392
Views
2
CrossRef citations to date
0
Altmetric
TRENDS IN MOLECULAR MEDICINE

The broken genome: Genetic and pharmacologic approaches to breaking DNA

, &
Pages 208-218 | Published online: 08 Jul 2009

References

  • Nakayama H. RecQ family helicases: roles as tumor suppressor proteins. Oncogene 2002; 21: 9008–21
  • Macris M. A., Krejci L., Bussen W., Shimamoto A., Sung P. Biochemical characterization of the RECQ4 protein, mutated in Rothmund‐Thomson syndrome. DNA Repair (Amst) 2005; 5: 172–80
  • Nakayama K., Irino N., Nakayama H. The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol Gen Genet 1985; 200: 266–71
  • Kolodner R., Fishel R. A., Howard M. Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol 1985; 163: 1060–6
  • Courcelle J., Hanawalt P. C. RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV‐irradiated Escherichia coli. Mol Gen Genet 1999; 262: 543–51
  • Hanada K., Ukita T., Kohno Y., Saito K., Kato J., Ikeda H. RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc Natl Acad Sci U S A 1997; 94: 3860–5
  • Flores M. J., Sanchez N., Michel B. A fork‐clearing role for UvrD. Mol Microbiol 2005; 57: 1664–75
  • Myung K., Datta A., Chen C., Kolodner R. D. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet 2001; 27: 113–6
  • Stewart E., Chapman C. R., Al‐Khodairy F., Carr A. M., Enoch T. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J 1997; 16: 2682–92
  • Yamagata K., Kato J., Shimamoto A., Goto M., Furuichi Y., Ikeda H. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc Natl Acad Sci U S A 1998; 95: 8733–8
  • German J. Bloom's syndrome. Dermatol Clin 1995; 13: 7–18
  • German J., Ellis N. A. Bloom Syndrome. The genetic basis of human cancer, B Vogelstein, K. W Kinzler. McGraw‐Hill, New York 2002; 267–88
  • Imamura O., Fujita K., Shimamoto A., Tanabe H., Takeda S., Furuichi Y., et al. Bloom helicase is involved in DNA surveillance in early S phase in vertebrate cells. Oncogene 2001; 20: 1143–51
  • Groden J., Nakamura Y., German J. Molecular evidence that homologous recombination occurs in proliferating human somatic cells. Proc Natl Acad Sci U S A 1990; 87: 4315–9
  • German J., Sanz M. M., Ciocci S., Ye T. Z., Ellis N. A. Syndrome‐causing mutations in the BLM gene in persons in the Bloom's Syndrome Registry. Hum Mutat 2007, (in press)
  • Neff N. F., Ellis N. A., Ye T. Z., Noonan J., Huang K., Sanz M., et al. The DNA helicase activity of BLM is necessary for the correction of the genomic instability of bloom syndrome cells. Mol Biol Cell 1999; 10: 665–76
  • Dutertre S., Ababou M., Onclercq R., Delic J., Chatton B., Jaulin C., et al. Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase. Oncogene 2000; 19: 2731–8
  • Dellaire G., Bazett‐Jones D. P. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 2004; 26: 963–77
  • Matunis M., Zhang X. D., Ellis N. A. SUMO: The Glue that Binds. Dev Cell 2006; 11: 596–7
  • Wang Z. G., Delva L., Gaboli M., Rivi R., Giorgio M., Cordon‐Cardo C., et al. Role of PML in cell growth and the retinoic acid pathway. Science 1998; 279: 1547–51
  • Zhong S., Hu P., Ye T. Z., Stan R., Ellis N. A., Pandolfi P. P. A role for PML and the nuclear body in genomic stability. Oncogene 1999; 18: 7941–7
  • Hu P., Beresten S. F., van Brabant A. J., Ye T. Z., Pandolfi P. P., Johnson F. B., et al. Evidence for BLM and Topoisomerase IIIalpha interaction in genomic stability. Hum Mol Genet 2001; 10: 1287–98
  • Davalos A. R., Campisi J. Bloom syndrome cells undergo p53‐dependent apoptosis and delayed assembly of BRCA1 and NBS1 repair complexes at stalled replication forks. J Cell Biol 2003; 162: 1197–209
  • Wu L., Bachrati C. Z., Ou J., Xu C., Yin J., Chang M., et al. BLAP75/RMI1 promotes the BLM‐dependent dissolution of homologous recombination intermediates. Proc Natl Acad Sci U S A 2006; 103: 4068–73
  • Rogakou E. P., Boon C., Redon C., Bonner W. M. Megabase chromatin domains involved in DNA double‐strand breaks in vivo. J Cell Biol 1999; 146: 905–16
  • Celeste A., Petersen S., Romanienko P. J., Fernandez‐Capetillo O., Chen H. T., Sedelnikova O. A., et al. Genomic instability in mice lacking histone H2AX. Science 2002; 296: 922–7
  • Garcia‐Higuera I., Taniguchi T., Ganesan S., Meyn M. S., Timmers C., Hejna J., et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001; 7: 249–62
  • Meetei A. R., de Winter J. P., Medhurst A. L., Wallisch M., Waisfisz Q., van de Vrugt H. J., et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat Genet 2003; 35: 165–70
  • Davalos A. R., Kaminker P., Hansen R. K., Campisi J. ATR and ATM‐dependent movement of BLM helicase during replication stress ensures optimal ATM activation and 53BP1 focus formation. Cell Cycle 2004; 3: 1579–86
  • Sengupta S., Linke S. P., Pedeux R., Yang Q., Farnsworth J., Garfield S. H., et al. BLM helicase‐dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J 2003; 22: 1210–22
  • Meetei A. R., Sechi S., Wallisch M., Yang D., Young M. K., Joenje H., et al. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol Cell Biol 2003; 23: 3417–26
  • Yin J., Sobeck A., Xu C., Meetei A. R., Hoatlin M., Li L., et al. BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity. EMBO J 2005; 24: 1465–76
  • Langland G., Kordich J., Creaney J., Goss K. H., Lillard‐Wetherell K., Bebenek K., et al. The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair. J Biol Chem 2001; 276: 30031–5
  • Liberi G., Maffioletti G., Lucca C., Chiolo I., Baryshnikova A., Cotta‐Ramusino C., et al. Rad51‐dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 2005; 19: 339–50
  • McDaniel L. D., Chester N., Watson M., Borowsky A. D., Leder P., Schultz R. A. Chromosome instability and tumor predisposition inversely correlate with BLM protein levels. DNA Repair (Amst) 2003; 2: 1387–404
  • Nitiss J. L. Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim Biophys Acta 1998; 1400: 63–81
  • Topcu Z. DNA topoisomerases as targets for anticancer drugs. J Clin Pharm Ther 2001; 26: 405–16
  • Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 2006; 6: 789–802
  • Del Bino G., Lassota P., Darzynkiewicz Z. The S‐phase cytotoxicity of camptothecin. Exp Cell Res 1991; 193: 27–35
  • Baldwin E. L., Osheroff N. Etoposide, topoisomerase II and cancer. Curr Med Chem Anticancer Agents 2005; 5: 363–72
  • Maitland M. L., Vasisht K., Ratain M. J. TPMT, UGT1A1 and DPYD: genotyping to ensure safer cancer therapy?. Trends Pharmacol Sci 2006; 27: 432–7
  • Johnson F. M., Krug L. M., Tran H. T., Shoaf S., Prieto V. G., Tamboli P., et al. Phase I studies of imatinib mesylate combined with cisplatin and irinotecan in patients with small cell lung carcinoma. Cancer 2006; 106: 366–74
  • Wallis J. W., Chrebet G., Brodsky G., Rolfe M., Rothstein R. A hyper‐recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell 1989; 58: 409–19
  • Bailis A. M., Arthur L., Rothstein R. Genome rearrangement in top3 mutants of Saccharomyces cerevisiae requires a functional RAD1 excision repair gene. Mol Cell Biol 1992; 12: 4988–93
  • Gangloff S., McDonald J. P., Bendixen C., Arthur L., Rothstein R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 1994; 14: 8391–8
  • Harmon F. G., DiGate R. J., Kowalczykowski S. C. RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. Mol Cell 1999; 3: 611–20
  • Wu L., Davies S. L., North P. S., Goulaouic H., Riou J. F., Turley H., et al. The Bloom's syndrome gene product interacts with topoisomerase III. J Biol Chem 2000; 275: 9636–44
  • Wu L., Hickson I. D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 2003; 426: 870–4
  • Bernstein D. A., Zittel M. C., Keck J. L. High‐resolution structure of the E. coli RecQ helicase catalytic core. EMBO J 2003; 22: 4910–21
  • Wu L., Chan K. L., Ralf C., Bernstein D. A., Garcia P. L., Bohr V. A., et al. The HRDC domain of BLM is required for the dissolution of double Holliday junctions. EMBO J 2005; 24: 2679–87
  • Huber M. D., Duquette M. L., Shiels J. C., Maizels N. A conserved G4 DNA binding domain in RecQ family helicases. J Mol Biol 2006; 358: 1071–80

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.