771
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel biomarkers in patients with uncontrolled hypertension with and without kidney damage

, , , , , , , , , , , & show all
Article: 2323980 | Received 15 Nov 2023, Accepted 20 Feb 2024, Published online: 12 Apr 2024

References

  • Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):1–15. doi: 10.1093/eurheartj/ehy339.
  • Lv J, Ehteshami P, Sarnak MJ, et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ. 2013;185(11):949–957. doi: 10.1503/cmaj.121468.
  • Organization WH. Global report on hypertension: the race against a silent killer. Geneva, Switzerland: World Health Organization; 2023. Licence: CC BY-NC-SA 30 IGO. 2023.
  • Burnier M. Improving blood pressure control in the hypertensive population. Hypertension. 2019;74(1):29–31. doi: 10.1161/HYPERTENSIONAHA.119.12598.
  • Rizzoni D, De Ciuceis C, Szczepaniak P, et al. Immune system and microvascular remodeling in humans. Hypertension. 2022;79(4):691–705. doi: 10.1161/HYPERTENSIONAHA.121.17955.
  • Xiao L, Harrison DG. Inflammation in hypertension. Can J Cardiol. 2020;36(5):635–647. doi: 10.1016/j.cjca.2020.01.013.
  • Seccia TM, Caroccia B, Calò LA. Hypertensive nephropathy. Moving from classic to emerging pathogenetic mechanisms. J Hypertens. 2017;35(2):205–212. doi: 10.1097/HJH.0000000000001170.
  • Barbieri M, Ferrucci L, Corsi AM, et al. Is chronic inflammation a determinant of blood pressure in the elderly? Am J Hypertens. 2003;16(7):537–543. doi: 10.1016/s0895-7061(03)00861-6.
  • De Miguel C, Pelegrin P, Baroja-Mazo A, et al. Emerging role of the inflammasome and pyroptosis in hypertension. Int J Mol Sci. 2021;22(3):1064. doi: 10.3390/ijms22031064.
  • Martinez-Quinones P, McCarthy CG, Watts SW, et al. Hypertension induced morphological and physiological changes in cells of the arterial wall. Am J Hypertens. 2018;31(10):1067–1078. doi: 10.1093/ajh/hpy083.
  • Mancia G, Kreutz R, Brunström M, et al. ESH guidelines for the management of arterial hypertension the task force for the management of arterial hypertension of the european society of hypertension: endorsed by the international society of hypertension (ISH) and the european renal association (ERA). J Hypertens. 2023;41(12):1874–2071. doi: 10.1097/HJH.0000000000003480.
  • Mariani LH, Martini S, Barisoni L, et al. Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies. Nephrol Dial Transplant. 2018;33(2):310–318. doi: 10.1093/ndt/gfw443.
  • Bergland OU, Halvorsen LV, Søraas CL, et al. Detection of nonadherence to antihypertensive treatment by measurements of serum drug concentrations. Hypertension. 2021;78(3):617–628. doi: 10.1161/HYPERTENSIONAHA.121.17514.
  • Blom KB, Bergo KK, Espe EKS, et al. Cardiovascular rEmodelling in living kidNey donorS with reduced glomerular filtration rate: rationale and design of the CENS study. Blood Press. 2020;29(2):123–134. doi: 10.1080/08037051.2019.1684817.
  • Delanaye P, Cavalier E, Pottel H, et al. New and old GFR equations: a European perspective. Clin Kidney J. 2023;16(9):1375–1383. doi: 10.1093/ckj/sfad039.
  • Delanaye P, Schaeffner E, Cozzolino M, et al. The new, race-free, chronic kidney disease epidemiology consortium (CKD-EPI) equation to estimate glomerular filtration rate: is it applicable in Europe? A position statement by the european federation of clinical chemistry and laboratory medicine (EFLM). Clin Chem Lab Med. 2023;61(1):44–47. doi: 10.1515/cclm-2022-0928.
  • KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Inter. 2013;3:1–150. https://kdigo.org/wp-content/uploads/2017/02/KDIGO_2012_CKD_GL.pdf]
  • Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
  • Rognstad S, Søraas CL, Bergland OU, et al. Establishing serum reference ranges for antihypertensive drugs. Ther Drug Monit. 2021;43(1):116–125. doi: 10.1097/FTD.0000000000000806.
  • Ruppert D. Encyclopedia of statistical sciences. Vol. 14, 2nd ed. Hoboken (NJ): Wiley-Interscience; 2006. p. 8765–8770.
  • Bender R, Lange S. Adjusting for multiple testing–when and how? J Clin Epidemiol. 2001;54(4):343–349. doi: 10.1016/s0895-4356(00)00314-0.
  • Zheng W, Mu J, Chu C, et al. Association of blood pressure trajectories in early life with subclinical renal damage in Middle age. J Am Soc Nephrol. 2018;29(12):2835–2846. doi: 10.1681/ASN.2018030263.
  • Johnson RJ, Herrera-Acosta J, Schreiner GF, et al. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N Engl J Med. 2002;346(12):913–923. doi: 10.1056/NEJMra011078.
  • O’Brien E, Asmar R, Beilin L, et al. European society of hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J Hypertens. 2003;21(5):821–848. doi: 10.1097/00004872-200305000-00001.
  • Agarwal R, Andersen MJ. Prognostic importance of clinic and home blood pressure recordings in patients with chronic kidney disease. Kidney Int. 2006;69(2):406–411. doi: 10.1038/sj.ki.5000081.
  • Clement DL, De Buyzere ML, De Bacquer DA, et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med. 2003;348(24):2407–2415. doi: 10.1056/NEJMoa022273.
  • Dolan E, Stanton A, Thijs L, et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension. 2005;46(1):156–161. doi: 10.1161/01.HYP.0000170138.56903.7a.
  • Hansen TW, Jeppesen J, Rasmussen S, et al. Ambulatory blood pressure and mortality: a population-based study. Hypertension. 2005;45(4):499–504. doi: 10.1161/01.HYP.0000160402.39597.3b.
  • Fagard RH, Van Den Broeke C, De Cort P. Prognostic significance of blood pressure measured in the office, at home and during ambulatory monitoring in older patients in general practice. J Hum Hypertens. 2005;19(10):801–807. doi: 10.1038/sj.jhh.1001903.
  • Cheung AK, Rahman M, Reboussin DM, et al. Effects of intensive BP control in CKD. J Am Soc Nephrol. 2017;28(9):2812–2823. doi: 10.1681/ASN.2017020148.
  • Wright JT, Jr., Bakris G, Greene T, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002;288(19):2421–2431. doi: 10.1001/jama.288.19.2421.
  • Klahr S, Levey AS, Beck GJ, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of diet in renal disease study group. N Engl J Med. 1994;330(13):877–884. doi: 10.1056/NEJM199403313301301.
  • Ruggenenti P, Perna A, Loriga G, et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet. 2005;365(9463):939–946. doi: 10.1016/S0140-6736(05)71082-5.
  • Yang Y, Wang Y, Gao PJ. Osteopontin associated with left ventricular hypertrophy and diastolic dysfunction in essential hypertension. J Hum Hypertens. 2020;34(5):388–396. doi: 10.1038/s41371-019-0246-3.
  • Xu TY, Zhang Y, Li Y, et al. The association of serum inflammatory biomarkers with chronic kidney disease in hypertensive patients. Ren Fail. 2014;36(5):666–672. doi: 10.3109/0886022X.2014.890002.
  • Stępień E, Wypasek E, Stopyra K, et al. Increased levels of bone remodeling biomarkers (osteoprotegerin and osteopontin) in hypertensive individuals. Clin Biochem. 2011;44(10–11):826–831. doi: 10.1016/j.clinbiochem.2011.04.016.
  • Lorenzen JM, Neunhöffer H, David S, et al. Angiotensin II receptor blocker and statins lower elevated levels of osteopontin in essential hypertension–results from the EUTOPIA trial. Atherosclerosis. 2010;209(1):184–188. doi: 10.1016/j.atherosclerosis.2009.09.009.
  • Steinbrenner I, Sekula P, Kotsis F, et al. Association of osteopontin with kidney function and kidney failure in chronic kidney disease patients: the GCKD study. Nephrol Dial Transplant. 2023;38(6):1430–1438.. doi: 10.1093/ndt/gfac173.
  • Lok ZSY, Lyle AN. Osteopontin in vascular disease. Arterioscler Thromb Vasc Biol. 2019;39(4):613–622. doi: 10.1161/ATVBAHA.118.311577.
  • Mamazhakypov A, Sartmyrzaeva M, Sarybaev AS, et al. Clinical and molecular implications of osteopontin in heart failure. Curr Issues Mol Biol. 2022;44(8):3573–3597. doi: 10.3390/cimb44080245.
  • Fliser D, Buchholz K, Haller H, et al. Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation. 2004;110(9):1103–1107. doi: 10.1161/01.CIR.0000140265.21608.8E.
  • Alesutan I, Luong TTD, Schelski N, et al. Circulating uromodulin inhibits vascular calcification by interfering with pro-inflammatory cytokine signalling. Cardiovasc Res. 2021;117(3):930–941. doi: 10.1093/cvr/cvaa081.
  • Jian L, Fa X, Zhou Z, et al. Functional analysis of UMOD gene and its effect on inflammatory cytokines in serum of essential hypertension patients. Int J Clin Exp Pathol. 2015;8(9):11356–11363. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637676/
  • Jotwani V, Garimella PS, Katz R, et al. Tubular biomarkers and chronic kidney disease progression in SPRINT participants. Am J Nephrol. 2020;51(10):797–805. doi: 10.1159/000509978.
  • Garimella PS, Lee AK, Ambrosius WT, et al. Markers of kidney tubule function and risk of cardiovascular disease events and mortality in the SPRINT trial. Eur Heart J. 2019;40(42):3486–3493. doi: 10.1093/eurheartj/ehz392.
  • Trudu M, Janas S, Lanzani C, et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med. 2013;19(12):1655–1660. doi: 10.1038/nm.3384.
  • Ponte B, Sadler MC, Olinger E, et al. Mendelian randomization to assess causality between uromodulin, blood pressure and chronic kidney disease. Kidney Int. 2021;100(6):1282–1291. doi: 10.1016/j.kint.2021.08.032.
  • Mikolajczyk TP, Nosalski R, Szczepaniak P, et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. Faseb J. 2016;30(5):1987–1999. doi: 10.1096/fj.201500088R.
  • Eikendal AL, Evelein AM, Uiterwaal CS, et al. Relation between circulating inflammatory chemokines and vascular characteristics in healthy, young children. J Am Heart Assoc. 2015;4(12):e002346. doi: 10.1161/JAHA.115.002346.
  • Parissis JT, Korovesis S, Giazitzoglou E, et al. Plasma profiles of peripheral monocyte-related inflammatory markers in patients with arterial hypertension. Correlations with plasma endothelin-1. Int J Cardiol. 2002;83(1):13–21. doi: 10.1016/s0167-5273(02)00021-9.
  • Lefebvre E, Moyle G, Reshef R, et al. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One. 2016;11(6):e0158156. doi: 10.1371/journal.pone.0158156.
  • Rudemiller NP, Crowley SD. The role of chemokines in hypertension and consequent target organ damage. Pharmacol Res. 2017;119:404–411. doi: 10.1016/j.phrs.2017.02.026.
  • Araos P, Amador CA. Neutrophil gelatinase-associated lipocalin as an immunomodulator in endocrine hypertension. Front Endocrinol (Lausanne). 2022;13:1006790. doi: 10.3389/fendo.2022.1006790.
  • Bonnard B, Ibarrola J, Lima-Posada I, et al. Neutrophil Gelatinase-Associated lipocalin from macrophages plays a critical role in renal fibrosis via the CCL5 (chemokine ligand 5)-Th2 Cells-IL4 (interleukin 4) pathway. Hypertension. 2022;79(2):352–364. doi: 10.1161/HYPERTENSIONAHA.121.17712.
  • Alderson HV, Ritchie JP, Pagano S, et al. The associations of blood kidney injury molecule-1 and neutrophil Gelatinase-Associated lipocalin with progression from CKD to ESRD. Clin J Am Soc Nephrol. 2016;11(12):2141–2149. doi: 10.2215/CJN.02670316.
  • Lindberg S, Jensen JS, Mogelvang R, et al. Plasma neutrophil gelatinase-associated lipocalinin in the general population: association with inflammation and prognosis. Arterioscler Thromb Vasc Biol. 2014;34(9):2135–2142. doi: 10.1161/ATVBAHA.114.303950.
  • Afsar B, Covic A, Ortiz A, et al. The future of IL-1 targeting in kidney disease. Drugs. 2018;78(11):1073–1083. doi: 10.1007/s40265-018-0942-2.
  • Ling YH, Krishnan SM, Chan CT, et al. Anakinra reduces blood pressure and renal fibrosis in one kidney/DOCA/salt-induced hypertension. Pharmacol Res. 2017;116:77–86. doi: 10.1016/j.phrs.2016.12.015.
  • Peeters AC, Netea MG, Janssen MC, et al. Pro-inflammatory cytokines in patients with essential hypertension. Eur J Clin Invest. 2001;31(1):31–36. doi: 10.1046/j.1365-2362.2001.00743.x.
  • Mauno V, Hannu K, Esko K. Proinflammation and hypertension: a population-based study. Mediators Inflamm. 2008;2008:619704. doi: 10.1155/2008/619704.
  • Urwyler SA, Ebrahimi F, Burkard T, et al. IL (interleukin)-1 receptor antagonist increases ang (angiotensin [1-7]) and decreases blood pressure in obese individuals. Hypertension. 2020;75(6):1455–1463. doi: 10.1161/HYPERTENSIONAHA.119.13982.
  • Urwyler SA, Schuetz P, Ebrahimi F, et al. Interleukin-1 antagonism decreases cortisol levels in obese individuals. J Clin Endocrinol Metab. 2017;102(5):1712–1718. doi: 10.1210/jc.2016-3931.
  • Ebrahimi F, Urwyler SA, Straumann S, et al. IL-1 antagonism in men with metabolic syndrome and low testosterone: a randomized clinical trial. J Clin Endocrinol Metab. 2018;103(9):3466–3476. doi: 10.1210/jc.2018-00739.
  • Group. F-NBW. BEST (biomarkers, EndpointS, and other tools) resource. Bethesda (MD): Food and Drug Administration (US), Silver Spring (MD); National Institutes of Health (US); 2016.
  • Pennello GA. Analytical and clinical evaluation of biomarkers assays: when are biomarkers ready for prime time? Clin Trials. 2013;10(5):666–676. doi: 10.1177/1740774513497541.
  • Graham C, Chooniedass R, Stefura WP, et al. Stability of pro- and anti-inflammatory immune biomarkers for human cohort studies. J Transl Med. 2017;15(1):53. doi: 10.1186/s12967-017-1154-3.
  • Simpson S, Kaislasuo J, Guller S, et al. Thermal stability of cytokines: a review. Cytokine. 2020;125:154829. doi: 10.1016/j.cyto.2019.154829.
  • Hosnijeh FS, Krop EJ, Portengen L, et al. Stability and reproducibility of simultaneously detected plasma and ­serum cytokine levels in asymptomatic subjects. Biomarkers. 2010;15(2):140–148. doi: 10.3109/13547500903340570.
  • Lanteri P, Lombardi G, Colombini A, et al. Stability of osteopontin in plasma and serum. Clin Chem Lab Med. 2012;50(11):1979–1984. doi: 10.1515/cclm-2012-0177.
  • Papworth K, Bergh A, Grankvist K, et al. Osteopontin but not parathyroid hormone-related protein predicts prognosis in human renal cell carcinoma. Acta Oncol. 2013;52(1):159–165. doi: 10.3109/0284186X.2012.693623.
  • Woodhams B, Girardot O, Blanco MJ, et al. Stability of coagulation proteins in frozen plasma. Blood Coagul Fibrinolysis. 2001;12(4):229–236. doi: 10.1097/00001721-200106000-00002.
  • Bach J, Haubelt H, Hellstern P. Sources of variation in factor VIII, von willebrand factor and fibrinogen measurements: implications for detecting deficiencies and increased plasma levels. Thromb Res. 2010;126(3):e188-195–e195. doi: 10.1016/j.thromres.2010.05.029.
  • Pedersen KR, Ravn HB, Hjortdal VE, et al. Neutrophil gelatinase-associated lipocalin (NGAL): validation of commercially available ELISA. Scand J Clin Lab Invest. 2010;70(5):374–382. doi: 10.3109/00365513.2010.486868.
  • Scherberich JE, Gruber R, Nockher WA, et al. Serum uromodulin-a marker of kidney function and renal parenchymal integrity. Nephrol Dial Transplant. 2018;33(2):284–295. doi: 10.1093/ndt/gfw422.
  • Youhanna S, Weber J, Beaujean V, et al. Determination of uromodulin in human urine: influence of storage and processing. Nephrol Dial Transplant. 2014;29(1):136–145. doi: 10.1093/ndt/gft345.