., Taxonera C., Diaz‐Rubio M., et al. IBD5 polymorphisms in inflammatory bowel disease: association with response to infliximab. World J Gastroenterol 2005; 11: 1187–92
  • Vermeire S., Pierik M., Hlavaty T., Claessens G., van Schuerbeeck N., Joossens S., et al. Association of organic cation transporter risk haplotype with perianal penetrating Crohn's disease but not with susceptibility to IBD. Gastroenterology 2005; 129: 1845–53
  • Newman W. G., Gu X., Wintle R. F., Liu X., van Oene M., Amos C. I., et al. DLG5 variants contribute to Crohn disease risk in a Canadian population. Hum Mutat 2006; 27: 353–8
  • Friedrichs F., Brescianini S., Annese V., Latiano A., Berger K., Kugathasan S., et al. Evidence of transmission ratio distortion of DLG5 R30Q variant in general and implication of an association with Crohn disease in men. Hum Genet 2006; 119: 305–11
  • Van Bodegraven A. A., Curley C. R., Hunt K. A., Monsuur A. J., Linskens R. K., Onnie C. M., et al. Genetic Variation in Myosin IXB Is Associated With Ulcerative Colitis. Gastroenterology 2006; 131: 1768–74
  • Post P. L., Tyska M. J., O'Connell C. B., Johung K., Hayward A., Mooseker M. S. Myosin‐IXb is a single‐headed and processive motor. J Biol Chem 2002; 277: 11679–83
  • Muller R. T., Honnert U., Reinhard J., Bahler M. The rat myosin myr 5 is a GTPase‐activating protein for Rho in vivo: essential role of arginine 1695. Mol Biol Cell 1997; 8: 2039–53
  • Bruewer M., Hopkins A. M., Hobert M. E., Nusrat A., Madara J. L. RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F‐actin. Am J Physiol Cell Physiol 2004; 287: C327–35
  • Matter K., Balda M. S. Signalling to and from tight junctions. Nat Rev Mol Cell Biol 2003; 4: 225–36
  • Monsuur A. J., de Bakker P. I., Alizadeh B. Z., Zhernakova A., Bevova M. R., Strengman E., et al. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat Genet 2005; 37: 1341–4
  • Curley C. R., Monsuur A. J., Wapenaar M. C., Rioux J. D., Wijmenga C. A functional candidate screen for coeliac disease genes. Eur J Hum Genet 2006; 14: 1215–22
  • Amundsen S. S., Vatn M., Wijmenga C., Sollid L. M., Lie B. A. Association analysis of MYO9B gene polymorphisms and inflammatory bowel disease in a Norwegian cohort. Tissue Antigens 2006; 68: 249–52
  • Panwala C. M., Jones J. C., Viney J. L. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol 1998; 161: 5733–44
  • Hoffmeyer S., Burk O., von Richter O., Arnold H. P., Brockmoller J., Johne A., et al. Functional polymorphisms of the human multidrug‐resistance gene: multiple sequence variations and correlation of one allele with P‐glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97: 3473–8
  • Mickley L. A., Lee J. S., Weng Z., Zhan Z., Alvarez M., Wilson W., et al. Genetic polymorphism in MDR‐1: a tool for examining allelic expression in normal cells, unselected and drug‐selected cell lines, and human tumors. Blood 1998; 91: 1749–56
  • Schwab M., Schaeffeler E., Marx C., Fromm M. F., Kaskas B., Metzler J., et al. Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology 2003; 124: 26–33
  • Onnie C. M., Fisher S. A., Pattni R., Sanderson J., Forbes A., Lewis C. M., et al. Associations of allelic variants of the multidrug resistance gene (ABCB1 or MDR1) and inflammatory bowel disease and their effects on disease behavior: a case‐control and meta‐analysis study. Inflamm Bowel Dis 2006; 12: 263–71
  • Osuga T., Sakaeda T., Nakamura T., Yamada T., Koyama T., Tamura T., et al. MDR1 C3435T polymorphism is predictive of later onset of ulcerative colitis in Japanese. Biol Pharm Bull 2006; 29: 324–9
  • Urcelay E., Mendoza J. L., Martin M. C., Mas A., Martinez A., Taxonera C., et al. MDR1 gene: susceptibility in Spanish Crohn's disease and ulcerative colitis patients. Inflamm Bowel Dis 2006; 12: 33–7
  • Annese V., Valvano M. R., Palmieri O., Latiano A., Bossa F., Andriulli A. Multidrug resistance 1 gene in inflammatory bowel disease: a meta‐analysis. World J Gastroenterol 2006; 12: 3636–44
  • Ho G. T., Soranzo N., Nimmo E. R., Tenesa A., Goldstein D. B., Satsangi J. ABCB1/MDR1 gene determines susceptibility and phenotype in ulcerative colitis: discrimination of critical variants using a gene‐wide haplotype tagging approach. Hum Mol Genet 2006; 15: 797–805
  • Mowat A. M., Millington O. R., Chirdo F. G. Anatomical and cellular basis of immunity and tolerance in the intestine. J Pediatr Gastroenterol Nutr 2004; 39(Suppl 3)S723–4
  • Mizoguchi A., Bhan A. K. A case for regulatory B cells. J Immunol 2006; 176: 705–10
  • Horton R., Wilming L., Rand V., Lovering R. C., Bruford E. A., Khodiyar V. K., et al. Gene map of the extended human MHC. Nat Rev Genet 2004; 5: 889–99
  • Orchard T. R., Thiyagaraja S., Welsh K. I., Wordsworth B. P., Hill Gaston J. S., Jewell D. P. Clinical phenotype is related to HLA genotype in the peripheral arthropathies of inflammatory bowel disease. Gastroenterology 2000; 118: 274–8
  • Orchard T. R., Chua C. N., Ahmad T., Cheng H., Welsh K. I., Jewell D. P. Uveitis and erythema nodosum in inflammatory bowel disease: clinical features and the role of HLA genes. Gastroenterology 2002; 123: 714–8
  • Steinhart A. H., Girgrah N., McLeod R. S. Reliability of a Crohn's disease clinical classification scheme based on disease behavior. Inflamm Bowel Dis 1998; 4: 228–34
  • Sartor R. B. Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology 1994; 106: 533–9
  • Sandborn W. J. New concepts in anti‐tumor necrosis factor therapy for inflammatory bowel disease. Rev Gastroenterol Disord 2005; 5: 10–8
  • Negoro K., Kinouchi Y., Hiwatashi N., Takahashi S., Takagi S., Satoh J., et al. Crohn's disease is associated with novel polymorphisms in the 5′‐flanking region of the tumor necrosis factor gene. Gastroenterology 1999; 117: 1062–8
  • van Heel D. A., Udalova I. A., De Silva A. P., McGovern D. P., Kinouchi Y., Hull J., et al. Inflammatory bowel disease is associated with a TNF polymorphism that affects an interaction between the OCT1 and NF(‐kappa)B transcription factors. Hum Mol Genet 2002; 11: 1281–9
  • Fowler E. V., Eri R., Hume G., Johnstone S., Pandeya N., Lincoln D., et al. TNFalpha and IL10 SNPs act together to predict disease behaviour in Crohn's disease. J Med Genet 2005; 42: 523–8
  • O'Callaghan N. J., Adams K. E., van Heel D. A., Cavanaugh J. A. Association of TNF‐alpha‐857C with inflammatory bowel disease in the Australian population. Scand J Gastroenterol 2003; 38: 533–4
  • Sykora J., Subrt I., Didek P., Siala K., Schwarz J., Machalova V., et al. Cytokine Tumor Necrosis Factor‐alpha A Promoter Gene Polymorphism at Position ‐308 G→A and Pediatric Inflammatory Bowel Disease: Implications in Ulcerative Colitis and Crohn's Disease. J Pediatr Gastroenterol Nutr 2006; 42: 479–87
  • Song Y., Wu K. C., Zhang L., Hao Z. M., Li H. T., Zhang L. X., et al. Correlation between a gene polymorphism of tumor necrosis factor and inflammatory bowel disease. Chin J Dig Dis 2005; 6: 170–4
  • Balding J., Livingstone W. J., Conroy J., Mynett‐Johnson L., Weir D. G., Mahmud N., et al. Inflammatory bowel disease: the role of inflammatory cytokine gene polymorphisms. Mediators Inflamm 2004; 13: 181–7
  • Sashio H., Tamura K., Ito R., Yamamoto Y., Bamba H., Kosaka T., et al. Polymorphisms of the TNF gene and the TNF receptor superfamily member 1B gene are associated with susceptibility to ulcerative colitis and Crohn's disease, respectively. Immunogenetics 2002; 53: 1020–7
  • Hirv K., Seyfarth M., Uibo R., Kull K., Salupere R., Latza U., et al. Polymorphisms in tumour necrosis factor and adhesion molecule genes in patients with inflammatory bowel disease: associations with HLA‐DR and ‐DQ alleles and subclinical markers. Scand J Gastroenterol 1999; 34: 1025–32
  • Hajeer A. H., Hutchinson I. V. TNF‐alpha gene polymorphism: clinical and biological implications. Microsc Res Tech 2000; 50: 216–28
  • Miretti M. M., Walsh E. C., Ke X., Delgado M., Griffiths M., Hunt S., et al. A high‐resolution linkage‐disequilibrium map of the human major histocompatibility complex and first generation of tag single‐nucleotide polymorphisms. Am J Hum Genet 2005; 76: 634–46
  • Walsh E. C., Mather K. A., Schaffner S. F., Farwell L., Daly M. J., Patterson N., et al. An integrated haplotype map of the human major histocompatibility complex. Am J Hum Genet 2003; 73: 580–90
  • de Bakker P. I., McVean G., Sabeti P. C., Miretti M. M., Green T., Marchini J., et al. A high‐resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 2006; 38: 1166–72
  • Monteleone G., Biancone L., Marasco R., Morrone G., Marasco O., Luzza F., et al. Interleukin 12 is expressed and actively released by Crohn's disease intestinal lamina propria mononuclear cells. Gastroenterology 1997; 112: 1169–78
  • Parronchi P., Romagnani P., Annunziato F., Sampognaro S., Becchio A., Giannarini L., et al. Type 1 T‐helper cell predominance and interleukin‐12 expression in the gut of patients with Crohn's disease. Am J Pathol 1997; 150: 823–32
  • Neurath M. F., Fuss I., Kelsall B. L., Stuber E., Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 1995; 182: 1281–90
  • Simpson S. J., Shah S., Comiskey M., de Jong Y. P., Wang B., Mizoguchi E., et al. T cell‐mediated pathology in two models of experimental colitis depends predominantly on the interleukin 12/Signal transducer and activator of transcription (Stat)‐4 pathway, but is not conditional on interferon gamma expression by T cells. J Exp Med 1998; 187: 1225–34
  • Mannon P. J., Fuss I. J., Mayer L., Elson C. O., Sandborn W. J., Present D., et al. Anti‐interleukin‐12 antibody for active Crohn's disease. N Engl J Med 2004; 351: 2069–79
  • Oppmann B., Lesley R., Blom B., Timans J. C., Xu Y., Hunte B., et al. Novel p19 protein engages IL‐12p40 to form a cytokine, IL‐23, with biological activities similar as well as distinct from IL‐12. Immunity 2000; 13: 715–25
  • Hue S., Ahern P., Buonocore S., Kullberg M. C., Cua D. J., McKenzie B. S., et al. Interleukin‐23 drives innate and T cell‐mediated intestinal inflammation. J Exp Med 2006; 203: 2473–83
  • Kullberg M. C., Jankovic D., Feng C. G., Hue S., Gorelick P. L., McKenzie B. S., et al. IL‐23 plays a key role in Helicobacter hepaticus‐induced T cell‐dependent colitis. J Exp Med 2006; 203: 2485–94
  • Duerr R. H., Taylor K. D., Brant S. R., Rioux J. D., Silverberg M. S., Daly M. J., et al. A genome‐wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461–3
  • Carter M. J., di Giovine F. S., Jones S., Mee J., Camp N. J., Lobo A. J., et al. Association of the interleukin 1 receptor antagonist gene with ulcerative colitis in Northern European Caucasians. Gut 2001; 48: 461–7
  • Mansfield J. C., Holden H., Tarlow J. K., Di Giovine F. S., McDowell T. L., Wilson A. G., et al. Novel genetic association between ulcerative colitis and the anti‐inflammatory cytokine interleukin‐1 receptor antagonist. Gastroenterology 1994; 106: 637–42
  • Tountas N. A., Casini‐Raggi V., Yang H., Di Giovine F. S., Vecchi M., Kam L., et al. Functional and ethnic association of allele 2 of the interleukin‐1 receptor antagonist gene in ulcerative colitis. Gastroenterology 1999; 117: 806–13
  • Aizawa Y., Sutoh S., Matsuoka M., Negishi M., Torii A., Miyakawa Y., et al. Association of interleukin‐18 gene single‐nucleotide polymorphisms with susceptibility to inflammatory bowel disease. Tissue Antigens 2005; 65: 88–92
  • Low J. H., Williams F. A., Yang X., Cullen S., Colley J., Ling K. L., et al. Inflammatory bowel disease is linked to 19p13 and associated with ICAM‐1. Inflamm Bowel Dis 2004; 10: 173–81
  • Matsuzawa J., Sugimura K., Matsuda Y., Takazoe M., Ishizuka K., Mochizuki T., et al. Association between K469E allele of intercellular adhesion molecule 1 gene and inflammatory bowel disease in a Japanese population. Gut 2003; 52: 75–8
  • Braun C., Zahn R., Martin K., Albert E., Folwaczny C. Polymorphisms of the ICAM‐1 gene are associated with inflammatory bowel disease, regardless of the p‐ANCA status. Clin Immunol 2001; 101: 357–60
  • Castro‐Santos P., Suarez A., Lopez‐Rivas L., Mozo L., Gutierrez C. TNFalpha and IL‐10 gene polymorphisms in inflammatory bowel disease. Association of ‐1082 AA low producer IL‐10 genotype with steroid dependency. Am J Gastroenterol 2006; 101: 1039–47
  • Tagore A., Gonsalkorale W. M., Pravica V., Hajeer A. H., McMahon R., Whorwell P. J., et al. Interleukin‐10 (IL‐10) genotypes in inflammatory bowel disease. Tissue Antigens 1999; 54: 386–90
  • Newman B., Gu X., Wintle R., Cescon D., Yazdanpanah M., Liu X., et al. A risk haplotype in the Solute Carrier Family 22A4/22A5 gene cluster influences phenotypic expression of Crohn's disease. Gastroenterology 2005; 128: 260–9
  • Brescianini S., Trinh T., Stoll M., Schreiber S., Rioux J. D., Daly M. J. IBD5 is associated with an extensive complicated Crohn's disease feature: implications from genotype‐phenotype analysis. Gut 2007; 56: 149–50
  • Trachtenberg E. A., Yang H., Hayes E., Vinson M., Lin C., Targan S. R., et al. HLA class II haplotype associations with inflammatory bowel disease in Jewish (Ashkenazi) and non‐Jewish caucasian populations. Hum Immunol 2000; 61: 326–33
  • Silverberg M. S., Mirea L., Bull S. B., Murphy J. E., Steinhart A. H., Greenberg G. R., et al. A population‐ and family‐based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease. Inflamm Bowel Dis 2003; 9: 1–9
  • Fraser A. G., Orchard T. R., Jewell D. P. The efficacy of azathioprine for the treatment of inflammatory bowel disease: a 30 year review. Gut 2002; 50: 485–9
  • Lennard L. The clinical pharmacology of 6‐mercaptopurine. Eur J Clin Pharmacol 1992; 43: 329–39
  • Yates C. R., Krynetski E. Y., Loennechen T., Fessing M. Y., Tai H. L., Pui C. H., et al. Molecular diagnosis of thiopurine S‐methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997; 126: 608–14
  • Ameyaw M. M., Collie‐Duguid E. S., Powrie R. H., Ofori‐Adjei D., McLeod H. L. Thiopurine methyltransferase alleles in British and Ghanaian populations. Hum Mol Genet 1999; 8: 367–70
  • McLeod H. L., Pritchard S. C., Githang'a J., Indalo A., Ameyaw M. M., Powrie R. H., et al. Ethnic differences in thiopurine methyltransferase pharmacogenetics: evidence for allele specificity in Caucasian and Kenyan individuals. Pharmacogenetics 1999; 9: 773–6
  • Hon Y. Y., Fessing M. Y., Pui C. H., Relling M. V., Krynetski E. Y., Evans W. E. Polymorphism of the thiopurine S‐methyltransferase gene in African‐Americans. Hum Mol Genet 1999; 8: 371–6
  • Collie‐Duguid E. S., Pritchard S. C., Powrie R. H., Sludden J., Collier D. A., Li T., et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 1999; 9: 37–42
  • Szumlanski C., Otterness D., Her C., Lee D., Brandriff B., Kelsell D., et al. Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol 1996; 15: 17–30
  • Dubinsky M. C., Lamothe S., Yang H. Y., Targan S. R., Sinnett D., Theoret Y., et al. Pharmacogenomics and metabolite measurement for 6‐mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 2000; 118: 705–13
  • Farrell R. J., Murphy A., Long A., Donnelly S., Cherikuri A., O'Toole D., et al. High multidrug resistance (P‐glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology 2000; 118: 279–88
  • Lakatos P. L., Fischer S., Claes K., Kovacs A., Molnar T., Altorjay I., et al. DLG5 R30Q Is Not Associated With IBD in Hungarian IBD Patients but Predicts Clinical Response to Steroids in Crohn's Disease. Inflamm Bowel Dis 2006; 12: 362–8
  • Wang W. Y., Barratt B. J., Clayton D. G., Todd J. A. Genome‐wide association studies: theoretical and practical concerns. Nat Rev Genet 2005; 6: 109–18
  • Ozen S. C., Dagli U., Kilic M. Y., Toruner M., Celik Y., Ozkan M., et al. NOD2/CARD15, NOD1/CARD4, and ICAM‐1 gene polymorphisms in Turkish patients with inflammatory bowel disease. J Gastroenterol 2006; 41: 304–10
  • Figueroa C., Peralta A., Herrera L., Castro P., Gutierrez A., Valenzuela J., et al. NOD2/CARD15 and Toll‐like 4 receptor gene polymorphism in Chilean patients with inflammatory bowel disease. Eur Cytokine Netw 2006; 17: 125–30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.