Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 52, 2023 - Issue 8
359
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection

ORCID Icon, , , &

References

  • Acosta, E. G., Kumar, A., & Bartenschlager, R. (2014). Revisiting dengue virus–host cell interaction: New insights into molecular and cellular virology. Advances in Virus Research, 88, 1–109. https://doi.org/10.1016/B978-0-12-800098-4.00001-5
  • Alcaraz-Estrada, S. L., Yocupicio-Monroy, M., & Del Angel, R. M. (2010). Insights into dengue virus genome replication. Future Virology, 5(5), 575–592. https://doi.org/10.2217/fvl.10.49
  • Alen, M. M., De Burghgraeve, T., Kaptein, S. J., Balzarini, J., Neyts, J., Schols, D., & Sandberg, J. K. (2011). Broad antiviral activity of carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells. PLoS One, 6(6), e21658. https://doi.org/10.1371/journal.pone.0021658
  • Alen, M. M., Kaptein, S. J., De Burghgraeve, T., Balzarini, J., Neyts, J., & Schols, D. (2009). Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection. Virology, 387(1), 67–75. https://doi.org/10.1016/j.virol.2009.01.043
  • Alvarez, D. E., Ezcurra, A. L. D. L., Fucito, S., & Gamarnik, A. V. (2005). Role of RNA structures present at the 3′ UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology, 339(2), 200–212. https://doi.org/10.1016/j.virol.2005.06.009
  • Alves dos Santos, E., & Fink, K. (2018). Animal Models for Dengue and Zika Vaccine Development. In S. Hilgenfeld & S.Vasudevan (Eds.), Dengue and Zika: Control and Antiviral Treatment Strategies (Vol. 1062, pp. 215–239). Springer. https://doi.org/10.1007/978-981-10-8727-1_16
  • Alves, R. P. D. S., Pereira, L. R., Fabris, D. L. N., Salvador, F. S., Santos, R. A., Zanotto, P. M. A., Romano, C. M., Amorium, J. H., & Ferreira, L. C. S. (2016). Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen. Clinical and Vaccine Immunology: CVI, 23(6), 460–469. https://doi.org/10.1128/CVI.00081-16
  • Amorim, J. H., Diniz, M. O., Cariri, F. A., Rodrigues, J. F., Bizerra, R. S., Gonçalves, A. J., Alves, A. M., & de Souza Ferreira, L. C. (2012). Protective immunity to DENV2 after immunization with a recombinant NS1 protein using a genetically detoxified heat-labile toxin as an adjuvant. Vaccine: X, 30(5), 837–845. https://doi.org/10.1016/j.vaccine.2011.12.034
  • Anderson, J. R., & Rico-Hesse, R. (2006). Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. The American Journal of Tropical Medicine and Hygiene, 75(5), 886. https://doi.org/10.4269/ajtmh.2006.75.886
  • Anker, M., & Arima, Y. (2011). Male–female differences in the number of reported incident dengue fever cases in six Asian countries. Western Pacific Surveillance and Response Journal: WPSAR, 2(2), 17. https://doi.org/10.5365/wpsar.2011.2.1.002
  • Antony, J., & Celine, T. M. (2014). A descriptive study on dengue fever reported in a medical college hospital. Sahel Medical Journal, 17(3), 83. https://doi.org/10.4103/1118-8561.140285
  • Ashander, L. M., Lumsden, A. L., Dawson, A. C., Ma, Y., Ferreira, L. B., Oliver, G. F., Appukuttam, B., Carr, J. M., & Smith, J. R. (2022). Infection of human retinal pigment epithelial cells with dengue virus strains isolated during outbreaks in Singapore. Microorganisms [Internet], 10(2), 310. https://doi.org/10.3390/microorganisms10020310
  • Aye, K. S., Charngkaew, K., Win, N., Wai, K. Z., Moe, K., Punyadee, N., Thiemmeca, S., Suttitheptumrong, A., Sukpanichnant, S., Prida, M., & Halstead, S. B. (2014). Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar. Human Pathology, 45(6), 1221–1233. https://doi.org/10.1016/j.humpath.2014.01.022
  • Babu, J. P., Pattnaik, P., Gupta, N., Shrivastava, A., Khan, M., & Rao, P. V. (2008). Immunogenicity of a recombinant envelope domain III protein of dengue virus type-4 with various adjuvants in mice. Vaccine: X, 26(36), 4655–4663. https://doi.org/10.1016/j.vaccine.2008.07.006
  • Bal, J., Luong, N. N., Park, J., Song, K. D., Jang, Y. S., & Kim, D. H. (2018). Comparative immunogenicity of preparations of yeast-derived dengue oral vaccine candidate. Microbial Cell Factories, 17(1), 24. https://doi.org/10.1186/s12934-018-0876-0
  • Balas, C., Kennel, A., Deauvieau, F., Sodoyer, R., Arnaud-Barbe, N., Lang, J., & Guy, B. (2011). Different innate signatures induced in human monocyte-derived dendritic cells by wild-type dengue 3 virus, attenuated but reactogenic dengue 3 vaccine virus, or attenuated nonreactogenic dengue 1–4 vaccine virus strains. The Journal of Infectious Diseases, 203(1), 103–108. https://doi.org/10.1093/infdis/jiq022
  • Balsitis, S. J., Coloma, J., Castro, G., Alava, A., Flores, D., McKerrow, J. H., Betty, P. B., & Harris, E. (2009). Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining. The American Journal of Tropical Medicine and Hygiene, 80(3), 416–424. https://doi.org/10.4269/ajtmh.2009.80.416
  • Balsitis, S. J., Williams, K. L., Lachica, R., Flores, D., Kyle, J. L., Mehlhop, E., Johnson, S., Diamond, M. S., Beatty, P. R., Harris, E., & Baric, R. S. (2010). Lethal antibody enhancement of dengue disease in mice is prevented by fc modification. PLoS Pathogens, 6(2), e1000790. https://doi.org/10.1371/journal.ppat.1000790
  • Barrett, P. J., Chen, J., Cho, M. K., Kim, J. H., Lu, Z., Mathew, S., Peng, D., Song, Y., Van Horn, W. D., Zhuang, T., & Sanders, C. R. (2013). The quiet renaissance of protein nuclear magnetic resonance. Biochemistry, 52(8), 1303–1320. https://doi.org/10.1021/bi4000436
  • Bashirova, A. A., Geijtenbeek, T. B., van Duijnhoven, G. C., van Vliet, S. J., Eilering, J. B., Martin, M. P., Viebig, N., Knolle, P. A., KewalRamani, V. N., van Kooyk, Y., & Carrington, M. (2001). A dendritic cell–specific intercellular adhesion molecule 3–grabbing nonintegrin (DC-SIGN)–related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. The Journal of Experimental Medicine, 193(6), 671–678. https://doi.org/10.1084/jem.193.6.671
  • Beckett, C. G., Tjaden, J., Burgess, T., Danko, J. R., Tamminga, C., Simmons, M., Wu, S., Sun, P., Kochel, T., Raviprakash, K., Hayes, C. G., & Porter, K. R. (2011). Evaluation of a prototype dengue-1 DNA vaccine in a Phase 1 clinical trial. Vaccine: X, 29(5), 960–968. https://doi.org/10.1016/j.vaccine.2010.11.050
  • Bedran-Martins, A. M., Lemos, M. C., & Philippi, A. (2018). Relationship between subjective well-being and material quality of life in face of climate vulnerability in NE Brazil. Climate Change, 147(1–2), 283–297. https://doi.org/10.1007/s10584-017-2105-y
  • Berlec, A., & Strukelj, B. (2013). Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. Journal of Industrial Microbiology & Biotechnology, 40(3–4), 257–274. https://doi.org/10.1007/s10295-013-1235-0
  • Bernardo, L., Izquierdo, A., Alvarez, M., Rosario, D., Prado, I., López, C., Martínez, R., Castro, J., Santana, E., Hermida, L., Guillen, G., & Guzmán, M. G. (2008). Immunogenicity and protective efficacy of a recombinant fusion protein containing the domain III of the dengue 1 envelope protein in non-human primates. Antiviral Research, 80(2), 194–199. https://doi.org/10.1016/j.antiviral.2008.06.005
  • Bhamarapravati, N., & Sutee, Y. (2000). Live attenuated tetravalent dengue vaccine. Vaccine: X, 18(2), 44–47. https://doi.org/10.1016/s0264-410x(00)00040-2
  • Bhamarapravati, N., Yoksan, S., Chayaniyayothin, T., Angsubphakorn, S., & Bunyaratvej, A. (1987). Immunization with a live attenuated dengue-2-virus candidate vaccine (16681-PDK 53): clinical, immunological and biological responses in adult volunteers. Bulletin of the World Health Organization, 65(2), 189–195.
  • Bhatt, P., Sabeena, S. P., Varma, M., & Arunkumar, G. (2021). Current understanding of the pathogenesis of dengue virus infection. Current Microbiology, 78(1), 17–32. https://doi.org/10.1007/s00284-020-02284-w
  • Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R., Simmons, C. P., Scott, T. W., Farrar, J. J., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507. https://doi.org/10.1038/nature12060
  • Bhoopat, L., Bhamarapravati, N., Attasiri, C., Yoksarn, S., Chaiwun, B., Khunamornpong, S., & Sirisanthana, V. (1996). Immunohistochemical characterization of a new monoclonal antibody reactive with dengue virus-infected cells in frozen tissue using immunoperoxidase technique. Asian Pacific Journal of Allergy and Immunology, 14(2), 107.
  • Biswal, S., Reynales, H., Saez-Llorens, X., Lopez, P., Borja-Tabora, C., Kosalaraksa, P., Sirivichayakul, C., Watanaveeradej, V., Rivera, L., Espinoza, F., & Wallace, D. (2019). Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. New England Journal of Medicine, 381(21), 2009–2019. https://doi.org/10.1056/NEJMoa1903869
  • Blair, P. J., Kochel, T. J., Raviprakash, K., Guevara, C., Salazar, M., Wu, S. J., Olson, J. G., & Porter, K. R. (2006). Evaluation of immunity and protective efficacy of a dengue-3 pre-membrane and envelope DNA vaccine in aotus nancymae monkeys. Vaccine: X, 24(9), 1427–1432. https://doi.org/10.1016/j.vaccine.2005.09.032
  • Blok, J. (1985). Genetic relationships of the dengue virus serotypes. Journal of General Virology, 66(6), 1323–1325. https://doi.org/10.1099/0022-1317-66-6-1323
  • Bozza, F. A., Cruz, O. G., Zagne, S. M., Azeredo, E. L., Nogueira, R. M., Assis, E. F., Bozza, P. T., & Kubelka, C. F. (2008). Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infectious Diseases, 8(1), 1–11. https://doi.org/10.1186/1471-2334-8-86
  • BPOM: Badan Pengawas Obat dan Makanan - Republik Indonesia. (2022). Approval of dengue vaccine distribution permit (qdenga) for age 6–45 years. BPOM Press Release. https://www.pom.go.id/new/view/more/pers/659/Persetujuan-Izin-Edar-Vaksin-Dengue–Qdenga–untuk-Usia-6—45-Tahun.html. Retrieved July 17, 2023)
  • Brandler, S., Ruffie, C., Najburg, V., Frenkiel, M. P., Bedouelle, H., Desprès, P., & Tangy, F. (2010). Pediatric measles vaccine expressing a dengue tetravalent antigen elicits neutralizing antibodies against all four dengue viruses. Vaccine: X, 28(41), 6730–6739. https://doi.org/10.1016/j.vaccine.2010.07.073
  • Brass, A. L., Huang, I. C., Benita, Y., John, S. P., Krishnan, M. N., Feeley, E. M., Ryan, B. J., Weyer, J. L., Weyden, L., Fikrig, E., Adams, D. J., Xavier, R. J., & Elledge, S. J. (2009). The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell, 139(7), 1243–1254. https://doi.org/10.1016/j.cell.2009.12.017
  • Burke, D. S., Nisalak, A., Johnson, D. E., & Scott, R. M. (1988). A prospective study of dengue infections in Bangkok. The American Journal of Tropical Medicine and Hygiene, 38(1), 172–180. https://doi.org/10.4269/ajtmh.1988.38.172
  • Cabrera-Hernandez, A., & Smith, D. R. (2005). Mammalian dengue virus receptors. WHO Regional Office for South-East Asia. https://apps.who.int/iris/handle/10665/164026
  • Carlos, C. C., Oishi, K., Cinco, M. T., Mapua, C. A., Inoue, S., Cruz, D. J., Pancho, M. A., Tanig, C. Z., Matias, R. R., Morita, K., Natividad, F. F., Igarashi, A., & Nagatake, T. (2005). Comparison of clinical features and hematologic abnormalities between dengue fever and dengue hemorrhagic fever among children in the Philippines. The American Journal of Tropical Medicine and Hygiene, 73(2), 435–440. https://doi.org/10.4269/ajtmh.2005.73.435
  • Castanha, P. M., Souza, W. V., Braga, C., Araújo, T. V. B. D., Ximenes, R. A., Albuquerque, M. D. F. P., Montarroyos, U. R., Miranda-Filho, D. B., Cordeiro, M. T., Dhalia, R., & Microcephaly Epidemic Research Group. (2019). Perinatal analyses of Zika-and dengue virus-specific neutralizing antibodies: A microcephaly case-control study in an area of high dengue endemicity in Brazil. PLoS Neglected Tropical Diseases, 13(3), e0007246. https://doi.org/10.1371/journal.pntd.0007246
  • Castro, M., Wilson, M., & Bloom, D. (2017). Disease and economic burdens of dengue. The Lancet Infectious Diseases, 17(3), e70–e78. https://doi.org/10.1016/S1473-3099(16)30545-X
  • Cerny, D., Haniffa, M., Shin, A., Bigliardi, P., Tan, B. K., Lee, B., Poidinger, M., Tan, E. Y., Ginhoux, F., Fink, K., & Kuhn, R. J. (2014). Selective susceptibility of human skin antigen presenting cells to productive dengue virus infection. PLoS Pathogens, 10(12), e1004548. https://doi.org/10.1371/journal.ppat.1004548
  • Chambers, T. J., McCourt, D. W., & Rice, C. M. (1989). Yellow fever virus proteins NS2A, NS213, and NS4B: Identification and partial N-terminal amino acid sequence analysis. Virology, 169(1), 100–109. https://doi.org/10.1016/0042-6822(89)90045-7
  • Chen, H. W., Liu, S. J., Li, Y. S., Liu, H. H., Tsai, J. P., Chiang, C. Y., Chen, M. Y., Hwang, C. S., Huang, C. C., Hu, H. M., Chung, H. H., Wu, S. H., Chong, P., Leng, C. H., & Pan, C. H. (2013). A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates. Archives of Virology, 158(7), 1523–1531. https://doi.org/10.1007/s00705-013-1639-1
  • Chen, L., Ewing, D., Subramanian, H., Block, K., Rayner, J., Alterson, K. D., Sedegah, M., Hayes, C., Porter, K., & Raviprakash, K. (2007). A heterologous DNA prime-venezuelan equine encephalitis virus replicon particle boost dengue vaccine regimen affords complete protection from virus challenge in cynomolgus macaques. Journal of Virology, 81(21), 11634–11639. https://doi.org/10.1128/JVI.00996-07
  • Chen, S. T., Lin, Y. L., Huang, M. T., Wu, M. F., Cheng, S. C., Lei, H. Y., Lee, C. K., Chiou, T. W., Wong, C. H., & Hsieh, S. L. (2008). CLEC5A is critical for dengue-virus-induced lethal disease. Nature, 453(7195), 672–676. https://doi.org/10.1038/nature07013
  • Chen, Y., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J., & Marks, R. M. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Medicine, 3(8), 866–871. https://doi.org/10.1038/nm0897-866
  • Chiang, C. Y., Hsieh, C. H., Chen, M. Y., Tsai, J. P., Liu, H. H., Liu, S. J., Chong, P., Leng, C. H., & Chen, H. W. (2014). Recombinant lipidated dengue-4 envelope protein domain III elicits protective immunity. Vaccine: X, 32(12), 1346–1353. https://doi.org/10.1016/j.vaccine.2014.01.041
  • Chiang, C. Y., Huang, M. H., Hsieh, C. H., Chen, M. Y., Liu, H. H., Tsai, J. P., Li, Y. S., Chang, C. Y., Liu, C. H., Chong, P., Leng, C. H., & Chen, H. W. (2012). Dengue-1 envelope protein domain III along with PELC and CpG oligodeoxynucleotides synergistically enhances immune responses. PLoS Neglected Tropical Diseases, 6(5), e1645. https://doi.org/10.1371/journal.pntd.0001645
  • Chiang, C. Y., Huang, M. H., Pan, C. H., Hsieh, C. H., Chen, M. Y., Liu, H. H., Tsai, J. P., Liu, S. J., Chong, P., Leng, C. H., & Chen, H. W. (2013). Induction of robust immunity by the emulsification of recombinant lipidated dengue-1 envelope protein domain III. Microbes & infection / Institut Pasteur, 15(10–11), 719–728. https://doi.org/10.1016/j.micinf.2013.06.002
  • Chiang, C. Y., Pan, C. H., Chen, M. Y., Hsieh, C. H., Tsai, J. P., Liu, H. H., Liu, S. J., Chong, P., Leng, C. H., & Chen, H. W. (2016). Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice. Scientific Reports, 6(1), 30648. https://doi.org/10.1038/srep30648
  • Chiang, C. Y., Pan, C. H., Hsieh, C. H., Tsai, J. P., Chen, M. Y., Liu, H. H., Liu, S. J., Chong, P., Leng, C. H., Chen, H. W., & Michael, S. F. (2013). Lipidated dengue-2 envelope protein domain III independently stimulates long-lasting neutralizing antibodies and reduces the risk of antibody-dependent enhancement. PLoS Neglected Tropical Diseases, 7(9), e2432. https://doi.org/10.1371/journal.pntd.0002432
  • Chu, Y. T., Wan, S. W., Anderson, R., & Lin, Y. S. (2015). Mast cell–macrophage dynamics in modulation of dengue virus infection in skin. Immunology, 146(1), 163–172. https://doi.org/10.1111/imm.12492
  • Chuang, Y. C., Lin, J., Lin, Y. S., Wang, S., & Yeh, T. M. (2016). Dengue virus nonstructural protein 1–induced antibodies cross-react with human plasminogen and enhance its activation. Journal of Immunology, 196(3), 1218–1226. https://doi.org/10.4049/jimmunol.1500057
  • Clarke, T. (2002). Dengue virus: Break-bone fever. Nature, 416(6882), 672–675. https://doi.org/10.1038/416672a
  • Clements, D. E., Coller, B. A., Lieberman, M. M., Ogata, S., Wang, G., Harada, K. E., Putnak, J. R., Ivy, J. M., McDonell, M., Bignami, G. S., Peters, I. D., Leung, J., Weeks-Levy, C., Nakano, E. T., & Humphreys, T. (2010). Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys. Vaccine: X, 28(15), 2705–2715. https://doi.org/10.1016/j.vaccine.2010.01.022
  • Clyde, K., Barrera, J., & Harris, E. (2008). The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology, 379(2), 314–323. https://doi.org/10.1016/j.virol.2008.06.034
  • Clyde, K., & Harris, E. (2006). RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. Journal of Virology, 80(5), 2170–2182. https://doi.org/10.1128/JVI.80.5.2170-2182.2006
  • Clyde, K., Kyle, J. L., & Harris, E. (2006). Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. Journal of Virology, 80(23), 11418–11431. https://doi.org/10.1128/JVI.01257-06
  • Cologna, R., Armstrong, P. M., & Rico-Hesse, R. (2005). Selection for virulent dengue viruses occurs in humans and mosquitoes. Journal of Virology, 79(2), 853–859. https://doi.org/10.1128/JVI.79.2.853-859.2005
  • Coronel-Martínez, D. L., Park, J., López-Medina, E., Capeding, M. R., Bonfanti, A. A. C., Montalbán, M. C., Ramírez, I., Gonzales, M. L. A., DiazGranados, C. A., Zambrano, B., Dayan, G., Savarino, S., Chen, Z., Wang, H., Sun, S., Bonaparte, M., Rojas, A., Ramírez, J. C., Verdan, M. A., & Noriega, F. (2021). Immunogenicity and safety of simplified vaccination schedules for the CYD-TDV dengue vaccine in healthy individuals aged 9–50 years (CYD65): A randomised, controlled, phase 2, non-inferiority study. The Lancet Infectious Diseases, 21(4), 517–528. https://doi.org/10.1016/S1473-3099(20)30767-2
  • Coudeville, L., Baurin, N., L’Azou, M., & Guy, B. (2016). Potential impact of dengue vaccination: Insights from two large-scale phase III trials with a tetravalent dengue vaccine. Vaccine: X, 34(50), 6426–6435. https://doi.org/10.1016/j.vaccine.2016.08.050
  • Cruz-Oliveira, C., Freire, J. M., Conceição, T. M., Higa, L. M., Castanho, M. A., & Da Poian, A. T. (2015). Receptors and routes of dengue virus entry into the host cells. FEMS Microbiology Reviews, 39(2), 155–170. https://doi.org/10.1093/femsre/fuu004
  • Danis-Lozano, R., Rodríguez, M. H., & Hernández-Avila, M. (2002). Gender-related family head schooling and aedes aegypti larval breeding risk in southern Mexico. Salud Pública de México, 44(3), 237–242. https://doi.org/10.1590/S0036-36342002000300007
  • Danko, J. R., Kochel, T., Teneza-Mora, N., Luke, T. C., Raviprakash, K., Sun, P., Simmons, M., Moon, J. E., De La Barrera, R., Martinez, L. J., Thomas, S. J., Kenney, R. T., Smith, L., & Porter, K. R. (2018). Safety and immunogenicity of a tetravalent dengue DNA vaccine administered with a cationic lipid-based adjuvant in a phase 1 clinical trial. The American Journal of Tropical Medicine and Hygiene, 98(3), 849–856. https://doi.org/10.4269/ajtmh.17-0416
  • de Silva, A. (2023). Safety of dengue vaccine? Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 76(2), 371–372. https://doi.org/10.1093/cid/ciac690
  • de Souza, L. J., de Azevedo, J., Kohler, L. I. A., Barros, L. D. F., Lima, M. A., Silva, E. M., Mohana-Borges, R., Nunes, P. C. G., & Paes, M. V. (2017). Evidence of dengue virus replication in a non-traumatic spleen rupture case. Archives of Virology, 162(11), 3535–3539. https://doi.org/10.1007/s00705-017-3527-6
  • Deng, S. Q., Yang, X., Wei, Y., Chen, J. T., Wang, X. J., & Peng, H. J. (2020). A Review on Dengue Vaccine Development. Vaccines (Basel), 8(1), 63. https://doi.org/10.3390/vaccines8010063
  • Dengue Virus Net. (2023). History and origin of dengue virus. Retrieved April 17, 2023, from http://www.denguevirusnet.com/history-of-dengue.html
  • Dewi, B. E., Takasaki, T., & Kurane, I. (2004). In vitro assessment of human endothelial cell permeability: Effects of inflammatory cytokines and dengue virus infection. Journal of Virological Methods, 121(2), 171–180. https://doi.org/10.1016/j.jviromet.2004.06.013
  • Diamond, M. S., Edgil, D., Roberts, T. G., Lu, B., & Harris, E. (2000). Infection of human cells by dengue virus is modulated by different cell types and viral strains. Journal of Virology, 74(17), 7814–7823. https://doi.org/10.1128/JVI.74.17.7814-7823.2000
  • Diaz, C., Lin, L., Martinez, L. J., Eckels, K. H., Campos, M., Jarman, R. G., De La Barrera, R., Lepine, E., Toussaint, J. F., Febo, I., Innis, B. L., Thomas, S. J., & Schmidt, A. C. (2018). Phase I randomized study of a tetravalent dengue purified inactivated vaccine in healthy adults from puerto rico. The American Journal of Tropical Medicine and Hygiene, 98(5), 1435–1443. https://doi.org/10.4269/ajtmh.17-0627
  • Drexler, I., Staib, C., & Sutter, G. (2004). Modified vaccinia virus Ankara as antigen delivery system: How can we best use its potential? Current Opinion in Biotechnology, 15(6), 506–512. https://doi.org/10.1016/j.copbio.2004.09.001
  • Duangkhae, P., Erdos, G., Ryman, K. D., Watkins, S. C., Falo, L. D., Marques, E. T., & Barratt-Boyes, S. M. (2018). Interplay between keratinocytes and myeloid cells drives dengue virus spread in human skin. Journal of Investigative Dermatology, 138(3), 618–626. https://doi.org/10.1016/j.jid.2017.10.018
  • Durbin, A. P. (2020). Historical discourse on the development of the live attenuated tetravalent dengue vaccine candidate TV003/TV005. Current Opinion in Virology, 43, 79–87. https://doi.org/10.1016/j.coviro.2020.09.005
  • Eckels, K. H., Dubois, D. R., Putnak, R., Vaughn, D. W., Innis, B. L., Henchal, E. A., & Hoke, C. H. (2003). Modification of dengue virus strains by passage in primary dog kidney cells: Preparation of candidate vaccines and immunization of monkeys. The American Journal of Tropical Medicine and Hygiene, 69(6 Suppl), 12–16. https://doi.org/10.4269/ajtmh.2003.69.12
  • Elling, R., Henneke, P., Hatz, C., & Hufnagel, M. (2013). Dengue fever in children: Where are we now? The Pediatric Infectious Disease Journal, 32(9), 1020–1022. https://doi.org/10.1097/INF.0b013e31829fd0e9
  • Engering, A., van Vliet, S. J., Hebeda, K., Jackson, D. G., Prevo, R., Singh, S. K., Geijtenbeek, T. B., van Krieken, H., & van Kooyk, Y. (2004). Dynamic populations of dendritic cell-specific ICAM-3 grabbing nonintegrin-positive immature dendritic cells and liver/lymph node-specific ICAM-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes. The American Journal of Pathology, 164(5), 1587–1595. https://doi.org/10.1016/S0002-9440(10)63717-0
  • España, G., Leidner, A. J., Waterman, S. H., Perkins, T. A., & Shepard, D. S. (2021). Cost-effectiveness of dengue vaccination in puerto rico. PLoS Neglected Tropical Diseases, 15(7), e0009606. https://doi.org/10.1371/journal.pntd.0009606
  • Etemad, B., Batra, G., Raut, R., Dahiya, S., Khanam, S., Swaminathan, S., & Khanna, N. (2008). An envelope domain III-based chimeric antigen produced in Pichia pastoris elicits neutralizing antibodies against all four dengue virus serotypes. The American Journal of Tropical Medicine and Hygiene, 79(3), 353–363. https://doi.org/10.4269/ajtmh.2008.79.353
  • European Medicines Agency. (2022). Qdenga. Retrieved July 17, 2023, from https://www.ema.europa.eu/en/medicines/human/EPAR/qdenga
  • Falconar, A. K. I. (1997). The dengue virus nonstructural-1 protein (NS1) generatesantibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to humanendothelial cells: Potential implications in haemorrhagic fever pathogenesis. Archives of Virology, 142(5), 897–916. https://doi.org/10.1007/s007050050127
  • Fatima, K., & Syed, N. I. (2018). Dengvaxia controversy: Impact on vaccine hesitancy. Journal of Global Health, 8(2), 010312. https://doi.org/10.7189/jogh.08.020312
  • Fernandez, S., Thomas, S. J., De La Barrera, R., Im-Erbsin, R., Jarman, R. G., Baras, B., Toussaint, J. F., Mossman, S., Innis, B. L., Schmidt, A., Malice, M. P., Festraets, P., Warter, L., Putnak, J. R., & Eckels, K. H. (2015). An adjuvanted, tetravalent dengue virus purified inactivated vaccine candidate induces long-lasting and protective antibody responses against dengue challenge in rhesus macaques. The American Journal of Tropical Medicine and Hygiene, 92(4), 698–708. https://doi.org/10.4269/ajtmh.14-0268
  • Feroza, B., Sandeepan, D., Debica, M., Sweety, M., & Upasana, R. (2019). Insight into the tropism of dengue virus in humans. Viruses, 11(12), 1136. https://doi.org/10.3390/v11121136
  • Ferreira, R. A. X., de Oliveira, S. A., Gandini, M., da Cunha Ferreira, L., Correa, G., Abiraude, F. M., Reid, M. M., Cruz, O. G., & Kubelka, C. F. (2015). Circulating cytokines and chemokines associated with plasma leakage and hepatic dysfunction in Brazilian children with dengue fever. Acta Tropica, 149, 138–147. https://doi.org/10.1016/j.actatropica.2015.04.023
  • Filomatori, C. V., Lodeiro, M. F., Alvarez, D. E., Samsa, M. M., Pietrasanta, L., & Gamarnik, A. V. (2006). A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes & Development, 20(16), 2238–2249. https://doi.org/10.1101/gad.1444206
  • Flamand, M., Megret, F., Mathieu, M., Lepault, J., Rey, F. A., & Deubel, V. (1999). Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. Journal of Virology, 73(7), 6104–6110. https://doi.org/10.1128/JVI.73.7.6104-6110.1999
  • Funk, A., Truong, K., Nagasaki, T., Torres, S., Floden, N., Balmori Melian, E., Dmonds, J., Dong, H., Shi, P. Y., & Khromykh, A. A. (2010). RNA structures required for production of subgenomic flavivirus RNA. Journal of Virology, 84(21), 11407–11417. https://doi.org/10.1128/JVI.01159-10
  • Gagnon, S. J., Ennis, F. A., & Rothman, A. L. (1999). Bystander target cell lysis and cytokine production by dengue virus-specific human CD4+ cytotoxic T-lymphocyte clones. Journal of Virology, 73(5), 3623–3629. https://doi.org/10.1128/JVI.73.5.3623-3629.1999
  • Gainor, E. M., Harris, E., & LaBeaud, A. D. (2022). Uncovering the burden of dengue in Africa: Considerations on magnitude, misdiagnosis, and ancestry. Viruses, 14(2), 233. https://doi.org/10.3390/v14020233
  • Gebhard, L. G., Filomatori, C. V., & Gamarnik, A. V. (2011). Functional RNA elements in the dengue virus genome. Viruses, 3(9), 1739–1756. https://doi.org/10.3390/v3091739
  • Gil, L., Marcos, E., Izquierdo, A., Lazo, L., Valdés, I., Ambala, P., Ochola, L., Hitler, R., Suzarte, E., Álvarez, M., Kimiti, P., Ndung’u, J., Kariuki, T., Guzmán, M. G., Guillén, G., & Hermida, L. (2015). The protein DIIIC-2, aggregated with a specific oligodeoxynucleotide and adjuvanted in alum, protects mice and monkeys against DENV-2. Immunology and Cell Biology, 93(1), 57–66. https://doi.org/10.1038/icb.2014.63
  • Green, A. M., Beatty, P. R., Hadjilaou, A., & Harris, E. (2014). Innate immunity to dengue virus infection and subversion of antiviral responses. Journal of Molecular Biology, 426(6), 1148–1160. https://doi.org/10.1016/j.jmb.2013.11.023
  • Green, S., & Rothman, A. (2006). Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Current Opinion in Infectious Diseases, 19(5), 429–436. https://doi.org/10.1097/01.qco.0000244047.31135.fa
  • Gritsun, T. S., & Gould, E. A. (2006). Direct repeats in the 3′ untranslated regions of mosquito-borne flaviviruses: Possible implications for virus transmission. Journal of General Virology, 87(11), 3297–3305. https://doi.org/10.1099/vir.0.82235-0
  • Gubler, D. J. (1998). The global pandemic of dengue/dengue haemorrhagic fever: Current status and prospects for the future. Annals of the Academy of Medicine, Singapore, 27(2), 227–234.
  • Guirakhoo, F., Arroyo, J., Pugachev, K. V., Miller, C., Zhang, Z. X., Weltzin, R., Georgakopoulos, K., Catalan, J., Ocran, S., Soike, K., & Monath, T. P. (2001). Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. Journal of Virology, 75(16), 7290–7304. https://doi.org/10.1128/JVI.75.16.7290-7304.2001
  • Gupta, S., & Kumar, A. (2022). Design of an epitope-based peptide vaccine against dengue virus isolate from eastern uttar pradesh, India. International Journal of Peptide Research and Therapeutics, 28(3), 91. https://doi.org/10.1007/s10989-022-10402-4
  • Gutsche, I., Coulibaly, F., Voss, J. E., Salmon, J., d’Alayer, J., Ermonval, M., Larquet, E., Charneau, P., Krey, T., Mégret, F., & Flamand, M. (2011). Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proceedings of the National Academy of Sciences, 108(19), 8003–8008. https://doi.org/10.1073/pnas.1017338108
  • Guzman, M. G., Gubler, D. J., Izquierdo, A., Martinez, E., & Halstead, S. B. (2016). Dengue infection. Nature Reviews Disease Primers, 2(1), 1–25. https://doi.org/10.1038/nrdp.2016.55
  • Guzman, M. G., Halstead, S. B., Artsob, H., Buchy, P., Farrar, J., Gubler, D. J., Hunsperger, E., Kroeger, A., Margolis, H. S., Martínez, E., Nathan, M. B., Pelegrino, J. L., Simmons, C., Yoksan, S., & Peeling, R. W. (2010). Dengue: A continuing global threat. Nature Reviews Microbiology, 8(12), S7–S16. https://doi.org/10.1038/nrmicro2460
  • Hacker, K., White, L., & De Silva, A. M. (2009). N-linked glycans on dengue viruses grown in mammalian and insect cells. The Journal of General Virology, 90(Pt 9), 2097. https://doi.org/10.1099/vir.0.012120-0
  • Hadinegoro, S. R., Arredondo-García, J. L., Capeding, M. R., Deseda, C., Chotpitayasunondh, T., Dietze, R., Muhammad Ismail, H. I., Reynales, H., Limkittikul, K., Rivera-Medina, D. M., Tran, H. N., Bouckenooghe, A., Chansinghakul, D., Cortés, M., Fanouillere, K., Forrat, R., Frago, C., Gailhardou, S. … CYD-TDV Dengue Vaccine Working Group. (2015). Efficacy and long-term safety of a Dengue Vaccine in Regions of Endemic disease. The New England Journal of Medicine, 373(13), 1195–1206.
  • Hahn, C. S., Hahn, Y. S., Rice, C. M., Lee, E., Dalgarno, L., Strauss, E. G., & Strauss, J. H. (1987). Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. Journal of Molecular Biology, 198(1), 33–41. https://doi.org/10.1016/0022-2836(87)90455-4
  • Hajra, D., Datey, A., & Chakravortty, D. (2021). Attenuation methods for live vaccines. Methods in Molecular Biology, 2183, 331–356. https://doi.org/10.1007/978-1-0716-0795-4_17
  • Hall, W. C., Crowell, T. P., Watts, D. M., Barros, V. L., Kruger, H., Pinheiro, F., & Peters, C. J. (1991). Demonstration of yellow fever and dengue antigens in formalin-fixed paraffin-embedded human liver by immunohistochemical analysis. The American Journal of Tropical Medicine and Hygiene, 45(4), 408–417. https://doi.org/10.4269/ajtmh.1991.45.408
  • Halstead, S. B. (2003). Neutralization and antibody-dependent enhancement of dengue viruses. Advances in Virus Research, 60, 421–467. https://doi.org/10.1016/s0065-3527(03)60011-4
  • Halstead, S. B. (2017). Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. Vaccine: X, 35(47), 6355–6358. https://doi.org/10.1016/j.vaccine.2017.09.089
  • Halstead, S. B., & O’rourke, E. J. (1977). Antibody-enhanced dengue virus infection in primate leukocytes. Nature, 265(5596), 739–741. https://doi.org/10.1038/265739a0
  • Henchal, E. A., & Putnak, J. R. (1990). The dengue viruses. Clinical Microbiology Reviews, 3(4), 376–396. https://doi.org/10.1128/CMR.3.4.376
  • Ho, L. J., Wang, J. J., Shaio, M. F., Kao, C. L., Chang, D. M., Han, S. W., & Lai, J. H. (2001). Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. Journal of Immunology, 166(3), 1499–1506. https://doi.org/10.4049/jimmunol.166.3.1499
  • Holmes, E. C., & Twiddy, S. S. (2003). The origin, emergence and evolutionary genetics of dengue virus. Infection, Genetics and Evolution, 3(1), 19–28. https://doi.org/10.1016/S1567-1348(03)00004-2
  • Hou, J., Ye, W., & Chen, J. (2022). Current development and challenges of tetravalent live-attenuated dengue vaccines. Frontiers in Immunology, 13, 840104. https://doi.org/10.3389/fimmu.2022.840104
  • Huang, C. Y., Butrapet, S., Tsuchiya, K. R., Bhamarapravati, N., Gubler, D. J., & Kinney, R. M. (2003). Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. Journal of Virology, 77(21), 11436–11447. https://doi.org/10.1128/jvi.77.21.11436-11447.2003
  • Ibrahim, F., Taib, M. N., Abas, W. A. B. W., Guan, C. C., & Sulaiman, S. (2005). A novel dengue fever (DF) and dengue haemorrhagic fever (DHF) analysis using artificial neural network (ANN). Computer Methods and Programs in Biomedicine, 79(3), 273–281. https://doi.org/10.1016/j.cmpb.2005.04.002
  • Iglesias, N. G., Filomatori, C. V., & Gamarnik, A. V. (2011). The F1 motif of dengue virus polymerase NS5 is involved in promoter-dependent RNA synthesis. Journal of Virology, 85(12), 5745–5756. https://doi.org/10.1128/JVI.02343-10
  • Islam, M. T., Quispe, C., Herrera-Bravo, J., Sarkar, C., Sharma, R., Garg, N., Fredes, L. I., Martorell, M., Alshehri, M. M., Sharifi-Rad, J., Daştan, S. D., Calina, D., Alsafi, R., Alghamdi, S., El-Saber Batiha, G., Cruz-Martins, N., & Gonçalves de Albuquerque, C. F. (2021). Production, transmission, pathogenesis, and control of dengue virus: A literature-based undivided perspective. BioMed Research International, 2021, 1–23. https://doi.org/10.1155/2021/4224816
  • Jaiswal, S., Khanna, N., & Swaminathan, S. (2003). Replication-defective adenoviral vaccine vector for the induction of immune responses to dengue virus type 2. Journal of Virology, 77(23), 12907–12913. https://doi.org/10.1128/jvi.77.23.12907-12913.2003
  • Janani, M. K., Durgadevi, P., Padmapriya, J., Malathi, J., Kulandai, L. T., & Madhavan, H. N. R. (2018). First report on detection of dengue virus in the donor cornea. Cornea, 37(12), 1586–1589. https://doi.org/10.1097/ICO.0000000000001706
  • Jessie, K., Fong, M. Y., Devi, S., Lam, S. K., & Wong, K. T. (2004). Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. The Journal of Infectious Diseases, 189(8), 1411–1418. https://doi.org/10.1086/383043
  • Jiang, D., Weidner, J. M., Qing, M., Pan, X. B., Guo, H., Xu, C., Zhang, X., Birk, A., Chang, J., Shi, P. Y., Block, T. M., & Guo, J. T. (2010). Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections. Journal of Virology, 84(16), 8332–8341. https://doi.org/10.1128/JVI.02199-09
  • Kallas, E. G., Precioso, A. R., Palacios, R., Thomé, B., Braga, P. E., Vanni, T., Campos, L. M. A., Ferrari, L., Mondini, G., da Graça Salomão, M., da Silva, A., Espinola, H. M., Do Prado Santos, J., Santos, C. L. S., Timenetsky, M. D. C. S. T., Miraglia, J. L., Gallina, N. M. F., Weiskopf, D. … Kalil, J. (2020). Safety and immunogenicity of the tetravalent, live-attenuated dengue vaccine butantan-DV in adults in Brazil: A two-step, double-blind, randomised placebo-controlled phase 2 trial. The Lancet Infectious Diseases, 20(7), 839–850. https://doi.org/10.1016/S1473-3099(20)30023-2
  • Kangwanpong, D., Bhamarapravati, N., & Lucia, H. L. (1995). Diagnosing dengue virus infection in archived autopsy tissues by means of the in situ PCR method: A case report. Clinical and Diagnostic Virology, 3(2), 165–172. https://doi.org/10.1016/0928-0197(94)00032-P
  • Kao, Y. T., Lai, M. M., & Yu, C. Y. (2018). How dengue virus circumvents innate immunity. Frontiers in Immunology, 9, 2860. https://doi.org/10.3389/fimmu.2018.02860
  • Katzelnick, L. C., Gresh, L., Halloran, M. E., Mercado, J. C., Kuan, G., Gordon, A., Balmaseda, A., & Harris, E. (2017). Antibody-dependent enhancement of severe dengue disease in humans. Science, 358(6365), 929–932. https://doi.org/10.1126/science.aan6836
  • Kaushik, V., G, S. K., Gupta, L. R., Kalra, U., Shaikh, A. R., Cavallo, L., & Chawla, M. (2022). Immunoinformatics aided design and in-vivo validation of a cross-reactive peptide based multi-epitope vaccine targeting multiple serotypes of dengue virus. Frontiers in Immunology, 13, 865180. https://doi.org/10.3389/fimmu.2022.865180
  • Khan, K. H. (2013). DNA vaccines: roles against diseases. Germs, 3(1), 26–35. https://doi.org/10.11599/germs.2013.1034
  • Khetarpal, N., & Khanna, I. (2016). Dengue fever: Causes, complications, and vaccine strategies. Journal of Immunology Research, 2016, 1–14. https://doi.org/10.1155/2016/6803098
  • Khetarpal, N., Shukla, R., Rajpoot, R. K., Poddar, A., Pal, M., Swaminathan, S., Arora, U., & Khanna, N. (2017). Recombinant dengue virus 4 envelope glycoprotein virus-like particles derived from pichia pastoris are capable of eliciting homotypic domain III-Directed neutralizing antibodies. The American Journal of Tropical Medicine and Hygiene, 96(1), 126–134. https://doi.org/10.4269/ajtmh.16-0503
  • Kim, M. Y., Van Dolleweerd, C., Copland, A., Paul, M. J., Hofmann, S., Webster, G. R., Julik, E., Ceballos-Olvera, I., Reyes-Del Valle, J., Yang, M. S., Jang, Y. S., Reljic, R., & Ma, J. K. (2017). Molecular engineering and plant expression of an immunoglobulin heavy chain scaffold for delivery of a dengue vaccine candidate. Plant Biotechnology Journal, 15(12), 1590–1601. https://doi.org/10.1111/pbi.12741
  • King, C. A., Anderson, R., & Marshall, J. S. (2002). Dengue virus selectively induces human mast cell chemokine production. Journal of Virology, 76(16), 8408–8419. https://doi.org/10.1128/JVI.76.16.8408-8419.2002
  • King, C. A., Brent, D., Grupp-Phelan, J., Shenoi, R., Page, K., Mahabee-Gittens, E. M., Chernick, L. S., Melzer-Lange, M., Rea, M., McGuire, T. C., Littlefield, A., Casper, T. C., & Pediatric Emergency Care Applied Research Network. (2020). Five profiles of adolescents at elevated risk for suicide attempts: Differences in mental health service use. Journal of the American Academy of Child & Adolescent Psychiatry, 59(9), 1058–1068. https://doi.org/10.1016/j.jaac.2019.10.015
  • Klaitong, P., & Smith, D. R. (2021). Roles of non-structural protein 4A in flavivirus infection. Viruses, 13(10), 2077. https://doi.org/10.3390/v13102077
  • Kuczera, D., Assolini, J. P., Tomiotto-Pellissier, F., Pavanelli, W. R., & Silveira, G. F. (2018). Highlights for dengue immunopathogenesis: Antibody-dependent enhancement, cytokine storm, and beyond. Journal of Interferon & Cytokine Research, 38(2), 69–80. https://doi.org/10.1089/jir.2017.0037
  • Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R., Strauss, E. G., & Strauss, J. H. (2002). Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion. Cell, 108(5), 717–725. https://doi.org/10.1016/s0092-8674(02)00660-8
  • Kularatne, S. A. M., Rajapakse, M. M., Ralapanawa, U., Waduge, R., Pathirage, L. P. M. M. K., & Rajapakse, R. P. V. J. (2018). Heart and liver are infected in fatal cases of dengue: Three PCR based case studies. BMC Infectious Diseases, 18(1), 1–6. https://doi.org/10.1186/s12879-018-3603-x
  • Kurane, I., Brinton, M. A., Samson, A. L., & Ennis, F. A. (1991). Dengue virus-specific, human CD4+ CD8-cytotoxic T-cell clones: Multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones. Journal of Virology, 65(4), 1823–1828. https://doi.org/10.1128/jvi.65.4.1823-1828.1991
  • Kurane, I., Matsutani, T., Suzuki, R., Takasaki, T., Kalayanarooj, S., Green, S., Rothman, A. L., & Ennis, F. A. (2011). T-cell responses to dengue virus in humans. Tropical Medicine and Health, 39(4), S45–S51. https://doi.org/10.2149/tmh.2011-S09
  • Kurane, I., Zeng, L., Brinton, M. A., & Ennis, F. A. (1998). Definition of an epitope on NS3 recognized by human CD4+ cytotoxic T lymphocyte clones cross-reactive for dengue virus types 2, 3, and 4. Virology, 240(2), 169–174. https://doi.org/10.1006/viro.1997.8925
  • Lanteri, M. C., & Busch, M. P. (2012). Dengue in the context of “safe blood” and global epidemiology: To screen or not to screen? Transfusion, 52(8), 1634–1639. https://doi.org/10.1111/j.1537-2995.2012.03747.x
  • Laureti, M., Narayanan, D., Rodriguez-Andres, J., Fazakerley, J. K., & Kedzierski, L. (2018). Flavivirus receptors: Diversity, identity, and cell entry. Frontiers in Immunology, 9, 2180. https://doi.org/10.3389/fimmu.2018.02180
  • Lee, V. J., Lye, D. C., Sun, Y., Fernandez, G., Ong, A., & Leo, Y. S. (2008). Predictive value of simple clinical and laboratory variables for dengue hemorrhagic fever in adults. Journal of Clinical Virology, 42(1), 34–39. https://doi.org/10.1016/j.jcv.2007.12.017
  • Leitmeyer, K. C., Vaughn, D. W., Watts, D. M., Salas, R., Villalobos, I., de Chacon, Ramos, C., & Rico-Hesse, R. (1999). Dengue virus structural differences that correlate with pathogenesis. Journal of Virology, 73(6), 4738–4747. https://doi.org/10.1128/JVI.73.6.4738-4747.1999
  • Li, H., Clum, S., You, S., Ebner, K. E., & Padmanabhan, R. (1999). The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. Journal of Virology, 73(4), 3108–3116. https://doi.org/10.1128/JVI.73.4.3108-3116.1999
  • Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H., & Murthy, A. K. (2014). Peptide vaccine: Progress and challenges. Vaccines (Basel), 2(3), 515–536. https://doi.org/10.3390/vaccines2030515
  • Libraty, D. H., Endy, T. P., Houng, H. S. H., Green, S., Kalayanarooj, S., Suntayakorn, S., Chansiriwongs, W., Vaughn, D. W., Nisalak, A., Ennis, F. A., & Rothman, A. L. (2002). Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. The Journal of Infectious Diseases, 185(9), 1213–1221. https://doi.org/10.1086/340365
  • Limon–Flores, A. Y., Perez–Tapia, M., Estrada–Garcia, I., Vaughan, G., Escobar–Gutierrez, A., Calderon–Amador, J., Herrera-Rodriguez, S. E., Brizuela-Garcia, A., Heras-Chavarria, M., Flores-Langarica, A., Cedillo-Barron, L., & Flores–Romo, L. (2005). Dengue virus inoculation to human skin explants: An effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells. International Journal of Experimental Pathology, 86(5), 323–334. https://doi.org/10.1111/j.0959-9673.2005.00445.x
  • Lin, C. F., Wan, S. W., Chen, M. C., Lin, S. C., Cheng, C. C., Chiu, S. C., Hsiao, Y. L., Lei, H. Y., Liu, H. S., Yeh, T. M., & Lin, Y. S. (2008). Liver injury caused by antibodies against dengue virus nonstructural protein 1 in a murine model. Laboratory Investigation, 88(10), 1079–1089. https://doi.org/10.1038/labinvest.2008.70
  • Lin, C. H. A. O., Amberg, S. M., Chambers, T. J., & Rice, C. M. (1993). Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B-3 proteinase is a prerequisite for processing at the downstream 4A/4B signalase site. Journal of Virology, 67(4), 2327–2335. https://doi.org/10.1128/jvi.67.4.2327-2335.1993
  • Lin, L., Koren, M. A., Paolino, K. M., Eckels, K. H., De La Barrera, R., Friberg, H., Currier, J. R., Gromowski, G. D., Aronson, N. E., Keiser, P. B., Sklar, M. J., Sondergaard, E. L., Jasper, L. E., Endy, T. P., Jarman, R. G., & Thomas, S. J. (2021). Immunogenicity of a live-attenuated dengue vaccine using a heterologous prime-boost strategy in a phase 1 randomized clinical trial. The Journal of Infectious Diseases, 223(10), 1707–1716. https://doi.org/10.1093/infdis/jiaa603
  • Lin, L., Lyke, K. E., Koren, M., Jarman, R. G., Eckels, K. H., Lepine, E., McArthur, M. A., Currier, J. R., Friberg, H., Moris, P., Keiser, P. B., De La Barrera, R., Vaughn, D. W., Paris, R. M., Thomas, S. J., & Schmidt, A. C. (2020). Safety and immunogenicity of an AS03. The American Journal of Tropical Medicine and Hygiene, 103(1), 132–141. https://doi.org/10.4269/ajtmh.19-0738
  • Liu, C. C., Huang, K. J., Huang, M. C., Lin, J. J., Wang, S. M., Liu, J. J., Tsai, J. J., Huang, J. H., Lin, Y. S., Liu, H. S., Yeh, T. M., & Lei, H. Y. (2008). High case-fatality rate of adults with dengue hemorrhagic fever during an outbreak in non-endemic Taiwan: Risk factors for dengue-infected elders. American Journal of Infectious Diseases, 4(1), 10–17. https://doi.org/10.3844/ajidsp.2008.10.17
  • Liu, H., Chiou, S. S., & Chen, W. J. (2004). Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants and heparan sulfate on the cell surface. Journal of Medical Virology, 72(4), 618–624. https://doi.org/10.1002/jmv.20025
  • Liu, Y., Zhou, J., Yu, Z., Fang, D., Fu, C., Zhu, X., He, Z., Yan, H., & Jiang, L. (2014). Tetravalent recombinant dengue virus-like particles as potential vaccine candidates: Immunological properties. BMC Microbiology, 14(1), 233. https://doi.org/10.1186/s12866-014-0233-3
  • Liu, Z. Y., Li, X. F., Jiang, T., Deng, Y. Q., Ye, Q., Zhao, H., Yu, J. Y., & Qin, C. F. (2016). Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. Elife, 5, e17636. https://doi.org/10.7554/eLife.17636
  • Lobigs, M., Arthur, C. E., Müllbacher, A., & Blanden, R. V. (1994). The flavivirus nonstructural protein NS3 is a dominant source of cytotoxic T cell peptide determinants. Virology, 202(1), 195–201. https://doi.org/10.1006/viro.1994.1335
  • Lodeiro, M. F., Filomatori, C. V., & Gamarnik, A. V. (2009). Structural and functional studies of the promoter element for dengue virus RNA replication. Journal of Virology, 83(2), 993–1008. https://doi.org/10.1128/JVI.01647-08
  • Mackenzie, J. M., Jones, M. K., & Young, P. R. (1996). Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology, 220(1), 232–240. https://doi.org/10.1006/viro.1996.0307
  • Malavige, G. N., Huang, L. C., Salimi, M., Gomes, L., Jayaratne, S. D., Ogg, G. S., & Jin, X. (2012). Cellular and cytokine correlates of severe dengue infection. PLoS One, 7(11), e50387. https://doi.org/10.1371/journal.pone.0050387
  • Malavige, G. N., & Ogg, G. S. (2017). Pathogenesis of vascular leak in dengue virus infection. Immunology, 151(3), 261–269. https://doi.org/10.1111/imm.12748
  • Mallery, D. L., McEwan, W. A., Bidgood, S. R., Towers, G. J., Johnson, C. M., & James, L. C. (2010). Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proceedings of the National Academy of Sciences, 107(46), 19985–19990. https://doi.org/10.1073/pnas.1014074107
  • Mammen, M. P., Lyons, A., Innis, B. L., Sun, W., McKinney, D., Chung, R. C. Y., Ckels, K. H., Putnak, R., Kanesa-Thasan, N., Scherer, J. M., Statler, J., Asher, L. V., Thomas, S. J., & Vaughn, D. W. (2014). Evaluation of dengue virus strains for human challenge studies. Vaccine: X, 32(13), 1488–1494. https://doi.org/10.1016/j.vaccine.2013.12.040
  • Mani, S., Tripathi, L., Raut, R., Tyagi, P., Arora, U., Barman, T., Sood, R., Galav, A., Wahala, W., de Silva, A., Swaminathan, S., & Khanna, N. (2013). Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PloS One, 8(5), e64595. https://doi.org/10.1371/journal.pone.0064595
  • Manoff, S. B., George, S. L., Bett, A. J., Yelmene, M. L., Dhanasekaran, G., Eggemeyer, L., Sausser, M. L., Dubey, S. A., Casimiro, D. R., Clements, D. E., Martyak, T., Pai, V., Parks, D. E., & Coller, B. A. (2015). Preclinical and clinical development of a dengue recombinant subunit vaccine. Vaccine: X, 33(50), 7126–7134. https://doi.org/10.1016/j.vaccine.2015.09.101
  • Manoff, S. B., Sausser, M., Falk Russell, A., Martin, J., Radley, D., Hyatt, D., Roberts, C. C., Lickliter, J., Krishnarajah, J., Bett, A., Dubey, S., Finn, T., & Coller, B. A. (2019). Immunogenicity and safety of an investigational tetravalent recombinant subunit vaccine for dengue: Results of a phase I randomized clinical trial in flavivirus-naïve adults. Human Vaccines & Immunotherapeutics, 15(9), 2195–2204. https://doi.org/10.1080/21645515.2018.1546523
  • Manokaran, G., Finol, E., Wang, C., Gunaratne, J., Bahl, J., Ong, E. Z., Tan, H. C., Sessions, O. M., Ward, A. M., Gubler, D. J., Harris, E., Garcia-Blanco, M. A., & Ooi, E. E. (2015). Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science (New York, NY), 350(6257), 217–221. https://doi.org/10.1126/science.aab3369
  • Markoff, L., Falgout, B., & Chang, A. (1997). A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology, 233(1), 105–117. https://doi.org/10.1006/viro.1997.8608
  • Martina, B. E., Koraka, P., & Osterhaus, A. D. (2009). Dengue virus pathogenesis: An integrated view. Clinical Microbiology Reviews, 22(4), 564–581. https://doi.org/10.1128/CMR.00035-09
  • Mathew, A., & Rothman, A. L. (2008). Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunological Reviews, 225(1), 300–313. https://doi.org/10.1111/j.1600-065X.2008.00678.x
  • Mendoza, R. U., Dayrit, M. M., Alfonso, C. R., & Ong, M. M. A. (2021). Public trust and the COVID-19 vaccination campaign: Lessons from the Philippines as it emerges from the Dengvaxia controversy. The International Journal of Health Planning and Management, 36(6), 2048–2055. https://doi.org/10.1002/hpm.3297
  • Meng, F., Badierah, R. A., Almehdar, H. A., Redwan, E. M., Kurgan, L., & Uversky, V. N. (2015). Unstructural biology of the dengue virus proteins. The FEBS Journal, 282(17), 3368–3394. https://doi.org/10.1111/febs.13349
  • Miagostovich, M. P., Ramos, R. G., Nicol, A. F., Nogueira, R. M., Cuzzi-Maya, T., Oliveira, A. V., Marchevsky, R. S., Mesquita, R. P., & Schatzmayr, H. G. (1997). Retrospective study on dengue fatal cases. Clinical Neuropathology, 16(4), 204–208.
  • Miller, S., Kastner, S., Krijnse-Locker, J., Buhler, S., & Bartenschlager, R. (2007). The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. Journal of Biological Chemistry, 282(12), 8873–8882. https://doi.org/10.1074/jbc.M609919200
  • Miller, S., & Krijnse-Locker, J. (2008). Modification of intracellular membrane structures for virus replication. Nature Reviews Microbiology, 6(5), 363–374. https://doi.org/10.1038/nrmicro1890
  • Modhiran, N., Watterson, D., Muller, D. A., Panetta, A. K., Sester, D. P., Liu, L., Hume, D. A., Stacey, K. J., & Young, P. R. (2015). Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Science Translational Medicine, 7(304), ra304142. https://doi.org/10.1126/scitranslmed.aaa3863
  • Modis, Y., Ogata, S., Clements, D., & Harrison, S. C. (2003). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proceedings of the National Academy of Sciences, 100(12), 6986–6991. https://doi.org/10.1073/pnas.0832193100
  • Montecillo-Aguado, M. R., Montes-Gómez, A. E., García-Cordero, J., Corzo-Gómez, J., Vivanco-Cid, H., Mellado-Sánchez, G., Muñoz-Medina, J. E., Gutiérrez-Castañeda, B., Santos-Argumedo, L., González-Bonilla, C., & Cedillo-Barrón, L. (2019). Cross-reaction, enhancement, and neutralization activity of dengue virus antibodies against Zika virus: A study in the Mexican population. Journal of Immunology Research, 2019. https://doi.org/10.1155/2019/7239347
  • Morens, D. M., & Halstead, S. B. (1990). Measurement of antibody-dependent infection enhancement of four dengue virus serotypes by monoclonal and polyclonal antibodies. Journal of General Virology, 71(12), 2909–2914. https://doi.org/10.1099/0022-1317-71-12-2909
  • Mota, J., Rico-Hesse, R., & Davis, T. (2011). Dengue virus tropism in humanized mice recapitulates human dengue fever. PloS One, 6(6), e20762. https://doi.org/10.1371/journal.pone.0020762
  • Muller, D. A., Landsberg, M. J., Bletchly, C., Rothnagel, R., Waddington, L., Hankamer, B., & Young, P. R. (2012). Structure of the dengue virus glycoprotein non-structural protein 1 by electron microscopy and single-particle analysis. Journal of General Virology, 93(4), 771–779. https://doi.org/10.1099/vir.0.039321-0
  • Muller, D. A., & Young, P. R. (2013). The flavivirus NS1 protein: Molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Research, 98(2), 192–208. https://doi.org/10.1016/j.antiviral.2013.03.008
  • Murphy, B. R., & Whitehead, S. S. (2011). Immune response to dengue virus and prospects for a vaccine. Annual Review of Immunology, 29(1), 587–619. https://doi.org/10.1146/annurev-immunol-031210-101315
  • Mustafa, M. S., Rasotgi, V., Jain, S., & Gupta, V. (2015). Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Medical Journal Armed Forces India, 71(1), 67–70. https://doi.org/10.1016/j.mjafi.2014.09.011
  • Nature Education. (2014). Dengue viruses. Retrieved April 17, 2023, from https://www.nature.com/scitable/topicpage/dengue-viruses-22400925
  • Navarro–Sanchez, E., Altmeyer, R., Amara, A., Schwartz, O., Fieschi, F., Virelizier, J. L., Arenzana-Seisdedos, F., & Desprès, P. (2003). Dendritic–cell–specific ICAM3–grabbing non–integrin is essential for the productive infection of human dendritic cells by mosquito–cell–derived dengue viruses. EMBO Reports, 4(7), 723–728. https://doi.org/10.1038/sj.embor.embor866
  • Ngono, A. E., Chen, H. W., Tang, W. W., Joo, Y., King, K., Weiskopf, D., Sidney, J., Sette, A., & Shresta, S. (2016). Protective role of cross-reactive CD8 T cells against dengue virus infection. E Bio Medicine, 13, 284–293. https://doi.org/10.1016/j.ebiom.2016.10.006
  • Nguyen, N. L., Kim, J. M., Park, J. A., Park, S. M., Jang, Y. S., Yang, M. S., & Kim, D. H. (2013). Expression and purification of an immunogenic dengue virus epitope using a synthetic consensus sequence of envelope domain III and Saccharomyces cerevisiae. Protein Expression and Purification, 88(2), 235–242. https://doi.org/10.1016/j.pep.2013.01.009
  • Nogueira, M. L., Júnior, N. N., Estofolete, C. F., Terzian, A. B., Guimarães, G. D. F., Zini, N., da Silva, R. A., Silva, G. D., Franco, L. J., Rahal, P., & Ko, A. I. (2018). Adverse birth outcomes associated with Zika virus exposure during pregnancy in São José do Rio Preto, Brazil. Clinical Microbiology and Infection, 24(6), 646–652. https://doi.org/10.1016/j.cmi.2017.11.004
  • Normile, D. (2013). Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science, 342(6157), 415. https://doi.org/10.1126/science.342.6157.415
  • Nunes, P., Nogueira, R., Coelho, J., Rodrigues, F., Salomão, N., José, C., de Carvalho, J., Rabelo, K., de Azeredo, E., Basílio de Oliveira, R., Basílio de Oliveira, C., Dos Santos, F., & Paes, M. (2019). A stillborn multiple organs’ investigation from a maternal DENV-4 infection: Histopathological and inflammatory mediators characterization. Viruses, 11(4), 319. https://doi.org/10.3390/v11040319
  • Oliveira, E. R., Póvoa, T. F., Nuovo, G. J., Allonso, D., Salomão, N. G., Basílio de Oliveira, C. A., Geraldo, L. H. M., Fonseca, C. G., Lima, F. R. S., Mohana-Borges, R., & Paes, M. V. (2017). Dengue fatal cases present virus-specific HMGB1 response in peripheral organs. Scientific Reports, 7(1), 16011. https://doi.org/10.1038/s41598-017-16197-5
  • Oliveira, M., Lert-Itthiporn, W., Cavadas, B., Fernandes, V., Chuansumrit, A., Anunciação, O., Casademont, I., Koeth, F., Penova, M., Tangnararatchakit, K., Khor, C. C., Paul, R., Malasit, P., Matsuda, F., Simon-Lorière, E., Suriyaphol, P., Pereira, L., Sakuntabhai, A., & Althouse, B. (2018). Joint ancestry and association test indicate two distinct pathogenic pathways involved in classical dengue fever and dengue shock syndrome. PLoS Neglected Tropical Diseases, 12(2), e0006202. https://doi.org/10.1371/journal.pntd.0006202
  • Olsthoorn, R. C., & Bol, J. F. (2001). Sequence comparison and secondary structure analysis of the 3′ noncoding region of flavivirus genomes reveals multiple pseudoknots. Rna, 7(10), 1370–1377.
  • Onlamoon, N., Noisakran, S., Hsiao, H. M., Duncan, A., Villinger, F., Ansari, A. A., & Perng, G. C. (2010). Dengue virus–induced hemorrhage in a nonhuman primate model. Blood, the Journal of the American Society of Hematology, 115(9), 1823–1834. https://doi.org/10.1182/blood-2009-09-242990
  • Osorio, J. E., Brewoo, J. N., Silengo, S. J., Arguello, J., Moldovan, I. R., Tary-Lehmann, M., Powell, T. D., Livengood, J. A., Kinney, R. M., Huang, C. Y., & Stinchcomb, D. T. (2011). Efficacy of a tetravalent chimeric dengue vaccine (DENVax) in Cynomolgus macaques. The American Journal of Tropical Medicine and Hygiene, 84(6), 978–987. https://doi.org/10.4269/ajtmh.2011.10-0592
  • Owen, J. A., Punt, J., & Stranford, S. A. (2013). Kuby Immunology. (L. Schultz, Ed., 7 th ed.). WH Freeman
  • Packard, R. M. (2016). The fielding H. Garrison lecture: “break-bone” fever in Philadelphia, 1780: Reflections on the history of disease. Bulletin of the History of Medicine, 90(2), 193–221. https://doi.org/10.1353/bhm.2016.0041
  • Palanichamy Kala, M., St. John, A. L., & Rathore, A. P. (2023). Dengue: Update on clinically relevant therapeutic strategies and vaccines. Current Treatment Options in Infectious Diseases, 15(2), 1–26. https://doi.org/10.1007/s40506-023-00263-w
  • Pang, X., Zhang, R., & Cheng, G. (2017). Progress towards understanding the pathogenesis of dengue hemorrhagic fever. Virologica Sinica, 32(1), 16–22. https://doi.org/10.1007/s12250-016-3855-9
  • Parrish, C. R., Woo, W. S., & Wright, P. J. (1991). Expression of the NS1 gene of dengue virus type 2 using vaccinia virus: Dimerisation of the NS1 glycoprotein. Archives of Virology, 117(3–4), 279–286. https://doi.org/10.1007/BF01310771
  • Perera, R., & Kuhn, R. J. (2008). Structural proteomics of dengue virus. Current Opinion in Microbiology, 11(4), 369–377. https://doi.org/10.1016/j.mib.2008.06.004
  • Płaszczyca, A., Scaturro, P., Neufeldt, C. J., Cortese, M., Cerikan, B., Ferla, S., Brancale, A., Pichlmair, A., Bartenschlager, R., & Randall, G. (2019). A novel interaction between dengue virus nonstructural protein 1 and the NS4A-2K-4B precursor is required for viral RNA replication but not for formation of the membranous replication organelle. PLoS Pathogens, 15(5), e1007736. https://doi.org/10.1371/journal.ppat.1007736
  • Poddar, A., Ramasamy, V., Shukla, R., Rajpoot, R. K., Arora, U., Jain, S. K., Swaminathan, S., & Khanna, N. (2016). Virus-like particles derived from pichia pastoris-expressed dengue virus type 1 glycoprotein elicit homotypic virus-neutralizing envelope domain III-directed antibodies. BMC Biotechnology, 16(1), 50. https://doi.org/10.1186/s12896-016-0280-y
  • Pokidysheva, E., Zhang, Y., Battisti, A. J., Bator-Kelly, C. M., Chipman, P. R., Xiao, C., Gregorio, G. G., Hendrickson, W. A., Kuhn, R. J., & Rossmann, M. G. (2006). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell, 124(3), 485–493. https://doi.org/10.1016/j.cell.2005.11.042
  • Porter, K. R., Ewing, D., Chen, L., Wu, S. J., Hayes, C. G., Ferrari, M., Teneza-Mora, N., & Raviprakash, K. (2012). Immunogenicity and protective efficacy of a vaxfectin-adjuvanted tetravalent dengue DNA vaccine. Vaccine: X, 30(2), 336–341. https://doi.org/10.1016/j.vaccine.2011.10.085
  • Povoa, T. F., Alves, A. M., Oliveira, C. A., Nuovo, G. J., Chagas, V. L., Paes, M. V., & Jin, X. (2014). The pathology of severe dengue in multiple organs of human fatal cases: Histopathology, ultrastructure and virus replication. PloS One, 9(4), e83386. https://doi.org/10.1371/journal.pone.0083386
  • PR Newswire. (2023). Takeda UK Ltd. announces MHRA approval for dengue virus vaccine candidate Qdenga®▼. Retrieved July 13, 2023, from https://www.prnewswire.co.uk/news-releases/takeda-uk-ltd-announces-mhra-approval-for-dengue-virus-vaccine-candidate-qdenga-301739438.html
  • Prasith, N., Keosavanh, O., Phengxay, M., Stone, S., Lewis, H. C., Tsuyuoka, R., Matsui, T., Phongmanay, P., Khamphaphongphane, B., & Arima, Y. (2013). Assessment of gender distribution in dengue surveillance data, the Lao People’s Democratic Republic. Western Pacific Surveillance and Response Journal: WPSAR, 4(2), 17. https://doi.org/10.5365/wpsar.2012.3.4.020
  • Prestwood, T. R., Prigozhin, D. M., Sharar, K. L., Zellweger, R. M., & Shresta, S. (2008). A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. Journal of Virology, 82(17), 8411–8421. https://doi.org/10.1128/JVI.00611-08
  • Putnak, R., Fuller, J., VanderZanden, L., Innis, B. L., & Vaughn, D. W. (2003). Vaccination of rhesus macaques against dengue-2 virus with a plasmid DNA vaccine encoding the viral pre-membrane and envelope genes. The American Journal of Tropical Medicine and Hygiene, 68(4), 469–476. https://doi.org/10.4269/ajtmh.2003.68.469
  • Rachman, A., Harahap, A. R., & Widhyasih, R. M. (2013). The role of anti-dengue virus NS-1 and anti-protein disulfide isomerase antibodies on platelet aggregation in secondary dengue infection. Acta Medica Indonesiana, 45(1), 44–48.
  • Rajpoot, R. K., Shukla, R., Arora, U., Swaminathan, S., & Khanna, N. (2018). Dengue envelope-based ‘four-in-one’ virus-like particles produced using pichia pastoris induce enhancement-lacking, domain III-directed tetravalent neutralising antibodies in mice. Scientific Reports, 8(1), 8643. https://doi.org/10.1038/s41598-018-26904-5
  • Ramanathan, M. P., Chambers, J. A., Pankhong, P., Chattergoon, M., Attatippaholkun, W., Dang, K., Shah, N., & Weiner, D. B. (2006). Host cell killing by the West Nile virus NS2B–NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway. Virology, 345(1), 56–72. https://doi.org/10.1016/j.virol.2005.08.043
  • Ramasamy, V., Arora, U., Shukla, R., Poddar, A., Shanmugam, R. K., White, L. J., Mattocks, M. M., Raut, R., Perween, A., Tyagi, P., de Silva, A. M., Bhaumik, S. K., Kaja, M. K., Villinger, F., Ahmed, R., Johnston, R. E., Swaminathan, S., Khanna, N., & Christofferson, R. C. (2018). A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Neglected Tropical Diseases, 12(1), e0006191. https://doi.org/10.1371/journal.pntd.0006191
  • Ramos, C., Sánchez, G., Pando, R. H., Baquera, J., Hernández, D., Mota, J., Ramos, J., Flores, A., & Llausás, E. (1998). Dengue virus in the brain of a fatal case of hemorrhagic dengue fever: Case report. Journal of Neurovirology, 4(4), 465–468. https://doi.org/10.3109/13550289809114548
  • Rantam, F. A., Purwati, S., Susilowati, H., Sudiana, K., Hendrianto, E., & Soetjipto. (2015). Analysis of recombinant, multivalent dengue virus containing envelope (E) proteins from serotypes-1, -3 and -4 and expressed in baculovirus. Trials in Vaccinology, 4, e75–e79. https://doi.org/10.1016/j.trivac.2013.10.001
  • Raviprakash, K., Ewing, D., Simmons, M., Porter, K. R., Jones, T. R., Hayes, C. G., Stout, R., & Murphy, G. S. (2003). Needle-free Biojector injection of a dengue virus type 1 DNA vaccine with human immunostimulatory sequences and the GM-CSF gene increases immunogenicity and protection from virus challenge in aotus monkeys. Virology, 315(2), 345–352. https://doi.org/10.1016/s0042-6822(03)00542-7
  • Raviprakash, K., Wang, D., Ewing, D., Holman, D. H., Block, K., Woraratanadharm, J., Chen, L., Hayes, C., Dong, J. Y., & Porter, K. (2008). A tetravalent dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus monkeys against all four serotypes of dengue virus. Journal of Virology, 82(14), 6927–6934. https://doi.org/10.1128/JVI.02724-07
  • Reddy, P. B., Pattnaik, P., Tripathi, N. K., Srivastava, A., & Rao, P. V. (2012). Expression, purification and evaluation of diagnostic potential and immunogenicity of dengue virus type 3 domain III protein. Protein and Peptide Letters, 19(5), 509–519. https://doi.org/10.2174/092986612800191026
  • Redoni, M., Yacoub, S., Rivino, L., Giacobbe, D. R., Luzzati, R., & DiBella, S. (2020). Dengue: Status of current and under-development vaccines. Reviews in Medical Virology, 30(4), e2101. https://doi.org/10.1002/rmv.2101
  • Reginald, K., Chan, Y., Plebanski, M., & Poh, C. L. (2018). Development of peptide vaccines in dengue. Current Pharmaceutical Design, 24(11), 1157–1173. https://doi.org/10.2174/1381612823666170913163904
  • Rico-Hesse, R., Harrison, L. M., Salas, R. A., Tovar, D., Nisalak, A., Ramos, C., Boshell, J., de Mesa, M. T., Nogueira, R. M., & Da Rosa, A. T. (1997). Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology, 230(2), 244–251. https://doi.org/10.1006/viro.1997.8504
  • Rivera, L., Biswal, S., Sáez-Llorens, X., Reynales, H., López-Medina, E., Borja-Tabora, C., Bravo, L., Sirivichayakul, C., Kosalaraksa, P., Martinez Vargas, L., & Borkowski, A. (2022). Three-year efficacy and safety of Takeda’s dengue vaccine candidate (TAK-003). Clinical Infectious Diseases, 75(1), 107–117. https://doi.org/10.1093/cid/ciab864
  • Roby, J. A., Pijlman, G. P., Wilusz, J., & Khromykh, A. A. (2014). Noncoding subgenomic flavivirus RNA: Multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses, 6(2), 404–427. https://doi.org/10.3390/v6020404
  • Roehrig, J. T., Bolin, R. A., & Kelly, R. G. (1998). Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology, 246(2), 317–328. https://doi.org/10.1006/viro.1998.9200
  • Rojas, E. M., Díaz-Quijano, F. A., Coronel-Ruiz, C., Martínez-Vega, R. A., Rueda, E., & Villar-Centeno, L. Á. (2007). Correlación entre los niveles de glutatión peroxidasa, un marcador de estrés oxidativo, y la presentación clínica del dengue. Revista Médica de Chile, 135(6), 743–750. https://doi.org/10.4067/S0034-98872007000600008
  • Romero, T. A., Tumban, E., Jun, J., Lott, W. B., & Hanley, K. A. (2006). Secondary structure of dengue virus type 4 3′ untranslated region: Impact of deletion and substitution mutations. Journal of General Virology, 87(11), 3291–3296. https://doi.org/10.1099/vir.0.82182-0
  • Roosendaal, J., Westaway, E. G., Khromykh, A., & Mackenzie, J. M. (2006). Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein. Journal of Virology, 80(9), 4623–4632. https://doi.org/10.1128/JVI.80.9.4623-4632.2006
  • Rothman, A. L. (2011). Immunity to dengue virus: A tale of original antigenic sin and tropical cytokine storms. Nature Reviews Immunology, 11(8), 532–543. https://doi.org/10.1038/nri3014
  • Salazar, M. I., Del Angel, R. M., Lanz-Mendoza, H., Ludert, J. E., & Pando-Robles, V. (2014). The role of cell proteins in dengue virus infection. Journal of Proteomics, 111, 6–15. https://doi.org/10.1016/j.jprot.2014.06.002
  • Salgado, D. M., Eltit, J. M., Mansfield, K., Panqueba, C., Castro, D., Vega, M. R., Xhaja, K., Schmidt, D., Martin, K. J., Allen, P. D., Rodriguez, J. A., Dinsmore, J. H., López, J. R., & Bosch, I. (2010). Heart and skeletal muscle are targets of dengue virus infection. The Pediatric Infectious Disease Journal, 29(3), 238. https://doi.org/10.1097/INF.0b013e3181bc3c5b
  • Salje, H., Cummings, D. A., Rodriguez-Barraquer, I., Katzelnick, L. C., Lessler, J., Klungthong, C., Thaisomboonsuk, B., Nisalak, A., Weg, A., Ellison, D., Macareo, L., Yoon, I. K., Jarman, R., Thomas, S., Rothman, A. L., Endy, T., & Cauchemez, S. (2018). Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature, 557(7707), 719–723. https://doi.org/10.1038/s41586-018-0157-4
  • Sanchez, V., Gimenez, S., Tomlinson, B., Chan, P. K., Thomas, G. N., Forrat, R., Chambonneau, L., Deauvieau, F., Lang, J., & Guy, B. (2006). Innate and adaptive cellular immunity in flavivirus-naïve human recipients of a live-attenuated dengue serotype 3 vaccine produced in vero cells (VDV3). Vaccine: X, 24(23), 4914–4926. https://doi.org/10.1016/j.vaccine.2006.03.066
  • Sankaradoss, A., Jagtap, S., Nazir, J., Moula, S. E., Modak, A., Fialho, J., Iyer, M., Shastri, J. S., Dias, M., Gadepalli, R., Aggarwal, A., Vedpathak, M., Agrawal, S., Pandit, A., Nisheetha, A., Kumar, A., Bordoloi, M., Shafi, M. … Sreekumar, E. (2022). Immune profile and responses of a novel dengue DNA vaccine encoding an EDIII-NS1 consensus design based on Indo-African sequences. Molecular Therapy: The Journal of the American Society of Gene Therapy, 30(5), 2058–2077. https://doi.org/10.1016/j.ymthe.2022.01.013
  • Schlesinger, J. J., Brandriss, M. W., & Walsh, E. E. (1987). Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. Journal of General Virology, 68(3), 853–857. https://doi.org/10.1099/0022-1317-68-3-853
  • Schmidt, A. C., Lin, L., Martinez, L. J., Ruck, R. C., Eckels, K. H., Collard, A., De La Barrera, R., Paolino, K. M., Toussaint, J. F., Lepine, E., Innis, B. L., Jarman, R. G., & Thomas, S. J. (2017). Phase 1 randomized study of a tetravalent dengue purified inactivated vaccine in healthy adults in the United States. The American Journal of Tropical Medicine and Hygiene, 96(6), 1325–1337. https://doi.org/10.4269/ajtmh.16-0634
  • Seet, R. C., Lee, C. Y. J., Lim, E. C., Quek, A. M., Yeo, L. L., Huang, S. H., & Halliwell, B. (2009). Oxidative damage in dengue fever. Free Radical Biology and Medicine, 47(4), 375–380. https://doi.org/10.1016/j.freeradbiomed.2009.04.035
  • Shafie, A. A., Moreira, E. D., DiPasquale, A., Demuth, D., & Yin, J. Y. S. (2023). Knowledge, attitudes and practices toward dengue fever, vector control, and vaccine acceptance among the general population in countries from latin America and Asia Pacific: A cross-sectional study (GEMKAP). Vaccines, 11(3), 575. https://doi.org/10.3390/vaccines11030575
  • Shepard, D. S., & Suaya, J. A. (2010). Cost-effectiveness of a dengue vaccine in Southeast Asia and Panama: Preliminary estimates. In V. R. Preedy & R. R. Watson (Eds.), Handbook of disease burdens and quality of life measures Springer. https://doi.org/10.1007/978-0-387-78665-0_73
  • Shresta, S., Sharar, K. L., Prigozhin, D. M., Beatty, P. R., & Harris, E. (2006). Murine model for dengue virus-induced lethal disease with increased vascular permeability. Journal of Virology, 80(20), 10208–10217. https://doi.org/10.1128/JVI.00062-06
  • Shukla, R., Rajpoot, R. K., Arora, U., Poddar, A., Swaminathan, S., & Khanna, N. (2017). Expressed bivalent virus-like particulate vaccine induces domain III-Focused bivalent neutralizing antibodies without antibody-dependent enhancement. Frontiers in Microbiology, 8, 2644. https://doi.org/10.3389/fmicb.2017.02644
  • Shurtleff, A. C., Beasley, D. W., Chen, J. J., Ni, H., Suderman, M. T., Wang, H., Weaver, S. C., Watts, D. M., & Barrett, A. D. (2001). Genetic variation in the 3′ non-coding region of dengue viruses. Virology, 281(1), 75–87. https://doi.org/10.1006/viro.2000.0748
  • Sierra, B. D. L. C., Kouri, G., & Guzmán, M. G. (2007). Race: A risk factor for dengue hemorrhagic fever. Archives of Virology, 152(3), 533–542. https://doi.org/10.1007/s00705-006-0869-x
  • Silva, R. L., de Silva, A. M., Harris, E., & MacDonald, G. H. (2008). Genetic analysis of dengue 3 virus subtype III 5′ and 3′ non-coding regions. Virus Research, 135(2), 320–325. https://doi.org/10.1016/j.virusres.2008.03.007
  • Simasathien, S., Thomas, S. J., Watanaveeradej, V., Nisalak, A., Barberousse, C., Innis, B. L., Sun, W., Putnak, J. R., Eckels, K. H., Hutagalung, Y., Gibbons, R. V., Zhang, C., De La Barrera, R., Jarman, R. G., Chawachalasai, W., & Mammen, M. P. (2008). Safety and immunogenicity of a tetravalent live-attenuated dengue vaccine in flavivirus naive children. The American Journal of Tropical Medicine and Hygiene, 78(3), 426–433. https://doi.org/10.4269/ajtmh.2008.78.426
  • Simmons, C. P., Chau, T. N. B., Thuy, T. T., Tuan, N. M., Hoang, D. M., Thien, N. T., Lien, L. B., Quy, N. T., Hieu, N. T., Hien, T. T., McElnea, C., Young, P., Whitehead, S., Hung, N., & Farrar, J. (2007). Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. The Journal of Infectious Diseases, 196(3), 416–424. https://doi.org/10.1086/519170
  • Simmons, M., Sun, P., Putnak, R., & Jin, X. (2016). Recombinant dengue 2 virus NS3 helicase protein enhances antibody and T-Cell response of purified inactivated vaccine. PLoS One, 11(4), e0152811. https://doi.org/10.1371/journal.pone.0152811
  • Simon, A. E., & Gehrke, L. (2009). RNA conformational changes in the life cycles of RNA viruses, viroids, and virus-associated RNAs. Biochimica Et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1789(9–10), 571–583. https://doi.org/10.1016/j.bbagrm.2009.05.005
  • Sirohi, D., Chen, Z., Sun, L., Klose, T., Pierson, T. C., Rossmann, M. G., & Kuhn, R. J. (2016). The 3.8 Å resolution cryo-EM structure of Zika virus. Science, 352(6284), 467–470. https://doi.org/10.1126/science.aaf5316
  • Soilleux, E. J., Barten, R., & Trowsdale, J. (2000). Cutting edge: DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13. Journal of Immunology, 165(6), 2937–2942. https://doi.org/10.4049/jimmunol.165.6.2937
  • Somvanshi, P., & Seth, P. K. (2009). Prediction of T cell epitopes for the utility of vaccine development from structural proteins of dengue virus variants using in silico methods. Indian Journal of Biotechnology, 8, 193–198 https://nopr.niscpr.res.in/bitstream/123456789/3882/1/IJBT%208%282%29%20193-198.pdf.
  • Soundravally, R., Sankar, P., Bobby, Z., & Hoti, S. L. (2008). Oxidative stress in severe dengue viral infection: Association of thrombocytopenia with lipid peroxidation. Platelets, 19(6), 447–454. https://doi.org/10.1080/09537100802155284
  • Spagnolo, J. F., Rossignol, E., Bullitt, E., & Kirkegaard, K. (2010). Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays. Rna, 16(2), 382–393. https://doi.org/10.1261/rna.1955410
  • Sridhar, S., Luedtke, A., Langevin, E., Zhu, M., Bonaparte, M., Machabert, T., Savarino, S., Zambrano, B., Moureau, A., Khromava, A., & DiazGranados, C. A. (2018). Effect of dengue serostatus on dengue vaccine safety and efficacy. New England Journal of Medicine, 379(4), 327–340. https://doi.org/10.1056/NEJMoa1800820
  • Srikiatkhachorn, A., Mathew, A., & Rothman, A. L. (2017). Immune-mediated cytokine storm and its role in severe dengue. Seminars in immunopathology, 39(5), 563–574. https://doi.org/10.1007/s00281-017-0625-1
  • St. John, A. L., Abraham, S. N., & Gubler, D. J. (2013). Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis. Nature Reviews Microbiology, 11(6), 420–426. https://doi.org/10.1038/nrmicro3030
  • Stanaway, J. D., Shepard, D. S., Undurraga, E. A., Halasa, Y. A., Coffeng, L. E., Brady, O. J., Hay, S. I., Bedi, N., Bensenor, I. M., Castañeda-Orjuela, C. A., Chuang, T. W., Gibney, K. B., Memish, Z. A., Rafay, A., Ukwaja, K. N., Yonemoto, N., & Murray, C. J. L. (2016). The global burden of dengue: An analysis from the global burden of disease study 2013. The Lancet Infectious Diseases, 16(6), 712–723. https://doi.org/10.1016/S1473-3099(16)00026-8
  • Sun, D. S., King, C. C., Huang, H. S., Shih, Y. L., Lee, C. C., Tsai, W. J., Yu, C. C., & Chang, H. H. (2007). Antiplatelet autoantibodies elicited by dengue virus non–structural protein 1 cause thrombocytopenia and mortality in mice. Journal of Thrombosis and Haemostasis, 5(11), 2291–2299. https://doi.org/10.1111/j.1538-7836.2007.02754.x
  • Sun, J., Li, M., Wang, Y., Hao, P., & Jin, X. (2017). Elaboration of tetravalent antibody responses against dengue viruses using a subunit vaccine comprised of a single consensus dengue envelope sequence. Vaccine: X, 35(46), 6308–6320. https://doi.org/10.1016/j.vaccine.2017.09.063
  • Sun, P., & Kochel, T. J. (2013). The battle between infection and host immune responses of dengue virus and its implication in dengue disease pathogenesis. Scientific World Journal, 2013. https://doi.org/10.1155/2013/843469
  • Sun, W., Cunningham, D., Wasserman, S. S., Perry, J., Putnak, J. R., Eckels, K. H., Vaughn, D. W., Thomas, S. J., Kanesa-Thasan, N., Innis, B. L., & Edelman, R. (2009). Phase 2 clinical trial of three formulations of tetravalent live-attenuated dengue vaccine in flavivirus-naïve adults. Human Vaccines, 5(1), 33–40. https://doi.org/10.4161/hv.5.1.6348
  • Suphatrakul, A., Yasanga, T., Keelapang, P., Sriburi, R., Roytrakul, T., Pulmanausahakul, R., Utaipat, U., Kawilapan, Y., Puttikhunt, C., Kasinrerk, W., Yoksan, S., Auewarakul, P., Malasit, P., Charoensri, N., & Sittisombut, N. (2015). Generation and preclinical immunogenicity study of dengue type 2 virus-like particles derived from stably transfected mosquito cells. Vaccine: X, 33(42), 5613–5622. https://doi.org/10.1016/j.vaccine.2015.08.090
  • Surasombatpattana, P., Hamel, R., Patramool, S., Luplertlop, N., Thomas, F., Desprès, P., Briant, L., Yssel, H., & Missé, D. (2011). Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses. Infection, Genetics and Evolution, 11(7), 1664–1673. https://doi.org/10.1016/j.meegid.2011.06.009
  • Suthar, M. S., Diamond, M. S., & Gale Jr, M. (2013). West Nile virus infection and immunity. Nature Reviews Microbiology, 11(2), 115–128. https://doi.org/10.1038/nrmicro2950
  • Suwantika, A. A., Supadmi, W., Ali, M., Abdulah, R., & Forshey, B. M. (2021). Cost-effectiveness and budget impact analyses of dengue vaccination in Indonesia. PLoS Neglected Tropical Diseases, 15(8), e0009664. https://doi.org/10.1371/journal.pntd.0009664
  • Swaminathan, G., Thoryk, E. A., Cox, K. S., Smith, J. S., Wolf, J. J., Gindy, M. E., Casimiro, D. R., & Bett, A. J. (2016). A tetravalent sub-unit dengue vaccine formulated with ionizable cationic lipid nanoparticle induces significant immune responses in rodents and non-human primates. Scientific Reports, 6(1), 34215. https://doi.org/10.1038/srep34215
  • Swaminathan, S., & Khanna, N. (2013). Experimental Dengue Vaccines. In M. Giese (Ed.), Molecular vaccines. Springer. https://doi.org/10.1007/978-3-7091-1419-3_7
  • Takeda. (2023). Takeda’s QDENGA®▼ (dengue tetravalent vaccine [live, attenuated]) approved in Indonesia for use regardless of prior dengue exposure. Retrieved July 13, 2023 from https://www.takeda.com/newsroom/newsreleases/2022/takedas-qdenga-dengue-tetravalent-vaccine-live-attenuated-approved-in-indonesia-for-use-regardless-of-prior-dengue-exposure
  • Talarico, L. B., Batalle, J. P., Byrne, A. B., Brahamian, J. M., Ferretti, A., García, A. G., Mauri, A., Simonetto, C., Hijano, D. R., Lawrence, A., Acosta, P. L., Caballero, M. T., Paredes Rojas, Y., Ibañez, L. I., Melendi, G. A., Rey, F. A., Damonte, E. B., Harris, E., & Polack, F. P. (2017). The role of heterotypic DENV-specific CD8+ T lymphocytes in an immunocompetent mouse model of secondary dengue virus infection. E Bio Medicine, 20, 202–216. https://doi.org/10.1016/j.ebiom.2017.04.033
  • Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., Eller, M. A., Pattanapanyasat, K., Sarasombath, S., Birx, D. L., Steinman, R. M., Schlesinger, S., & Marovich, M. A. (2003). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. The Journal of Experimental Medicine, 197(7), 823–829. https://doi.org/10.1084/jem.20021840
  • Tatsis, N., & Ertl, H. C. (2004). Adenoviruses as vaccine vectors. Molecular Therapy: The Journal of the American Society of Gene Therapy, 10(4), 616–629. https://doi.org/10.1016/j.ymthe.2004.07.013
  • Thai, K. T., Nishiura, H., Hoang, P. L., Tran, N. T. T., Phan, G. T., Le, H. Q., Tran, B. Q., Nguyen, N. V., de Vries, P. J., & Lopes da Fonseca, B. A. (2011). Age-specificity of clinical dengue during primary and secondary infections. PLoS Neglected Tropical Diseases, 5(6), e1180. https://doi.org/10.1371/journal.pntd.0001180
  • Thomas, S. J., & Yoon, I. K. (2019). A review of Dengvaxia®: Development to deployment. Human Vaccines & Immunotherapeutics, 15(10), 2295–2314. https://doi.org/10.1080/21645515.2019.1658503
  • Thulin, N. K., Brewer, R. C., Sherwood, R., Bournazos, S., Edwards, K. G., Ramadoss, N. S., Taubenberger, J. K., Memoli, M., Gentles, A. J., Jagannathan, P., Zhang, S., Libraty, D. H., & Wang, T. T. (2020). Maternal anti-dengue IgG fucosylation predicts susceptibility to dengue disease in infants. Cell Reports, 31(6), 107642. https://doi.org/10.1016/j.celrep.2020.107642
  • Triantafilou, K., Triantafilou, M., & Dedrick, R. L. (2001). A CD14-independent LPS receptor cluster. Nature Immunology, 2(4), 338–345. https://doi.org/10.1038/86342
  • Tricou, V., Gottardo, R., Egan, M. A., Clement, F., Leroux-Roels, G., Sáez-Llorens, X., Borkowski, A., Wallace, D., & Dean, H. J. (2022). Characterization of the cell-mediated immune response to Takeda’s live-attenuated tetravalent dengue vaccine in adolescents participating in a phase 2 randomized controlled trial conducted in a dengue-endemic setting. Vaccine: X, 40(8), 1143–1151. https://doi.org/10.1016/j.vaccine.2022.01.016
  • Tripathi, L., Mani, S., Raut, R., Poddar, A., Tyagi, P., Arora, U., de Silva, A., Swaminathan, S., & Khanna, N. (2015). Pichia pastoris-expressed dengue 3 envelope-based virus-like particles elicit predominantly domain III-focused high titer neutralizing antibodies. Front Microbiology, 6, 1005. https://doi.org/10.3389/fmicb.2015.01005
  • Tripathi, N. K., & Shrivastava, A. (2017). Evaluation of antibody response against recombinant domain III proteins of dengue virus type 1 and 2. AIMS Microbiology, 3(2), 248–266. https://doi.org/10.3934/microbiol.2017.2.248
  • Tripathi, N. K., & Shrivastava, A. (2018). Recent Developments in Recombinant Protein–Based Dengue Vaccines. Frontiers in Immunology, 9, 1919. https://doi.org/10.3389/fimmu.2018.01919
  • Troupin, A., Shirley, D., Londono-Renteria, B., Watson, A. M., McHale, C., Hall, A., Hartstone-Rose, A., Klimstra, W. B., Gomez, G., & Colpitts, T. M. (2016). A role for human skin mast cells in dengue virus infection and systemic spread. Journal of Immunology, 197(11), 4382–4391. https://doi.org/10.4049/jimmunol.1600846
  • Ubol, S., & Halstead, S. B. (2010). How innate immune mechanisms contribute to antibody-enhanced viral infections. Clinical and Vaccine Immunology, 17(12), 1829–1835. https://doi.org/10.1128/CVI.00316-10
  • Uno, N., & Ross, T. M. (2018). Dengue virus and the host innate immune response. Emerging Microbes & Infections, 7(1), 1–11. https://doi.org/10.1038/s41426-018-0168-0
  • Urakami, A., Ngwe Tun, M. M., Moi, M. L., Sakurai, A., Ishikawa, M., Kuno, S., Ueno, R., Morita, K., Akahata, W., & Pfeiffer, J. K. (2017). An Envelope-Modified Tetravalent Dengue Virus-Like-Particle Vaccine Has Implications for Flavivirus Vaccine Design. Journal of Virology, 91(23). https://doi.org/10.1128/JVI.01181-17
  • Vasilakis, N., Shell, E. J., Fokam, E. B., Mason, P. W., Hanley, K. A., Estes, D. M., & Weaver, S. C. (2007). Potential of ancestral sylvatic dengue-2 viruses to re-emerge. Virology, 358(2), 402–412. https://doi.org/10.1016/j.virol.2006.08.049
  • Versiani, A. F., Astigarraga, R. G., Rocha, E. S., Barboza, A. P., Kroon, E. G., Rachid, M. A., Souza, D. G., Ladeira, L. O., Barbosa-Stancioli, E. F., Jorio, A., & Da Fonseca, F. G. (2017). Multi-walled carbon nanotubes functionalized with recombinant Dengue virus 3 envelope proteins induce significant and specific immune responses in mice. Journal of Nanobiotechnology, 15(1), 26. https://doi.org/10.1186/s12951-017-0259-4
  • Villar, L., Dayan, G. H., Arredondo-García, J. L., Rivera, D. M., Cunha, R., Deseda, C., Reynales, H., Costa, M. S., Morales-Ramírez, J. O., Carrasquilla, G., & Noriega, F. (2015). Efficacy of a tetravalent dengue vaccine in children in Latin America. New England Journal of Medicine, 372(2), 113–123. https://doi.org/10.1056/NEJMoa1411037
  • Wahala, W. M., Huang, C., Butrapet, S., White, L. J., & de Silva, A. M. (2012). Recombinant dengue type 2 viruses with altered e protein domain III epitopes are efficiently neutralized by human immune sera. Journal of Virology, 86(7), 4019–4023. https://doi.org/10.1128/JVI.06871-11
  • Wan, S. W., Lin, C. F., Yeh, T. M., Liu, C. C., Liu, H. S., Wang, S., Ling, P., Anderson, R., Lei, H. Y., & Lin, Y. S. (2013). Autoimmunity in dengue pathogenesis. Journal of the Formosan Medical Association, 112(1), 3–11. https://doi.org/10.1016/j.jfma.2012.11.006
  • Wan, S. W., Lu, Y. T., Huang, C. H., Lin, C. F., Anderson, R., Liu, H. S., Yeh, T. M., Yen, Y. T., Wu-Hsieh, B. A., Lin, Y. S., & Manicassamy, B. (2014). Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PloS One, 9(3), e92495. https://doi.org/10.1371/journal.pone.0092495
  • Wang, M., Jiang, S., & Wang, Y. (2016). Recent advances in the production of recombinant subunit vaccines in Pichia pastoris. Bioengineered, 7(3), 155–165. https://doi.org/10.1080/21655979.2016.1191707
  • Watanaveeradej, V., Simasathien, S., Mammen, M. P., Nisalak, A., Tournay, E., Kerdpanich, P., Samakoses, R., Putnak, R. J., Gibbons, R. V., Yoon, I. K., Jarman, R. G., De La Barrera, R., Moris, P., Eckels, K. H., Thomas, S. J., & Innis, B. L. (2016). Long-term safety and immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine and evaluation of a booster dose administered to healthy Thai children. The American Journal of Tropical Medicine and Hygiene, 94(6), 1348–1358. https://doi.org/10.4269/ajtmh.15-0659
  • Watanaveeradej, V., Simasathien, S., Nisalak, A., Endy, T. P., Jarman, R. G., Innis, B. L., Thomas, S. J., Gibbons, R. V., Hengprasert, S., Samakoses, R., Kerdpanich, A., Vaughn, D. W., Putnak, J. R., Eckels, K. H., Barrera, R. D., & Mammen, M. P. (2011). Safety and immunogenicity of a tetravalent live-attenuated dengue vaccine in flavivirus-naive infants. The American Journal of Tropical Medicine and Hygiene, 85(2), 341–351. https://doi.org/10.4269/ajtmh.2011.10-0501
  • Wei, K. C., Wei, W. J., Liao, C. L., Chang, T. H., & Ludert, J. E. (2023). Discrepant activation pattern of inflammation and pyroptosis induced in dermal fibroblasts in response to Dengue Virus Serotypes 1 and 2 and nonstructural protein 1. Microbiology Spectrum, 11(1), e03586–22. https://doi.org/10.1128/spectrum.03586-22
  • White, L. J., Sariol, C. A., Mattocks, M. D., Wahala, M. P. B. W., Yingsiwaphat, V., Collier, M. L., Whitley, J., Mikkelsen, R., Rodriguez, I. V., Martinez, M. I., de Silva, A., & Johnston, R. E. (2013). An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection. Journal of Virology, 87(6), 3409–3424. https://doi.org/10.1128/JVI.02298-12
  • Whitehead, S. S. (2016). Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the sanofi-pasteur CYD™ vaccine? Expert Review of Vaccines, 15(4), 509–517. https://doi.org/10.1586/14760584.2016.1115727
  • Whitehead, S. S., Blaney, J. E., Durbin, A. P., & Murphy, B. R. (2007). Prospects for a dengue virus vaccine. Nature Reviews Microbiology, 5(7), 518–528. https://doi.org/10.1038/nrmicro1690
  • Whitehead, S. S., Falgout, B., Hanley, K. A., Blaney, J. E., Markoff, L., & Murphy, B. R. (2003). A live, attenuated dengue virus type 1 vaccine candidate with a 30-nucleotide deletion in the 3’ untranslated region is highly attenuated and immunogenic in monkeys. Journal of Virology, 77(2), 1653–1657. https://doi.org/10.1128/jvi.77.2.1653-1657.2003
  • WHO. (1999). Prevention and control of dengue and dengue haemorrhagic fever (No. Regional Publication No. 29). WHO Regional Office for South-East Asia.
  • WHO. (2009). Dengue: Guidelines for diagnosis, treatment, prevention and control. WHO and the Special Programme for Research and Training in Tropical Diseases. https://www.who.int/publications/i/item/9789241547871
  • WHO. (2018). Weekly epidemiological report. Dengue vaccines: WHO position paper. Revised recommendations for immunization with Dengvaxia from WHO strategic advisory group of experts on immunization committee based on evidence indicating increased hospitalisation and severe dengue risk in seronegative individuals when administered the vaccine. Retrieved July 13, 2023, from http://www.who.int/publications-detail-redirect/who-wer9335-457-476
  • Wilder-Smith, A. (2020). Dengue vaccine development: status and future. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 63(1), 40–44. https://doi.org/10.1007/s00103-019-03060-3
  • Winkler, G., Maxwell, S. E., Ruemmler, C., & Stollar, V. (1989). Newly synthesizeddengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane-associated after dimerization. Virology, 171(1), 302–305. https://doi.org/10.1016/0042-6822(89)90544-8
  • Winkler, G., Randolph, V. B., Cleaves, G. R., Ryan, T. E., & Stollar, V. (1988). Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer. Virology, 162(1), 187–196. https://doi.org/10.1016/0042-6822(88)90408-4
  • Wu, S. J. L., Grouard-Vogel, G., Sun, W., Mascola, J. R., Brachtel, E., Putvatana, R., Louder, M. K., Filgueira, L., Marovich, M. A., Wong, H. K., Blauvelt, A., Murphy, G. S., Robb, M. L., Innes, B. L., Birx, D. L., Hayes, C. G., & Frankel, S. S. (2000). Human skin Langerhans cells are targets of dengue virus infection. Nature Medicine, 6(7), 816–820. https://doi.org/10.1038/77553
  • Xie, X., Zou, J., Puttikhunt, C., Yuan, Z., Shi, P. Y., & Beemon, K. L. (2015). Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. Journal of Virology, 89(2), 1298–1313. https://doi.org/10.1128/JVI.02882-14
  • Yamada, M., Kim, S., Egashira, K., Takeya, M., Ikeda, T., Mimura, O., & Iwao, H. (2003). Molecular mechanism and role of endothelial monocyte chemoattractant protein-1 induction by vascular endothelial growth factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(11), 1996–2001. https://doi.org/10.1161/01.ATV.0000096208.80992.63
  • Yang, J., Zhang, J., Chen, W., Hu, Z., Zhu, J., Fang, X., Yuan, W., Li, M., Hu, X., Tan, Y., Hu, F., & Rao, X. (2012). Eliciting cross-neutralizing antibodies in mice challenged with a dengue virus envelope domain III expressed in Escherichia coli. Canadian Journal of Microbiology, 58(4), 369–380. https://doi.org/10.1139/w11-137
  • Yap, Y. K., & Smith, D. R. (2010). Strategies for the plant-based expression of dengue subunit vaccines. Biotechnology and Applied Biochemistry, 57(2), 47–53. https://doi.org/10.1042/BA20100248
  • Youn, S., Li, T., McCune, B. T., Edeling, M. A., Fremont, D. H., Cristea, I. M., & Diamond, M. S. (2012). Evidence for a genetic and physical interaction between nonstructural proteins NS1 and NS4B that modulates replication of West Nile virus. Journal of Virology, 86(13), 7360–7371. https://doi.org/10.1128/JVI.00157-12
  • Young, P. R., Hilditch, P. A., Bletchly, C., & Halloran, W. (2000). An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients. Journal of Clinical Microbiology, 38(3), 1053–1057. https://doi.org/10.1128/JCM.38.3.1053-1057.2000
  • Yu, C. Y., Chang, T. H., Liang, J. J., Chiang, R. L., Lee, Y. L., Liao, C. L., Lin, Y. L., & Diamond, M. S. (2012). Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathogens, 8(6), e1002780. https://doi.org/10.1371/journal.ppat.1002780
  • Yu, V. G., Lasco, G., & David, C. C. (2021). Fear, mistrust, and vaccine hesitancy: Narratives of the dengue vaccine controversy in the Philippines. Vaccine: X, 39(35), 4964–4972. https://doi.org/10.1016/j.vaccine.2021.07.051
  • Yu, L., Nomaguchi, M., Padmanabhan, R., & Markoff, L. (2008). Specific requirements for elements of the 5′ and 3′ terminal regions in flavivirus RNA synthesis and viral replication. Virology, 374(1), 170–185. https://doi.org/10.1016/j.virol.2007.12.035
  • Zellweger, R. M., Miller, R., Eddy, W. E., White, L. J., Johnston, R. E., Shresta, S., & Fouchier, R. A. M. (2013). Role of humoral versus cellular responses induced by a protective dengue vaccine candidate. PLoS Pathogens, 9(10), e1003723. https://doi.org/10.1371/journal.ppat.1003723
  • Zellweger, R. M., Prestwood, T. R., & Shresta, S. (2010). Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host & Microbe, 7(2), 128–139. https://doi.org/10.1016/j.chom.2010.01.004
  • Zellweger, R. M., & Shresta, S. (2014). Mouse models to study dengue virus immunology and pathogenesis. Frontiers in Immunology, 5, 151. https://doi.org/10.3389/fimmu.2014.00151
  • Zeng, L., Falgout, B., & Markoff, L. (1998). Identification of specific nucleotide sequences within the conserved 3′-SL in the dengue type 2 virus genome required for replication. Journal of Virology, 72(9), 7510–7522. https://doi.org/10.1128/JVI.72.9.7510-7522.1998
  • Zhang, J. L., Wang, J. L., Gao, N., Chen, Z. T., Tian, Y. P., & An, J. (2007). Up-regulated expression of β3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells. Biochemical and Biophysical Research Communications, 356(3), 763–768. https://doi.org/10.1016/j.bbrc.2007.03.051
  • Zhang, Y., Zhang, W., Ogata, S., Clements, D., Strauss, J. H., Baker, T. S., Kuhn, R. J., & Rossmann, M. G. (2004). Conformational changes of the flavivirus E glycoprotein. Structure, 12(9), 1607–1618. https://doi.org/10.1016/j.str.2004.06.019
  • Zhao, H., Jiang, T., Zhou, X. Z., Deng, Y. Q., Li, X. F., Chen, S. P., Zhu, S. Y., Zhou, X., Qin, E. D., Qin, C. F., & Turner, S. J. (2014). Induction of neutralizing antibodies against four serotypes of dengue viruses by MixBiEDIII, a tetravalent dengue vaccine. PLoS One, 9(1), e86573. https://doi.org/10.1371/journal.pone.0086573
  • Zhong, B., Yang, Y., Li, S., Wang, Y. Y., Li, Y., Diao, F., Lei, C., He, X., Zhang, L., Tien, P., & Shu, H. B. (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity, 29(4), 538–550. https://doi.org/10.1016/j.immuni.2008.09.003
  • Zhou, Y., Mammen, M. P., Klungthong, C., Chinnawirotpisan, P., Vaughn, D. W., Nimmannitya, S., Kalayanarooj, S., Holmes, E. C., & Zhang, C. (2006). Comparative analysis reveals no consistent association between the secondary structure of the 3′-untranslated region of dengue viruses and disease syndrome. Journal of General Virology, 87(9), 2595–2603. https://doi.org/10.1099/vir.0.81994-0
  • Zivny, J., Kurane, I., Leporati, A. M., Ibe, M., Takiguchi, M., Zeng, L. L., Brinton, M. A., & Ennis, F. A. (1995). A single nine-amino acid peptide induces virus-specific, CD8+ human cytotoxic T lymphocyte clones of heterogeneous serotype specificities. The Journal of Experimental Medicine, 182(3), 853–863. https://doi.org/10.1084/jem.182.3.853
  • Zou, J., Lee, L. T., Wang, Q. Y., Xie, X., Lu, S., Yau, Y. H., Yuan, Z., Geifman Shochat, S., Kang, C., Lescar, J., Shi, P. Y., & Dermody, T. S. (2015). Mapping the interactions between the NS4B and NS3 proteins of dengue virus. Journal of Virology, 89(7), 3471–3483. https://doi.org/10.1128/JVI.03454-14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.