Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 53, 2024 - Issue 3
92
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nanomedicine at the Pulmonary Frontier: Immune-Centric Approaches for Respiratory Disease Treatment

, , , , , , , & show all

References

  • Abdelaziz, H. M., Gaber, M., Abd-Elwakil, M. M., Mabrouk, M. T., Elgohary, M. M., Kamel, N. M., Kabary, D. M., Freag, M. S., Samaha, M. W., Mortada, S. M., Elkhodairy, K. A., Fang, J. Y., & Elzoghby, A. O. (2018). Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. Journal of Controlled Release: Official Journal of the Controlled Release Society, 269, 374–392. https://doi.org/10.1016/j.jconrel.2017.11.036
  • Abdella, R., Talyzina, A., Chen, S., Inouye, C. J., Tjian, R., & He, Y. (2021). Structure of the human mediator-bound transcription preinitiation complex. Science, 80. https://doi.org/10.1126/science.abg3074
  • Adair, B. M. (2009). Nanoparticle vaccines against respiratory viruses. Wiley Interdisciplinary Reviews Nanomedicine Nanobiotechnology, 1(4), 405–414. https://doi.org/10.1002/wnan.45
  • Adler, K. B., Fischer, B. M., Wright, D. T., Cohn, L. A., & Becker, S. (1994). Interactions between respiratory epithelial cells and cytokines: Relationships to lung inflammation. Annals of the New York Academy of Sciences, 725(1), 128–145. https://doi.org/10.1111/j.1749-6632.1994.tb00275.x
  • Al-Halifa, S., Gauthier, L., Arpin, D., Bourgault, S., & Archambault, D. (2019). Nanoparticle-based vaccines against respiratory viruses. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.00022
  • Alessandrini, F., Vennemann, A., Gschwendtner, S., Neumann, A. U., Rothballer, M., Seher, T., Wimmer, M., Kublik, S., Traidl-Hoffmann, C., Schloter, M., Wiemann, M., & Schmidt-Weber, C. B. (2017). Pro-inflammatory versus immunomodulatory effects of silver nanoparticles in the lung: The critical role of dose, size and surface modification. Nanomaterials, 7(10), 300. https://doi.org/10.3390/nano7100300
  • AlMatar, M., Makky, E. A., Yakıcı, G., Var, I., Kayar, B., & Köksal, F. (2018). Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacological Research, 128, 288–305. https://doi.org/10.1016/j.phrs.2017.10.011
  • Alyahyawi, A. R., Khan, S., Rafi, Z., Singh, P., Moheet, K., Akasha, R., & Ahmad, S. (2023). Exploring kinnow mandarin’s hidden potential: Nature’s key to antimicrobial and antidiabetic gold nanoparticles (K-AuNPs). Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2023.103782
  • Andersson-Willman, B., Gehrmann, U., Cansu, Z., Buerki-Thurnherr, T., Krug, H. F., Gabrielsson, S., & Scheynius, A. (2012). Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicology & Applied Pharmacology, 264(1), 94–103. https://doi.org/10.1016/j.taap.2012.07.021
  • Arbiser, Z. K., Guidot, D. M., Pine, J. R., Giltman, L. I., & Gal, A. A. (2003). Pulmonary alveolar proteinosis mimicking idiopathic pulmonary fibrosis. Annals of Diagnostic Pathology, 7(2), 82–86. https://doi.org/10.1016/S1092-9134(02)91214-1
  • Ariki, S., Nishitani, C., & Kuroki, Y. (2012). Diverse functions of pulmonary collectins in host defense of the lung. Journal of Biomedicine & Biotechnology, 2012, 1–7. https://doi.org/10.1155/2012/532071
  • Armand, L., Dagouassat, M., Belade, E., Simon-Deckers, A., Le Gouvello, S., Tharabat, C., Duprez, C., Andujar, P., Pairon, J.-C., Boczkowski, J., & Lanone, S. (2013). Titanium dioxide nanoparticles induce matrix metalloprotease 1 in human pulmonary fibroblasts partly via an interleukin-1β–dependent mechanism. American Journal of Respiratory Cell and Molecular Biology, 48(3), 354–363. https://doi.org/10.1165/rcmb.2012-0099OC
  • Arvin, A. M., & Greenberg, H. B. (2006). New viral vaccines. Virology, 344(1), 240–249. https://doi.org/10.1016/j.virol.2005.09.057
  • Baddini Martinez, J. A., King, T. E., Khan, L., Mortenson, R. L., Borish, T. Z., Bost, T. W., & Riches, D. W. H. (1997). Increased expression of the interleukin-10 gene by alveolar macrophages in interstitial lung disease. The American Journal of Physiology, 273(3), L676–L683. https://doi.org/10.1152/ajplung.1997.273.3.L676
  • Baeke, F., Takiishi, T., Korf, H., Gysemans, C., & Mathieu, C. (2010). Vitamin D: Modulator of the immune system. Current Opinion in Pharmacology, 10(4), 482–496. https://doi.org/10.1016/j.coph.2010.04.001
  • Bakshi, M. S., Zhao, L., Smith, R., Possmayer, F., & Petersen, N. O. (2008). Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro. Biophysical Journal, 94(3), 855–868. https://doi.org/10.1529/biophysj.107.106971
  • Ballester, M., Nembrini, C., Dhar, N., de Titta, A., de Piano, C., Pasquier, M., Simeoni, E., van der Vlies, A. J., McKinney, J. D., Hubbell, J. A., & Swartz, M. A. (2011). Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine: X, 29(40), 6959–6966. https://doi.org/10.1016/j.vaccine.2011.07.039
  • Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392(6673), 245–252. https://doi.org/10.1038/32588
  • Bassis, C. M., Erb-Downward, J. R., Dickson, R. P., Freeman, C. M., Schmidt, T. M., Young, V. B., Beck, J. M., Curtis, J. L., Huffnagle, G. B., & Ravel, J. (2015). Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio, 6(2). https://doi.org/10.1128/mBio.00037-15
  • Beck, J. M., Young, V. B., & Huffnagle, G. B. (2012). The microbiome of the lung. Translational Research: The Journal of Laboratory and Clinical Medicine, 160(4), 258–266. https://doi.org/10.1016/j.trsl.2012.02.005
  • Beck-Broichsitter, M., Merkel, O. M., & Kissel, T. (2012). Controlled pulmonary drug and gene delivery using polymeric nano-carriers. Journal of Controlled Release: Official Journal of the Controlled Release Society, 161(2), 214–224. https://doi.org/10.1016/j.jconrel.2011.12.004
  • Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141. https://doi.org/10.1016/j.cell.2014.03.011
  • Bezemer, G. F. G., Bauer, S. M., Oberdörster, G., Breysse, P. N., Pieters, R. H. H., Georas, S. N., & Williams, M. A. (2011). Activation of pulmonary dendritic cells and Th2-type inflammatory responses on instillation of engineered, environmental diesel emission source or ambient air pollutant particles in vivo. Journal of Innate Immunity, 3(2), 150–166. https://doi.org/10.1159/000321725
  • Bhattacharya, J., & Matthay, M. A. (2013). Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annual Review of Physiology, 75(1), 593–615. https://doi.org/10.1146/annurev-physiol-030212-183756
  • Bivas-Benita, M., Lin, M. Y., Bal, S. M., van Meijgaarden, K. E., Franken, K. L. M. C., Friggen, A. H., Junginger, H. E., Borchard, G., Klein, M. R., & Ottenhoff, T. H. M. (2009). Pulmonary delivery of DNA encoding mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA–PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine: X, 27(30), 4010–4017. https://doi.org/10.1016/j.vaccine.2009.04.033
  • Blank, F., Fytianos, K., Seydoux, E., Rodriguez-Lorenzo, L., Petri-Fink, A., Garnier, C., & Rothen-Rutishauser, B. (2017). Interaction of biomedical nanoparticles with the pulmonary immune system. Journal of Nanobiotechnology, 15(1). https://doi.org/10.1186/s12951-016-0242-5
  • Blank, F., Stumbles, P. A., Seydoux, E., Holt, P. G., Fink, A., Rothen-Rutishauser, B., Strickland, D. H., & Von Garnier, C. (2013). Size-dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes. American Journal of Respiratory Cell and Molecular Biology, 49(1), 67–77. https://doi.org/10.1165/rcmb.2012-0387OC
  • Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2020). Nanoparticle-based medicines: A review of FDA-Approved materials and clinical trials to date *. In Nanomaterials and Neoplasms. https://doi.org/10.1201/9780429027819-7
  • Bogefors, J., Rydberg, C., Uddman, R., Fransson, M., Månsson, A., Benson, M., Adner, M., & Cardell, L. O. (2010). Nod1, Nod2 and Nalp3 receptors, new potential targets in treatment of allergic rhinitis? Allergy European Journal of Allergy and Clinical Immunology is Allergy, 65(10), 1222–1226. https://doi.org/10.1111/j.1398-9995.2009.02315.x
  • Bonner, J. C. (2010). Nanoparticles as a potential cause of pleural and interstitial lung disease. In Proceedings of the American Thoracic Society, 7, 138–141. https://doi.org/10.1513/pats.200907-061RM
  • Brown, G. D., & Gordon, S. (2001). A new receptor for β-glucans. Nature, 413(6851), 36–37. https://doi.org/10.1038/35092620
  • Burnham, E. L., Janssen, W. J., Riches, D. W. H., Moss, M., & Downey, G. P. (2014). The fibroproliferative response in acute respiratory distress syndrome: Mechanisms and clinical significance. The European Respiratory Journal, 43(1), 276–285. https://doi.org/10.1183/09031936.00196412
  • Byrne, A. J., Mathie, S. A., Gregory, L. G., & Lloyd, C. M. (2015). Pulmonary macrophages: Key players in the innate defence of the airways. Thorax, 70(12), 1189–1196. https://doi.org/10.1136/thoraxjnl-2015-207020
  • Byron, P. R. (1986). Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. Journal of Pharmaceutical Sciences, 75(5), 433–438. https://doi.org/10.1002/jps.2600750502
  • Cadena, A. M., Flynn, J. L., & Fortune, S. M. (2016). The importance of first impressions: Early events in mycobacterium tuberculosis infection influence outcome. MBio, 7(2). https://doi.org/10.1128/mBio.00342-16
  • Cai, R., Wang, M., Liu, M., Zhu, X., Feng, L., Yu, Z., Yang, X., Zhang, Z., Guo, H., Guo, R., & Zheng, Y. (2022). An iRGD-conjugated photothermal therapy-responsive gold nanoparticle system carrying siCDK7 induces necroptosis and immunotherapeutic responses in lung adenocarcinoma. Bioengineering & Translational Medicine, 8(4), e10430. n/a. https://doi.org/10.1002/btm2.10430
  • Carney, S. M., Clemente, J. C., Cox, M. J., Dickson, R. P., Huang, Y. J., Kitsios, G. D., Kloepfer, K. M., Leung, J. M., LeVan, T. D., Molyneaux, P. L., Moore, B. B., O’Dwyer, D. N., Segal, L. N., & Garantziotis, S. (2020). Methods in lung microbiome research. American Journal of Respiratory Cell and Molecular Biology, 62(3), 283–299. https://doi.org/10.1165/rcmb.2019-0273TR
  • Carpentier, A., Metellus, P., Ursu, R., Zohar, S., Lafitte, F., Barrié, M., Meng, Y., Richard, M., Parizot, C., Laigle-Donadey, F., Gorochov, G., Psimaras, D., Sanson, M., Tibi, A., Chinot, O., & Carpentier, A. F. (2010). Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: A phase II study. Neuro-Oncology, 12(4), 401–408. https://doi.org/10.1093/neuonc/nop047
  • Chae, J., Choi, Y., Tanaka, M., & Choi, J. (2021). Inhalable nanoparticles delivery targeting alveolar macrophages for the treatment of pulmonary tuberculosis. Journal of Bioscience and Bioengineering, 132(6), 543–551. https://doi.org/10.1016/j.jbiosc.2021.08.009
  • Chellappan, D. K., Sze Ning, Q. L., Su Min, S. K., Bin, S. Y., Chern, P. J., Shi, T. P., Ee Mei, S. W., Yee, T. H., Qi, O. J., Thangavelu, L., Rajeshkumar, S., Negi, P., Chellian, J., Wadhwa, R., Gupta, G., Collet, T., Hansbro, P. M., & Dua, K. (2019). Interactions between microbiome and lungs: Paving new paths for microbiome based bio-engineered drug delivery systems in chronic respiratory diseases. Chemico-Biological Interactions, 310, 108732. https://doi.org/10.1016/j.cbi.2019.108732
  • Chheang, C., Guinand, S., von Garnier, C., & Sartori, C. (2022). New perspectives of biological therapy for severe asthma in adults and adolescents. Swiss Medical Weekly, 152(2122), w30176. https://doi.org/10.4414/smw.2022.w30176
  • Chittasupho, C., Xie, S. X., Baoum, A., Yakovleva, T., Siahaan, T. J., & Berkland, C. J. (2009). ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. European Journal of Pharmaceutical Sciences, 37(2), 141–150. https://doi.org/10.1016/j.ejps.2009.02.008
  • Choi, H. S., Ashitate, Y., Lee, J. H., Kim, S. H., Matsui, A., Insin, N., Bawendi, M. G., Semmler-Behnke, M., Frangioni, J. V., & Tsuda, A. (2010). Rapid translocation of nanoparticles from the lung airspaces to the body. Nature Biotechnology, 28(12), 1300–1303. https://doi.org/10.1038/nbt.1696
  • Chotirmall, S. H., Bogaert, D., Chalmers, J. D., Cox, M. J., Hansbro, P. M., Huang, Y. J., Molyneaux, P. L., O’Dwyer, D. N., Pragman, A. A., Rogers, G. B., Segal, L. N., & Dickson, R. P. (2022). Therapeutic targeting of the respiratory microbiome. American Journal of Respiratory and Critical Care Medicine, 206(5), 535–544. https://doi.org/10.1164/rccm.202112-2704PP
  • Christensen, C. L., Kwiatkowski, N., Abraham, B. J., Carretero, J., Al-Shahrour, F., Zhang, T., Chipumuro, E., Herter-Sprie, G. S., Akbay, E. A., Altabef, A., Zhang, J., Shimamura, T., Capelletti, M., Reibel, J. B., Cavanaugh, J. D., Gao, P., Liu, Y., Michaelsen, S. R., Poulsen, H. S., … Wong, K. K. (2014). Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell, 26(6), 909–922. https://doi.org/10.1016/j.ccell.2014.10.019
  • Clark, J. G., Mandac-Dy, J. B., Dixon, A. E., Madtes, D. K., Burkhart, K. M., Harlan, J. M., & Bullard, D. C. (2004). Trafficking of Th1 cells to lung: A role for selectins and a P-Selectin glycoprotein-1-independent ligand. American Journal of Respiratory Cell and Molecular Biology, 30(2), 220–227. https://doi.org/10.1165/rcmb.2003-0208OC
  • Courrier, H. M., Butz, N., & Vandamme, T. F. (2002). Pulmonary drug delivery systems: Recent developments and prospects. Critical Reviews in Therapeutic Drug Carrier Systems, 19(4–5), 425–498. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i45.40
  • Crowe, J. E. (2011). CHAPTER 38 - prevention of fetal and early life infections through maternal–neonatal immunization. In J. S. Remington, J. O. Klein, C. B. Wilson, V. Nizet, & Y. A. Maldonado (Eds.), Infectious diseases of the fetus and newborn (7th ed., pp. 1212–1230). W.B. Saunders. https://doi.org/10.1016/B978-1-4160-6400-8.00038-9
  • Currie, S. M., Gwyer Findlay, E., McFarlane, A. J., Fitch, P. M., Böttcher, B., Colegrave, N., Paras, A., Jozwik, A., Chiu, C., Schwarze, J., & Davidson, D. J. (2016). Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. Journal of Immunology, 196(6), 2699–2710. https://doi.org/10.4049/jimmunol.1502478
  • da Silva, M. C., Breckwoldt, M. O., Vinchi, F., Correia, M. P., Stojanovic, A., Thielmann, C. M., Meister, M., Muley, T., Warth, A., Platten, M., Hentze, M. W., Cerwenka, A., & Muckenthaler, M. U. (2017). Iron induces anti-tumor activity in tumor-associated macrophages. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2017.01479
  • Dankers, A. C. A., Kuper, C. F., Boumeester, A. J., Fabriek, B. O., Kooter, I. M., Gröllers-Mulderij, M., Tromp, P., Nelissen, I., Zondervan Van Den Beuken, E. K., & Vandebriel, R. J. (2018). A practical approach to assess inhalation toxicity of metal oxide nanoparticles in vitro. Journal of Applied Toxicology: JAT, 38(2), 160–171. https://doi.org/10.1002/jat.3518
  • Davidson, D. J., Currie, A. J., Reid, G. S. D., Bowdish, D. M. E., MacDonald, K. L., Ma, R. C., Hancock, R. E. W., & Speert, D. P. (2004). The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. Journal of Immunology, 172(2), 1146–1156. https://doi.org/10.4049/jimmunol.172.2.1146
  • de Martino, M., Lodi, L., Galli, L., & Chiappini, E. (2019). Immune response to mycobacterium tuberculosis: A narrative review. Frontiers in Pediatrics, 7. https://doi.org/10.3389/fped.2019.00350
  • De Paula Rogerio, A., Freire Oliveira, C. J., Lemos De Andrade, E., & Haworth, O. (2013). Modulation of lung immune response. BioMed Research International, 2013, 1–3. https://doi.org/10.1155/2013/239020
  • de Souza Carvalho, C., Daum, N., & Lehr, C. M. (2014). Carrier interactions with the biological barriers of the lung: Advanced in vitro models and challenges for pulmonary drug delivery. Advanced Drug Delivery Reviews, 75, 129–140. https://doi.org/10.1016/j.addr.2014.05.014
  • De Yang, B., Chen, Q., Schmidt, A. P., Anderson, G. M., Wang, J. M., Wooters, J., Oppenheim, J. J., & Chertov, O. (2000). Ll-37, the neutrophil granule–and epithelial cell–derived cathelicidin, utilizes formyl peptide receptor–like 1 (Fprl1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. Journal of Experimental Medicine, 192(7), 1069–1074. https://doi.org/10.1084/jem.192.7.1069
  • Demedts, I. K., Bracke, K. R., Maes, T., Joos, G. F., & Brusselle, G. G. (2006). Different roles for human lung dendritic cell subsets in pulmonary immune defense mechanisms. American Journal of Respiratory Cell and Molecular Biology, 35(3), 387–393. https://doi.org/10.1165/rcmb.2005-0382OC
  • DeNardo, D. G., & Ruffell, B. (2019). Macrophages as regulators of tumour immunity and immunotherapy. Nature Reviews Immunology, 19(6), 369–382. https://doi.org/10.1038/s41577-019-0127-6
  • Diamond, G., Beckloff, N., Weinberg, A., & Kisich, K. O. (2009). The roles of antimicrobial peptides in innate host defense. Current Pharmaceutical Design, 15, 2377–2392. https://doi.org/10.2174/138161209788682325
  • Dickson, R. P., Erb-Downward, J. R., Freeman, C. M., McCloskey, L., Falkowski, N. R., Huffnagle, G. B., & Curtis, J. L. (2017). Bacterial topography of the healthy human lower respiratory tract. MBio, 8(1). https://doi.org/10.1128/mBio.02287-16
  • Dickson, R. P., Erb-Downward, J. R., Martinez, F. J., & Huffnagle, G. B. (2016). The microbiome and the respiratory tract. Annual Review of Physiology, 78(1), 481–504. https://doi.org/10.1146/annurev-physiol-021115-105238
  • Dickson, R. P., Martinez, F. J., & Huffnagle, G. B. (2014). The role of the microbiome in exacerbations of chronic lung diseases. The Lancet, 384(9944), 691–702. https://doi.org/10.1016/S0140-6736(14)61136-3
  • Divangahi, M., Aaby, P., Khader, S. A., Barreiro, L. B., Bekkering, S., Chavakis, T., van Crevel, R., Curtis, N., DiNardo, A. R., Dominguez-Andres, J., Duivenwoorden, R., Fanucchi, S., Fayad, Z., Fuchs, E., Hamon, M., Jeffrey, K. L., Khan, N., Joosten, L. A. B., Kaufmann, E., … Netea, M. G. (2021). Trained immunity, tolerance, priming and differentiation: Distinct immunological processes. Nature Immunology, 22(7), 928–928. https://doi.org/10.1038/s41590-021-00960-y
  • Domagala-Kulawik, J., Osinska, I., & Hoser, G. (2014). Mechanisms of immune response regulation in lung cancer. Translational Lung Cancer Research, 3(1), 15–22. https://doi.org/10.3978/j.issn.2218-6751.2013.11.03
  • Donaldson, K., Murphy, F. A., Duffin, R., & Poland, C. A. (2010). Asbestos, carbon nanotubes and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Particle and Fibre Toxicology, 7(1), 5. https://doi.org/10.1186/1743-8977-7-5
  • Doroudian, M., O’Neill, A., MacLoughlin, R., Prina-Mello, A., Volkov, Y., & Donnelly, S. C. (2021). Nanotechnology in pulmonary medicine. Current Opinion in Pharmacology, 56, 85–92. https://doi.org/10.1016/j.coph.2020.11.002
  • Dozor, A. J. (2010). The role of oxidative stress in the pathogenesis and treatment of asthma. Annals of the New York Academy of Sciences, 1203(1), 133–137. https://doi.org/10.1111/j.1749-6632.2010.05562.x
  • Du, L., Zhao, G., Sun, S., Zhang, X., Zhou, X., Guo, Y., Li, Y., Zhou, Y., Jiang, S., & Xu, J. (2013). A critical HA1 neutralizing domain of H5N1 influenza in an optimal conformation induces strong cross-protection. PLoS One, 8(1), e53568. https://doi.org/10.1371/journal.pone.0053568
  • Dube, A., Reynolds, J. L., Law, W. C., Maponga, C. C., Prasad, P. N., & Morse, G. D. (2014). Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), 831–838. https://doi.org/10.1016/j.nano.2013.11.012
  • Dwivedi, M. V., Harishchandra, R. K., Koshkina, O., Maskos, M., & Galla, H. J. (2014). Size influences the effect of hydrophobic nanoparticles on lung surfactant model systems. Biophysical Journal, 106(1), 289–298. https://doi.org/10.1016/j.bpj.2013.10.036
  • Faner, R., Sibila, O., Agustí, A., Bernasconi, E., Chalmers, J. D., Huffnagle, G. B., Manichanh, C., Molyneaux, P. L., Paredes, R., Brocal, V. P., Ponomarenko, J., Sethi, S., Dorca, J., & Monsó, E. (2017). The microbiome in respiratory medicine: Current challenges and future perspectives. European Respiratory Journal, 49(4), 1602086. https://doi.org/10.1183/13993003.02086-2016
  • Feng, Z. V., Gunsolus, I. L., Qiu, T. A., Hurley, K. R., Nyberg, L. H., Frew, H., Johnson, K. P., Vartanian, A. M., Jacob, L. M., Lohse, S. E., Torelli, M. D., Hamers, R. J., Murphy, C. J., & Haynes, C. L. (2015). Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to gram-negative and gram-positive bacteria. Chemical Science, 6(9), 5186–5196. https://doi.org/10.1039/c5sc00792e
  • Fisher, R. P., & Morgan, D. O. (1994). A novel cyclin associates with M015/CDK7 to form the CDK-activating kinase. Cell, 78(4), 713–724. https://doi.org/10.1016/0092-8674(94)90535-5
  • Fontana, J. M., Alexander, E., & Salvatore, M. (2012). Translational research in infectious disease: Current paradigms and challenges ahead. Translational Research: The Journal of Laboratory and Clinical Medicine, 159(6), 430–453. https://doi.org/10.1016/j.trsl.2011.12.009
  • Freeburn, R. W., Armstrong, L., & Millar, A. B. (2005). Cultured alveolar macrophages from patients with Idiopathic Pulmonary Fibrosis (IPF) show dysregulation of lipopolysaccharide-induced Tumor Necrosis Factor-α (TNF-α) and interleukin-10 (IL-10) inductions. European Cytokine Network, 16(1), 5–16.
  • Fytianos, K., Drasler, B., Blank, F., Von Garnier, C., Seydoux, E., Rodriguez-Lorenzo, L., Petri-Fink, A., & Rothen-Rutishauser, B. (2016). Current in vitro approaches to assess nanoparticle interactions with lung cells. Nanomedicine: Nanotechnology, Biology and Medicine, 11(18), 2457–2469. https://doi.org/10.2217/nnm-2016-0199
  • Gao, S., Yang, X., Xu, J., Qiu, N., & Zhai, G. (2021). Nanotechnology for boosting cancer immunotherapy and remodeling tumor microenvironment: The horizons in cancer treatment. Agricultural Science & Technology Nano, 15(8), 12567–12603. https://doi.org/10.1021/acsnano.1c02103
  • Garcia-Contreras, L., Wong, Y. L., Muttil, P., Padilla, D., Sadoff, J., DeRousse, J., Germishuizen, W. A., Goonesekera, S., Elbert, K., Bloom, B. R., Miller, R., Fourie, P. B., Hickey, A., & Edwards, D. (2008). Immunization by a bacterial aerosol. Proceedings of the National Academy of Sciences of the United States of America, 105(12), 4656–4660. https://doi.org/10.1073/pnas.0800043105
  • Gates, K., & Martinez, F. (2016). The human microbiome in the lung: Are infections contributing to lung health and disease? Chronic Obstr. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation, 3(1), 466–472. https://doi.org/10.15326/jcopdf.3.1.2015.0174
  • Gehr, P., Bachofen, M., & Weibel, E. R. (1978). The normal human lung: Ultrastructure and morphometric estimation of diffusion capacity. Respiration Physiology, 32(2), 121–140. https://doi.org/10.1016/0034-5687(78)90104-4
  • Geiser, M., & Kreyling, W. G. (2010). Deposition and biokinetics of inhaled nanoparticles. Particle and Fibre Toxicology, 7(1), 2. https://doi.org/10.1186/1743-8977-7-2
  • Ghezzi, C., Wong, A., Chen, B. Y., Ribalet, B., Damoiseaux, R., & Clark, P. M. (2019). A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13334-8
  • Gold, M. C., Napier, R. J., & Lewinsohn, D. M. (2015). MR1-restricted Mucosal Associated Invariant T (MAIT) cells in the immune response to mycobacterium tuberculosis. Immunological Reviews, 264(1), 154–166. https://doi.org/10.1111/imr.12271
  • Gong, W., & Wu, X. (2021). Differential diagnosis of latent tuberculosis infection and active tuberculosis: A key to a successful tuberculosis control strategy. Frontiers in Microbiology, 12, 745592. https://doi.org/10.3389/fmicb.2021.745592
  • González-Sánchez, E., Muñoz-Callejas, A., Gómez-Román, J., San Antonio, E., Marengo, A., Tsapis, N., Bohne-Japiassu, K., González-Tajuelo, R., Pereda, S., García-Pérez, J., Cavagna, L., González-Gay, M. Á., Vicente-Rabaneda, E. F., Meloni, F., Fattal, E., Castañeda, S., & Urzainqui, A. (2022). Targeted nanotherapy with everolimus reduces inflammation and fibrosis in scleroderma-related interstitial lung disease developed by PSGL-1 deficient mice. British Journal of Pharmacology, 179(18), 4534–4548. https://doi.org/10.1111/bph.15898
  • Greco, E., Quintiliani, G., Santucci, M. B., Serafino, A., Ciccaglione, A. R., Marcantonio, C., Papi, M., Maulucci, G., Delogu, G., Martino, A., Goletti, D., Sarmati, L., Andreoni, M., Altieri, A., Alma, M., Caccamo, N., DiLiberto, D., De Spirito, M., Savage, N. D., … Fraziano, M. (2012). Janus-faced liposomes enhance antimicrobial innate immune response in mycobacterium tuberculosis infection. Proceedings of the National Academy of Sciences of the United States of America, 109(21). https://doi.org/10.1073/pnas.1200484109
  • Greenlee, K. J., Werb, Z., & Kheradmand, F. (2007). Matrix metalloproteinases in lung: Multiple, multifarious, and multifaceted. Physiological Reviews, 87(1), 69–98. https://doi.org/10.1152/physrev.00022.2006
  • Griesmann, H., Drexel, C., Milosevic, N., Sipos, B., Rosendahl, J., Gress, T. M., & Michl, P. (2017). Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer. Gut, 66(7), 1278–1285. https://doi.org/10.1136/gutjnl-2015-310049
  • Gwyer Findlay, E., Currie, S. M., & Davidson, D. J. (2013). Cationic host defence peptides: Potential as antiviral therapeutics. BioDrugs, 27(5), 479–493. https://doi.org/10.1007/s40259-013-0039-0
  • Halwani, R., Sultana Shaik, A., Ratemi, E., Afzal, S., Kenana, R., Al-Muhsen, S., & Al Faraj, A. (2016). A novel anti-IL4Rα nanoparticle efficiently controls lung inflammation during asthma. Experimental & Molecular Medicine, 48(10), e262–e262. https://doi.org/10.1038/emm.2016.89
  • Hammad, H., & Lambrecht, B. N. (2015). Barrier epithelial cells and the control of type 2 immunity. Immunity, 43(1), 29–40. https://doi.org/10.1016/j.immuni.2015.07.007
  • Hardy, C. L., LeMasurier, J. S., Belz, G. T., Scalzo-Inguanti, K., Yao, J., Xiang, S. D., Kanellakis, P., Bobik, A., Strickland, D. H., Rolland, J. M., O’Hehir, R. E., & Plebanski, M. (2012). Inert 50-nm polystyrene nanoparticles that modify pulmonary dendritic cell function and inhibit allergic airway inflammation. Journal of Immunology, 188(3), 1431–1441. https://doi.org/10.4049/jimmunol.1100156
  • Hardy, C. L., LeMasurier, J. S., Mohamud, R., Yao, J., Xiang, S. D., Rolland, J. M., O’Hehir, R. E., & Plebanski, M. (2013). Differential uptake of nanoparticles and microparticles by pulmonary APC subsets induces discrete immunological imprints. Journal of Immunology, 191(10), 5278–5290. https://doi.org/10.4049/jimmunol.1203131
  • Harjunpää, H., Asens, M. L., Guenther, C., & Fagerholm, S. C. (2019). Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2019.01078
  • Hartl, D., Tirouvanziam, R., Laval, J., Greene, C. M., Habiel, D., Sharma, L., Yildirim, A. Ö., Dela Cruz, C. S., & Hogaboam, C. M. (2018). Innate immunity of the lung: From basic mechanisms to translational medicine. Journal of Innate Immunity, 10(5–6), 487–501. https://doi.org/10.1159/000487057
  • Heyder, J., Gebhart, J., Rudolf, G., Schiller, C. F., & Stahlhofen, W. (1986). Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. Journal of Aerosol Science, 17(5), 811–825. https://doi.org/10.1016/0021-8502(86)90035-2
  • Hidalgo, A., Cruz, A., & Pérez-Gil, J. (2015). Barrier or carrier? Pulmonary surfactant and drug delivery. European Journal of Pharmaceutics & Biopharmaceutics, 95, 117–127. https://doi.org/10.1016/j.ejpb.2015.02.014
  • Hidalgo, A., Cruz, A., & Pérez-Gil, J. (2017). Pulmonary surfactant and nanocarriers: Toxicity versus combined nanomedical applications. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1859(9), 1740–1748. https://doi.org/10.1016/j.bbamem.2017.04.019
  • Hinks, T. S. C., Wallington, J. C., Williams, A. P., Djukanovic, R., Staples, K. J., & Wilkinson, T. M. A. (2016). Steroid-induced deficiency of mucosal-associated invariant T cells in the chronic obstructive pulmonary disease lung. Implications for nontypeable Haemophilus influenzae infection. American Journal of Respiratory and Critical Care Medicine, 194(10), 1208–1218. https://doi.org/10.1164/rccm.201601-0002OC
  • Hsu, R.-J., Yu, W.-C., Peng, G.-R., Ye, C.-H., Hu, S., Chong, P. C. T., Yap, K. Y., Lee, J. Y. C., Lin, W.-C., & Yu, S.-H. (2022). The role of cytokines and chemokines in severe acute respiratory syndrome coronavirus 2 infections. Frontiers in Immunology, 13, 832394. https://doi.org/10.3389/fimmu.2022.832394
  • Huang, Y. J., Charlson, E. S., Collman, R. G., Colombini-Hatch, S., Martinez, F. D., & Senior, R. M. (2013). The role of the lung microbiome in health and disease. American Journal of Respiratory and Critical Care Medicine, 187(12), 1382–1387. https://doi.org/10.1164/rccm.201303-0488WS
  • Huang, Y. J., Nelson, C. E., Brodie, E. L., Desantis, T. Z., Baek, M. S., Liu, J., Woyke, T., Allgaier, M., Bristow, J., Wiener-Kronish, J. P., Sutherland, E. R., King, T. S., Icitovic, N., Martin, R. J., Calhoun, W. J., Castro, M., Denlinger, L. C., Dimango, E., Kraft, M., … Lynch, S. V. (2011). Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. The Journal of Allergy and Clinical Immunology, 127(2), 372–381.e3. https://doi.org/10.1016/j.jaci.2010.10.048
  • Huang, Y. J., Sethi, S., Murphy, T., Nariya, S., Boushey, H. A., Lynch, S. V., & Gilligan, P. H. (2014). Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. Journal of Clinical Microbiology, 52(8), 2813–2823. https://doi.org/10.1128/JCM.00035-14
  • Hussain, S., Boland, S., Baeza-Squiban, A., Hamel, R., Thomassen, L. C. J., Martens, J. A., Billon-Galland, M. A., Fleury-Feith, J., Moisan, F., Pairon, J. C., & Marano, F. (2009). Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount. Toxicology, 260(1–3), 142–149. https://doi.org/10.1016/j.tox.2009.04.001
  • Hussain, S., Vanoirbeek, J. A. J., Luyts, K., De Vooght, V., Verbeken, E., Thomassen, L. C. J., Martens, J. A., Dinsdale, D., Boland, S., Marano, F., Nemery, B., & Hoet, P. H. M. (2011). Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. The European Respiratory Journal, 37(2), 299–309. https://doi.org/10.1183/09031936.00168509
  • Hwang, I., Kim, J. W., Ylaya, K., Chung, E. J., Kitano, H., Perry, C., Hanaoka, J., Fukuoka, J., Chung, J. Y., & Hewitt, S. M. (2020). Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. Journal of Translational Medicine, 18(1). https://doi.org/10.1186/s12967-020-02618-z
  • Hwang, J., Son, J., Seo, Y., Jo, Y., Lee, K., Lee, D., Khan, M. S., Chavan, S., Park, C., Sharma, A., Gilad, A. A., & Choi, J. (2018). Functional silica nanoparticles conjugated with beta-glucan to deliver anti-tuberculosis drug molecules. Journal of Industrial & Engineering Chemistry, 58, 376–385. https://doi.org/10.1016/j.jiec.2017.09.051
  • Inoue, K. I., Takano, H., Koike, E., Yanagisawa, R., Sakurai, M., Tasaka, S., Ishizaka, A., & Shimada, A. (2008). Effects of pulmonary exposure to carbon nanotubes on lung and systemic inflammation with coagulatory disturbance induced by lipopolysaccharide in mice. Experimental Biology and Medicine, 233(12), 1583–1590. https://doi.org/10.3181/0805-RM-179
  • Inoue, K. I., Takano, H., Yanagisawa, R., Sakurai, M., Ichinose, T., Sadakane, K., & Yoshikawa, T. (2005). Effects of nano particles on antigen-related airway inflammation in mice. Respiratory Research, 6(1). https://doi.org/10.1186/1465-9921-6-106
  • Isahak, N., Sanchez, J., Perrier, S., Stone, M. J., & Payne, R. J. (2016). Synthesis of polymers and nanoparticles bearing polystyrene sulfonate brushes for chemokine binding. Organic & Biomolecular Chemistry, 14(24), 5652–5658. https://doi.org/10.1039/c6ob00270f
  • Iwasaki, A., Foxman, E. F., & Molony, R. D. (2017). Early local immune defences in the respiratory tract. Nature Reviews Immunology, 17(1), 7–20. https://doi.org/10.1038/nri.2016.117
  • Jahnsen, F. L., Strickland, D. H., Thomas, J. A., Tobagus, I. T., Napoli, S., Zosky, G. R., Turner, D. J., Sly, P. D., Stumbles, P. A., & Holt, P. G. (2006). Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. Journal of Immunology, 177(9), 5861–5867. https://doi.org/10.4049/jimmunol.177.9.5861
  • Janssen, W. J., Stefanski, A. L., Bochner, B. S., & Evans, C. M. (2016). Control of lung defence by mucins and macrophages: Ancient defence mechanisms with modern functions. The European Respiratory Journal, 48(4), 1201–1214. https://doi.org/10.1183/13993003.00120-2015
  • Jasim, F. A., Suker, D. K., & AL- Badran, A. I. (2017). TiO2 nanoparticles induce lung fibrosis and proteinosis through influence on matrix metalloproteinase expression. International Journal of Sciences, 3(3), 1–13. https://doi.org/10.18483/ijsci.1197
  • Jeong, M. J., Jeon, S., Yu, H. S., Cho, W. S., Lee, S., Kang, D., Kim, Y., Kim, Y. J., & Kim, S. Y. (2022). Exposure to nickel oxide nanoparticles induces acute and chronic inflammatory responses in rat lungs and perturbs the lung microbiome. International Journal of Environmental Research and Public Health, 19(1), 522. https://doi.org/10.3390/ijerph19010522
  • Johannson, K. A., Balmes, J. R., & Collard, H. R. (2015). Air pollution exposure: A novel environmental risk factor for interstitial lung disease? Chest, 147(4), 1161–1167. https://doi.org/10.1378/chest.14-1299
  • Joo, S. H., & Aggarwal, S. (2018). Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. Journal of Environmental Management, 225, 62–74. https://doi.org/10.1016/j.jenvman.2018.07.084
  • Kanojia, G., Have, R. T., Soema, P. C., Frijlink, H., Amorij, J. P., & Kersten, G. (2017). Developments in the formulation and delivery of spray dried vaccines. Human Vaccines & Immunotherapeutics, 13(10), 2364–2378. https://doi.org/10.1080/21645515.2017.1356952
  • Kasper, J. Y., Feiden, L., Hermanns, M. I., Bantz, C., Maskos, M., Unger, R. E., & Kirkpatrick, C. J. (2015). Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model. Beilstein Journal of Nanotechnology, 6, 517–528. https://doi.org/10.3762/bjnano.6.54
  • Keating, E., Zuo, Y. Y., Tadayyon, S. M., Petersen, N. O., Possmayer, F., & Veldhuizen, R. A. W. (2012). A modified squeeze-out mechanism for generating high surface pressures with pulmonary surfactant. Biochimica et Biophysica Acta - Biomembranes, 1818(5), 1225–1234. https://doi.org/10.1016/j.bbamem.2011.12.007
  • Khademi, F., Derakhshan, M., Yousefi-Avarvand, A., & Tafaghodi, M. (2018). Potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: A systematic review. Iranian Journal of Basic Medical Sciences, 21(2), 116–123. https://doi.org/10.22038/ijbms.2017.22059.5648
  • Khan, N., Vidyarthi, A., Javed, S., & Agrewala, J. N. (2016). Innate immunity holding the flanks until reinforced by adaptive immunity against mycobacterium tuberculosis infection. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00328
  • Kim, S. H., & Jang, Y. S. (2017). The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clinical and Experimental Vaccine Research, 6(1), 15. https://doi.org/10.7774/cevr.2017.6.1.15
  • Kong, X., Hellermann, G. R., Zhang, W., Jena, P., Kumar, M., Behera, A., Behera, S., Lockey, R., & Mohapatra, S. S. (2008). Chitosan interferon-γ nanogene therapy for lung disease: Modulation of T-cell and dendritic cell immune responses. Allergy, Asthma, and Clinical Immunology, 4(3). https://doi.org/10.1186/1710-1492-4-3-95
  • Korbel, D. S., Schneider, B. E., & Schaible, U. E. (2008). Innate immunity in tuberculosis: Myths and truth. Microbes & Infection, 10(9), 995–1004. https://doi.org/10.1016/j.micinf.2008.07.039
  • Kreyling, W. G., Semmler-Behnke, M., Takenaka, S., & Möller, W. (2013). Differences in the biokinetics of inhaled nano-versus micrometer-sized particles. Accounts of Chemical Research, 46(3), 714–722. https://doi.org/10.1021/ar300043r
  • Krieg, A. M. (2007). Development of TLR9 agonists for cancer therapy. Journal of Clinical Investigation, 117(5), 1184–1194. https://doi.org/10.1172/JCI31414
  • Kwon, Y. S., Jin, H. M., Cho, Y. N., Kim, M. J., Kang, J. H., Jung, H. J., Park, K. J., Kee, H. J., Kee, S. J., & Park, Y. W. (2016). Mucosal-associated invariant T cell deficiency in chronic obstructive pulmonary disease. COPD: Journal of Chronic Obstructive Pulmonary Disease, 13(2), 196–202. https://doi.org/10.3109/15412555.2015.1069806
  • Lal, C. V., Travers, C., Aghai, Z. H., Eipers, P., Jilling, T., Halloran, B., Carlo, W. A., Keeley, J., Rezonzew, G., Kumar, R., Morrow, C., Bhandari, V., & Ambalavanan, N. (2016). The airway microbiome at birth. Scientific Reports, 6(1). https://doi.org/10.1038/srep31023
  • Le, Q. V., Yang, G., Wu, Y., Jang, H. W., Shokouhimehr, M., & Oh, Y. K. (2019). Nanomaterials for modulating innate immune cells in cancer immunotherapy. Asian Journal of Pharmaceutical Sciences, 14(1), 16–29. https://doi.org/10.1016/j.ajps.2018.07.003
  • Lee, J. K., Sayers, B. C., Chun, K. S., Lao, H. C., Shipley-Phillips, J. K., Bonner, J. C., & Langenbach, R. (2012). Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP kinase-dependent and -independent mechanisms in mouse RAW264.7 macrophages. Particle and Fibre Toxicology, 9(1). https://doi.org/10.1186/1743-8977-9-14
  • Lee, Y. T., Ko, E. J., Kim, K. H., Hwang, H. S., Lee, Y., Kwon, Y. M., Kim, M. C., Lee, Y. N., Jung, Y. J., & Kang, S. M. (2017). Cellular immune correlates preventing disease against respiratory syncytial virus by vaccination with virus-like nanoparticles carrying fusion proteins. Journal of Biomedical Nanotechnology, 13(1), 84–98. https://doi.org/10.1166/jbn.2017.2341
  • Li, K. J., Chen, Z. L., Huang, Y., Zhang, R., Luan, X. Q., Lei, T. T., & Chen, L. (2019). Dysbiosis of lower respiratory tract microbiome are associated with inflammation and microbial function variety. Respiratory Research, 20(1). https://doi.org/10.1186/s12931-019-1246-0
  • Li, Z., Li, Y., Sun, Q., Wei, J., Li, B., Qiu, Y., Liu, K., Shao, D., & Ma, Z. (2022). Targeting the pulmonary microbiota to fight against respiratory diseases. Cells, 11(5), 916. https://doi.org/10.3390/cells11050916
  • Lipscomb, M. F., Hutt, J., Lovchik, J., Wu, T., & Lyons, C. R. (2010). The pathogenesis of acute pulmonary viral and bacterial infections: Investigations in animal models. Annual Review of Pathology: Mechanisms of Disease, 5(1), 223–252. https://doi.org/10.1146/annurev-pathol-121808-102153
  • Liu, J., Liu, Z., Pang, Y., & Zhou, H. (2022). The interaction between nanoparticles and immune system: Application in the treatment of inflammatory diseases. Journal of Nanobiotechnology, 20(1), 127. https://doi.org/10.1186/s12951-022-01343-7
  • Liu, Y., Tang, X., Tian, J., Zhu, C., Peng, H., Rui, K., Wang, Y., Mao, C., Ma, J., Lu, L., Xu, H., & Wang, S. (2014). Th17/Treg cells imbalance and GITRL profile in patients with Hashimoto’s thyroiditis. International Journal of Molecular Sciences, 15(12), 21674–21686. https://doi.org/10.3390/ijms151221674
  • Locke, B. W., Lee, J. J., & Sundar, K. M. (2022). {OSA} and chronic respiratory disease: Mechanisms and epidemiology. International Journal of Environmental Research and Public Health, 19(9), 5473. https://doi.org/10.3390/ijerph19095473
  • Lopez-Rodriguez, E., Gay-Jordi, G., Mucci, A., Lachmann, N., & Serrano-Mollar, A. (2017). Lung surfactant metabolism: Early in life, early in disease and target in cell therapy. Cell and Tissue Research, 367(3), 721–735. https://doi.org/10.1007/s00441-016-2520-9
  • Lund, F. E., Hollifield, M., Schuer, K., Lines, J. L., Randall, T. D., & Garvy, B. A. (2006). B cells are required for generation of protective effector and memory CD4 cells in response to pneumocystis lung infection. Journal of Immunology, 176(10), 6147–6154. https://doi.org/10.4049/jimmunol.176.10.6147
  • Luo, M. X., Hua, S., & Shang, Q. Y. (2021). Application of nanotechnology in drug delivery systems for respiratory diseases (review). Molecular Medicine Reports, 23(5). https://doi.org/10.3892/mmr.2021.11964
  • MacLean, J. A., Xia, W., Pinto, C. E., Zhao, L., Liu, H. W., & Kradin, R. L. (1996). Sequestration of inhaled particulate antigens by lung phagocytes. A mechanism for the effective inhibition of pulmonary cell-mediated immunity. The American Journal of Pathology, 148(2), 657–666.
  • Malhotra, J., Jabbour, S. K., & Aisner, J. (2017). Current state of immunotherapy for non-small cell lung cancer. Translational Lung Cancer Research, 6(5), 612–612. https://doi.org/10.21037/tlcr.2017.08.08
  • Malik, G., & Zhou, Y. (2020). Innate immune sensing of influenza a virus. Viruses, 12(7), 755. https://doi.org/10.3390/v12070755
  • Mallapragada, S. K., & Narasimhan, B. (2008). Immunomodulatory biomaterials. International Journal of Pharmaceutics, 364(2), 265–271. https://doi.org/10.1016/j.ijpharm.2008.06.030
  • Man, W. H., De Steenhuijsen Piters, W. A. A., & Bogaert, D. (2017). The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nature Reviews Microbiology, 15(5), 259–270. https://doi.org/10.1038/nrmicro.2017.14
  • Markiewski, M. M., & Lambris, J. D. (2007). The role of complement in inflammatory diseases from behind the scenes into the spotlight. The American Journal of Pathology. https://doi.org/10.2353/ajpath.2007.070166
  • Mejías, J. C., Forrest, O. A., Margaroli, C., Rubio, D. A. F., Viera, L., Li, J., Xu, X., Gaggar, A., Tirouvanziam, R., & Roy, K. (2019). Neutrophil-targeted, protease-activated pulmonary drug delivery blocks airway and systemic inflammation. JCI Insight, 4(23). https://doi.org/10.1172/jci.insight.131468
  • Meraz, I. M., Majidi, M., Cao, X., Lin, H., Li, L., Wang, J., Baladandayuthapani, V., Rice, D., Sepesi, B., Ji, L., & Roth, J. A. (2018). TUSC2 immunogene therapy synergizes with anti–PD-1 through enhanced proliferation and infiltration of natural killer cells in Syngeneic Kras -mutant mouse lung cancer models. Cancer Immunology Research, 6(2), 163–177. https://doi.org/10.1158/2326-6066.CIR-17-0273
  • Moore, T. L., Rodriguez-Lorenzo, L., Hirsch, V., Balog, S., Urban, D., Jud, C., Rothen-Rutishauser, B., Lattuada, M., & Petri-Fink, A. (2015). Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chemical Society Reviews, 44(17), 6287–6305. https://doi.org/10.1039/c4cs00487f
  • Moretta, A. (2005). The dialogue between human natural killer cells and dendritic cells. Current Opinion in Immunology, 17(3), 306–311. https://doi.org/10.1016/j.coi.2005.03.004
  • Moriyama, K., Ishizaka, A., Nakamura, M., Kubo, H., Kotani, T., Yamamoto, S., Ogawa, E. N., Kajikawa, O., Frevert, C. W., Kotake, Y., Morisaki, H., Koh, H., Tasaka, S., Martin, T. R., & Takeda, J. (2004). Enhancement of the endotoxin recognition pathway by ventilation with a large tidal volume in rabbits. American Journal of Physiology-Lung Cellular and Molecular Physiology, 286(6), L1114–L1121. https://doi.org/10.1152/ajplung.00296.2003
  • Murphy, F. A., Schinwald, A., Poland, C. A., & Donaldson, K. (2012). The mechanism of pleural inflammation by long carbon nanotubes: Interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Particle and Fibre Toxicology, 9(1). https://doi.org/10.1186/1743-8977-9-8
  • Nathan, A. T., Peterson, E. A., Chakir, J., & Wills-Karp, M. (2009). Innate immune responses of airway epithelium to house dust mite are mediated through β-glucan–dependent pathways. The Journal of Allergy and Clinical Immunology, 123(3), 612–618. https://doi.org/10.1016/j.jaci.2008.12.006
  • Navarro-Torné, A., Vidal, M., Trzaska, D. K., Passante, L., Crisafulli, A., Laang, H., Van De Loo, J. W., Berkouk, K., & Draghia-Akli, R. (2015). Chronic respiratory diseases and lung cancer research: A perspective from the European union. The European Respiratory Journal, 46(5), 1270–1280. https://doi.org/10.1183/13993003.00395-2015
  • Nelson, B. N., Hawkins, A. N., & Wozniak, K. L. (2020). Pulmonary macrophage and dendritic cell responses to Cryptococcus neoformans. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00037
  • Nelson, D. J., McMenamin, C., McWilliam, A. S., Brenan, M., & Holt, P. G. (1994). Development of the airway intraepithelial dendritic cell network in the rat from class II major histocompatibility (ia)-negative precursors: Differential regulation of ia expression at different levels of the respiratory tract. Journal of Experimental Medicine, 179(1), 203–212. https://doi.org/10.1084/jem.179.1.203
  • Nemmar, A., Al-Salam, S., Beegam, S., Yuvaraju, P., & Ali, B. H. (2017). The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice. International Journal of Nanomedicine, 12, 2913–2922. https://doi.org/10.2147/IJN.S127180
  • Nemmar, A., Yuvaraju, P., Beegam, S., Yasin, J., Al Dhaheri, R., Fahim, M. A., & Ali, B. H. (2015). In vitro platelet aggregation and oxidative stress caused by amorphous silica nanoparticles. International Journal of Physiology, Pathophysiology and Pharmacology, 7(1), 27–33.
  • Nicod, L. P. (2005). Lung defences: An overview. European Respiratory Review, 14(95), 45–50. https://doi.org/10.1183/09059180.05.00009501
  • Nishanth, R. P., Jyotsna, R. G., Schlager, J. J., Hussain, S. M., & Reddanna, P. (2011). Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway. Nanotoxicology, 5(4), 502–516. https://doi.org/10.3109/17435390.2010.541604
  • Nishi, K. I., Kadoya, C., Ogami, A., Oyabu, T., Morimoto, Y., Ueno, S., & Myojo, T. (2020). Changes over time in pulmonary inflammatory response in rat lungs after intratracheal instillation of nickel oxide nanoparticles. Journal of Occupational Health, 62(1). https://doi.org/10.1002/1348-9585.12162
  • O’Dwyer, D. N., Dickson, R. P., & Moore, B. B. (2016). The lung microbiome, immunity, and the pathogenesis of chronic lung disease. Journal of Immunology, 196(12), 4839–4847. https://doi.org/10.4049/jimmunol.1600279
  • Oh, C. K., Geba, G. P., & Molfino, N. (2010). Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. European Respiratory Review, 19, 46–54. https://doi.org/10.1183/09059180.00007609
  • Ohaegbulam, K. C., Assal, A., Lazar-Molnar, E., Yao, Y., & Zang, X. (2015). Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends in Molecular Medicine, 21(1), 24–33. https://doi.org/10.1016/j.molmed.2014.10.009
  • Parra, E., & Pérez-Gil, J. (2015). Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chemistry and Physics of Lipids, 185, 153–175. https://doi.org/10.1016/j.chemphyslip.2014.09.002
  • Parsons, P. E., Eisner, M. D., Thompson, B. T., Matthay, M. A., Ancukiewicz, M., Bernard, G. R., & Wheeler, A. P. (2005). Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Critical Care Medicine, 33(1), 1–6. https://doi.org/10.1097/01.CCM.0000149854.61192.DC
  • Parulekar, A. D., Kao, C. C., DIamant, Z., & Hanania, N. A. (2018). Targeting the interleukin-4 and interleukin-13 pathways in severe asthma: Current knowledge and future needs. Current Opinion in Pulmonary Medicine, 24(1), 50–55. https://doi.org/10.1097/MCP.0000000000000436
  • Passi, M., Shahid, S., Chockalingam, S., Sundar, I. K., & Packirisamy, G. (2020). Conventional and nanotechnology based approaches to combat chronic obstructive pulmonary disease: Implications for chronic airway diseases. International Journal of Nanomedicine, 15, 3803–3826. https://doi.org/10.2147/IJN.S242516
  • Patel, A., Bah, M. A., & Weiner, D. B. (2020). In vivo delivery of nucleic acid-encoded monoclonal antibodies. BioDrugs. https://doi.org/10.1007/s40259-020-00412-3
  • Patel, N., Massare, M. J., Tian, J. H., Guebre-Xabier, M., Lu, H., Zhou, H., Maynard, E., Scott, D., Ellingsworth, L., Glenn, G., & Smith, G. (2019). Respiratory syncytial virus prefusogenic fusion (F) protein nanoparticle vaccine: Structure, antigenic profile, immunogenicity, and protection. Vaccine: X, 37(41), 6112–6124. https://doi.org/10.1016/j.vaccine.2019.07.089
  • Patton, J. S. (2005). Unlocking the opportunity of tight glycaemic control: Innovative delivery of insulin via the lung. Diabetes, Obesity & Metabolism, 7(s1). https://doi.org/10.1111/j.1463-1326.2005.00530.x
  • Pérez-Gil, J. (2008). Structure of pulmonary surfactant membranes and films: The role of proteins and lipid–protein interactions. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1778(7–8), 1676–1695. https://doi.org/10.1016/j.bbamem.2008.05.003
  • Poh, T. Y., Ali, N. A. T. B. M., MacAogáin, M., Kathawala, M. H., Setyawati, M. I., Ng, K. W., & Chotirmall, S. H. (2018). Inhaled nanomaterials and the respiratory microbiome: Clinical, immunological and toxicological perspectives. Particle and Fibre Toxicology, 15(1). https://doi.org/10.1186/s12989-018-0282-0
  • Pramanik, S., Mohanto, S., Manne, R., Rajendran, R. R., Deepak, A., Edapully, S. J., Patil, T., & Katari, O. (2021). Nanoparticle-Based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases. Molecular Pharmaceutics, 18(10), 3671–3718. https://doi.org/10.1021/acs.molpharmaceut.1c00491
  • Pugin, J., Dunn, I., Jolliet, P., Tassaux, D., Magnenat, J. L., Nicod, L. P., & Chevrolet, J. C. (1998). Activation of human macrophages by mechanical ventilation in vitro. American Journal of Physiology-Lung Cellular and Molecular Physiology, 275(6), L1040–L1050. https://doi.org/10.1152/ajplung.1998.275.6.l1040
  • Qiu, K., Durham, P. G., & Anselmo, A. C. (2018). Inorganic nanoparticles and the microbiome. Nano Research, 11(10), 4936–4954. https://doi.org/10.1007/s12274-018-2137-2
  • Quadros, M. E., & Marr, L. C. (2010). Environmental and human health risks of aerosolized silver nanoparticles. Journal of the Air & Waste Management Association, 60(7), 770–781. https://doi.org/10.3155/1047-3289.60.7.770
  • Raesch, S. S., Tenzer, S., Storck, W., Rurainski, A., Selzer, D., Ruge, C. A., Perez-Gil, J., Schaefer, U. F., & Lehr, C. M. (2015). Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid composition. Agricultural Science & Technology Nano, 9(12), 11872–11885. https://doi.org/10.1021/acsnano.5b04215
  • Rakaee, M., Busund, L. T. R., Jamaly, S., Paulsen, E. E., Richardsen, E., Andersen, S., Al-Saad, S., Bremnes, R. M., Donnem, T., & Kilvaer, T. K. (2019). Prognostic value of macrophage phenotypes in resectable non–small cell lung cancer assessed by multiplex immunohistochemistry. Neoplasia (United States), 21(3), 282–293. https://doi.org/10.1016/j.neo.2019.01.005
  • Reck, M., Rodríguez-Abreu, D., Robinson, A. G., Hui, R., Csőszi, T., Fülöp, A., Gottfried, M., Peled, N., Tafreshi, A., Cuffe, S., O’Brien, M., Rao, S., Hotta, K., Leiby, M. A., Lubiniecki, G. M., Shentu, Y., Rangwala, R., & Brahmer, J. R. (2016). Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. The New England Journal of Medicine, 375(19), 1823–1833. https://doi.org/10.1056/nejmoa1606774
  • Reda, M., Ngamcherdtrakul, W., Nelson, M. A., Siriwon, N., Wang, R., Zaidan, H. Y., Bejan, D. S., Reda, S., Hoang, N. H., Crumrine, N. A., Rehwaldt, J. P. C., Bindal, A., Mills, G. B., Gray, J. W., & Yantasee, W. (2022). Development of a nanoparticle-based immunotherapy targeting PD-L1 and PLK1 for lung cancer treatment. Nature Communications, 13(1), 4261. https://doi.org/10.1038/s41467-022-31926-9
  • Rengachari, S., Schilbach, S., Aibara, S., Dienemann, C., & Cramer, P. (2021). Structure of the human Mediator–RNA polymerase II pre-initiation complex. Nature, 594(7861), 129–133. https://doi.org/10.1038/s41586-021-03555-7
  • Renukaradhya, G. J., Narasimhan, B., & Mallapragada, S. K. (2015). Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. Journal of Controlled Release, 219, 622–631. https://doi.org/10.1016/j.jconrel.2015.09.047
  • Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P., & Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunology, 2(4), 361–367. https://doi.org/10.1038/86373
  • Rigby, W. F. C., Shen, L., Ball, E. D., Guyre, P. M., & Fanger, M. W. (1984). Differentiation of a human monocytic cell line by 1,25-dihydroxyvitamin D3 (calcitriol): A morphologic, phenotypic, and functional analysis. Blood, 64(5), 1110–1115. https://doi.org/10.1182/blood.v64.5.1110.bloodjournal6451110
  • Rockett, K. A., Brookes, R., Udalova, I., Vidal, V., Hill, A. V. S., & Kwiatkowski, D. (1998). 1,25-dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of mycobacterium tuberculosis in a human macrophage-like cell line. Infection and Immunity, 66(11), 5314–5321. https://doi.org/10.1128/iai.66.11.5314-5321.1998
  • Rodriguez-Lorenzo, L., Fytianos, K., Blank, F., Von Garnier, C., Rothen-Rutishauser, B., & Petri-Fink, A. (2014). Fluorescence-encoded gold nanoparticles: Library design and modulation of cellular uptake into dendritic cells. Small, 10(7), 1341–1350. https://doi.org/10.1002/smll.201302889
  • Rothman, R. E., Hsieh, Y. H., & Yang, S. (2006). Communicable respiratory threats in the ED: Tuberculosis, influenza, SARS, and other aerosolized infections. Emergency Medicine Clinics of North America, 24(4), 989–1017. https://doi.org/10.1016/j.emc.2006.06.006
  • Sadik, O. A. (2013). Anthropogenic nanoparticles in the environment. Environmental Science: Processes & Impacts, 15(1), 19–20. https://doi.org/10.1039/c2em90063g
  • Safranek, J., Pesta, M., Holubec, L., Kulda, V., Dreslerova, J., Vrzalova, J., Topolcan, O., Pesek, M., Finek, J., & Treska, V. (2009). Expression of MMP-7, MMP-9, TIMP-1 and TIMP-2 mRNA in lung tissue of patients with non-small cell lung cancer (NSCLC) and benign pulmonary disease. Anticancer Research, 29(7), 2513–2517.
  • Salvador-Morales, C., Townsend, P., Flahaut, E., Vénien-Bryan, C., Vlandas, A., Green, M. L. H., & Sim, R. B. (2007). Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon, 45(3), 607–617. N. Y https://doi.org/10.1016/j.carbon.2006.10.011
  • Schins, R. (2013). Genotoxicity of nanoparticles. Nanomaterials. https://doi.org/10.1002/9783527673919.ch8
  • Schleh, C., & Hohlfeld, J. M. (2009). Interaction of nanoparticles with the pulmonary surfactant system. Inhalation Toxicology, 21(sup1), 97–103. https://doi.org/10.1080/08958370903005744
  • Scott, M. G., Davidson, D. J., Gold, M. R., Bowdish, D., & Hancock, R. E. W. (2002). The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. Journal of Immunology, 169(7), 3883–3891. https://doi.org/10.4049/jimmunol.169.7.3883
  • Segal, L. N., Clemente, J. C., Tsay, J. C. J., Koralov, S. B., Keller, B. C., Wu, B. G., Li, Y., Shen, N., Ghedin, E., Morris, A., Diaz, P., Huang, L., Wikoff, W. R., Ubeda, C., Artacho, A., Rom, W. N., Sterman, D. H., Collman, R. G., Blaser, M. J., & Weiden, M. D. (2016). Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype analysed and interpreted the data HHS public access author manuscript. Nature Microbiology, 1(5). https://doi.org/10.1038/nmicrobiol.2016.31
  • Shao, K., Singha, S., Clemente-Casares, X., Tsai, S., Yang, Y., & Santamaria, P. (2015). Nanoparticle-Based immunotherapy for cancer. Agricultural Science & Technology Nano, 9(1), 16–30. https://doi.org/10.1021/nn5062029
  • Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J. T., & Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology, 233(9), 6425–6440. https://doi.org/10.1002/jcp.26429
  • Sharma, A., Vaghasiya, K., Gupta, P., Gupta, U. D., & Verma, R. K. (2018). Reclaiming hijacked phagosomes: Hybrid nano-in-micro encapsulated MIAP peptide ensures host directed therapy by specifically augmenting phagosome-maturation and apoptosis in TB infected macrophage cells. International Journal of Pharmaceutics, 536(1), 50–62. https://doi.org/10.1016/j.ijpharm.2017.11.046
  • Sharma, P., Dhanjal, D. S., Chopra, C., Tambuwala, M. M., Sohal, S. S., van der Spek, P. J., Sharma, H. S., & Satija, S. (2022). Targeting eosinophils in chronic respiratory diseases using nanotechnology-based drug delivery. Chemico-Biological Interactions, 365, 110050. https://doi.org/10.1016/j.cbi.2022.110050
  • Shaw, C. A., Ciarlet, M., Cooper, B. W., Dionigi, L., Keith, P., O’Brien, K. B., Rafie-Kolpin, M., & Dormitzer, P. R. (2013). The path to an RSV vaccine. Current Opinion in Virology, 3(3), 332–342. https://doi.org/10.1016/j.coviro.2013.05.003
  • Sia, J. K., Georgieva, M., & Rengarajan, J. (2015). Innate immune defenses in human tuberculosis: An overview of the interactions between mycobacterium tuberculosis and innate immune cells. Journal of Immunology Research, 2015, 1–12. https://doi.org/10.1155/2015/747543
  • Sindrilaru, A., Peters, T., Wieschalka, S., Baican, C., Baican, A., Peter, H., Hainzl, A., Schatz, S., Qi, Y., Schlecht, A., Weiss, J. M., Wlaschek, M., Sunderkötter, C., & Scharffetter-Kochanek, K. (2011). An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. Journal of Clinical Investigation, 121(3), 985–997. https://doi.org/10.1172/JCI44490
  • Smarr, C. B., Yap, W. T., Neef, T. P., Pearson, R. M., Hunter, Z. N., Ifergan, I., Getts, D. R., Bryce, P. J., Shea, L. D., & Miller, S. D. (2016). Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 5059–5064. https://doi.org/10.1073/pnas.1505782113
  • Song, Z., Luo, W., Zheng, H., Zeng, Y., Wang, J., & Chen, T. (2021). Translational nanotherapeutics reprograms immune microenvironment in malignant pleural effusion of lung adenocarcinoma. Advanced Healthcare Materials, 10(12). https://doi.org/10.1002/adhm.202170055
  • Sørensen, O. E., Follin, P., Johnsen, A. H., Calafat, J., Sandra Tjabringa, G., Hiemstra, P. S., & Borregaard, N. (2001). Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood, 97(12), 3951–3959. https://doi.org/10.1182/blood.V97.12.3951
  • Soriano, J. B., Kendrick, P. J., Paulson, K. R., Gupta, V., Abrams, E. M., Adedoyin, R. A., Adhikari, T. B., Advani, S. M., Agrawal, A., Ahmadian, E., Alahdab, F., Aljunid, S. M., Altirkawi, K. A., Alvis-Guzman, N., Anber, N. H., Andrei, C. L., Anjomshoa, M., Ansari, F. … Zhang, Y. (2020). Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the global burden of disease study 2017. The Lancet Respiratory Medicine, 8(6), 585–596. https://doi.org/10.1016/S2213-2600(20)30105-3
  • Soroosh, P., Doherty, T. A., Duan, W., Mehta, A. K., Choi, H., Adams, Y. F., Mikulski, Z., Khorram, N., Rosenthal, P., Broide, D. H., & Croft, M. (2013). Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. Journal of Experimental Medicine, 210(4), 775–788. https://doi.org/10.1084/jem.20121849
  • Spits, H., & Cupedo, T. (2012). Innate lymphoid cells: Emerging insights in development, lineage relationships, and function. Annual Review of Immunology, 30(1), 647–675. https://doi.org/10.1146/annurev-immunol-020711-075053
  • Stater, E. P., Sonay, A. Y., Hart, C., & Grimm, J. (2021). The ancillary effects of nanoparticles and their implications for nanomedicine. Nature Nanotechnology, 16(11), 1180–1194. https://doi.org/10.1038/s41565-021-01017-9
  • Steen, E. H., Wang, X., Balaji, S., Butte, M. J., Bollyky, P. L., & Keswani, S. G. (2020). The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Advances in Wound Care, 9(4), 184–198. https://doi.org/10.1089/wound.2019.1032
  • Summers, C., Chilvers, E. R., & Michael Peters, A. (2014). Mathematical modeling supports the presence of neutrophil depriming in vivo. Physiological Reports, 2(3), e00241. https://doi.org/10.1002/phy2.241
  • Summers, C., Singh, N. R., White, J. F., Mackenzie, I. M., Johnston, A., Solanki, C., Balan, K. K., Peters, A. M., & Chilvers, E. R. (2014). Pulmonary retention of primed neutrophils: A novel protective host response, which is impaired in the acute respiratory distress syndrome. Thorax, 69(7), 623–629. https://doi.org/10.1136/thoraxjnl-2013-204742
  • T Hart, B. A., Bogers, W. M., Haanstra, K. G., Verreck, F. A., & Kocken, C. H. (2015). The translational value of non-human primates in preclinical research on infection and immunopathology. European Journal of Pharmacology, 759, 69–83. https://doi.org/10.1016/j.ejphar.2015.03.023
  • Tabeling, C., Scheer, H., Schönrock, S. M., Runge, F., Gutbier, B., Lienau, J., Hamelmann, E., Opitz, B., Suttorp, N., Mayer, K., Behrens, G. M., Tschernig, T., & Witzenrath, M. (2014). Nucleotide oligomerization domain 1 ligation suppressed murine allergen–specific T-cell proliferation and airway hyperresponsiveness. American Journal of Respiratory Cell and Molecular Biology, 50(5), 903–911. https://doi.org/10.1165/rcmb.2013-0333OC
  • Tengroth, L., Millrud, C. R., Kvarnhammar, A. M., Georén, S. K., Latif, L., Cardell, L. O., & Alexopoulou, L. (2014). Functional effects of toll-like receptor (TLR)3, 7, 9, RIG-I and MDA-5 stimulation in nasal epithelial cells. PLoS One, 9(6), e98239. https://doi.org/10.1371/journal.pone.0098239
  • Thompson, E. A. (2014). Innate immune responses to nanoparticle exposure in the lung. Journal of Environmental Immunology and Toxicology, 2(1), 46. https://doi.org/10.7178/jeit.23
  • Trapnell, B. C., Carey, B. C., Uchida, K., & Suzuki, T. (2009). Pulmonary alveolar proteinosis, a primary immunodeficiency of impaired GM-CSF stimulation of macrophages. Current Opinion in Immunology, 21(5), 514–521. https://doi.org/10.1016/j.coi.2009.09.004
  • Tremblay, L., Valenza, F., Ribeiro, S. P., Li, J., & Slutsky, A. S. (1997). Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. Journal of Clinical Investigation, 99(5), 944–952. https://doi.org/10.1172/JCI119259
  • Tukulula, M., Hayeshi, R., Fonteh, P., Meyer, D., Ndamase, A., Madziva, M. T., Khumalo, V., Lubuschagne, P., Naicker, B., Swai, H., & Dube, A. (2015). Curdlan-conjugated PLGA nanoparticles possess macrophage stimulant activity and drug delivery capabilities. Pharmaceutical Research. https://doi.org/10.1007/s11095-015-1655-9
  • Turner, M. D., Nedjai, B., Hurst, T., & Pennington, D. J. (2014). Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta - Molecular Cell Research. https://doi.org/10.1016/j.bbamcr.2014.05.014
  • Turvey, S. E., & Broide, D. H. (2010). Innate immunity. The Journal of Allergy and Clinical Immunology. https://doi.org/10.1016/j.jaci.2009.07.016
  • Unger, S. A., & Bogaert, D. (2017). The respiratory microbiome and respiratory infections. The Journal of Infection, 74, S84–S88. https://doi.org/10.1016/S0163-4453(17)30196-2
  • Van Dalen, F. J., Van Stevendaal, M. H. M. E., Fennemann, F. L., Verdoes, M., & Ilina, O. (2019). Molecular repolarisation of tumour-associated macrophages. Molecules, 24(1), 9. https://doi.org/10.3390/molecules24010009
  • Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. (2000). The New England Journal of Medicine, 342, 1301–1308. https://doi.org/10.1056/nejm200005043421801
  • Verma, R., Lee, C., Jeun, E. J., Yi, J., Kim, K. S., Ghosh, A., Byun, S., Lee, C. G., Kang, H. J., Kim, G. C., Jun, C. D., Jan, G., Suh, C. H., Jung, J. Y., Sprent, J., Rudra, D., De Castro, C., Molinaro, A., Surh, C. D., & Im, S. H. (2018). Cell surface polysaccharides of bifidobacterium bifidum induce the generation of Foxp3+ regulatory T cells. Science Immunology, 3(28). https://doi.org/10.1126/sciimmunol.aat6975
  • Vermaelen, K., & Pauwels, R. (2005). Pulmonary dendritic cells. American Journal of Respiratory and Critical Care Medicine, 172(5), 530–551. https://doi.org/10.1164/rccm.200410-1384SO
  • Vij, N., Min, T., Bodas, M., Gorde, A., & Roy, I. (2016). Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases. Nanomedicine: Nanotechnology, Biology and Medicine, 12(8), 2415–2427. https://doi.org/10.1016/j.nano.2016.06.008
  • Wallrapp, A., Riesenfeld, S. J., Burkett, P. R., Abdulnour, R. E. E., Nyman, J., Dionne, D., Hofree, M., Cuoco, M. S., Rodman, C., Farouq, D., Haas, B. J., Tickle, T. L., Trombetta, J. J., Baral, P., Klose, C. S. N., Mahlakõiv, T., Artis, D., Rozenblatt-Rosen, O. … Kuchroo, V. K. (2017). The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature, 551(7682), 658–658. https://doi.org/10.1038/nature24029
  • Wang, J., & Fan, Y. (2014). Lung injury induced by TiO2 nanoparticles depends on their structural features: Size, shape, crystal phases, and surface coating. International Journal of Molecular Sciences, 15(12), 22258–22278. https://doi.org/10.3390/ijms151222258
  • Wang, K., Feng, Y., Li, S., Li, W., Chen, X., Yi, R., Zhang, H., & Hong, Z. (2018). Oral delivery of bavachinin-loaded PEG-PLGA nanoparticles for asthma treatment in a murine model. Journal of Biomedical Nanotechnology, 14(10), 1806–1815. https://doi.org/10.1166/jbn.2018.2618
  • Wang, T.-T., Nestel, F. P., Bourdeau, V., Nagai, Y., Wang, Q., Liao, J., Tavera-Mendoza, L., Lin, R., Hanrahan, J. W., Mader, S., & White, J. H. (2004). Cutting edge: 1,25-Dihydroxyvitamin D3 Is a direct inducer of antimicrobial peptide gene expression. Journal of Immunology, 173(10), 6490–6490. https://doi.org/10.4049/jimmunol.173.5.2909
  • Weber, G., Heilborn, J. D., Jimenez, C. I. C., Hammarsjö, A., Törmä, H., & Ståhle, M. (2005). Vitamin D induces the antimicrobial protein hCAP18 in human skin [5]. The Journal of Investigative Dermatology, 124(5), 1080–1082. https://doi.org/10.1111/j.0022-202X.2005.23687.x
  • Whitwell, H., Mackay, R. M., Elgy, C., Morgan, C., Griffiths, M., Clark, H., Skipp, P., & Madsen, J. (2016). Nanoparticles in the lung and their protein corona: The few proteins that count. Nanotoxicology, 10(9), 1385–1394. https://doi.org/10.1080/17435390.2016.1218080
  • Woodland, D. L. (2003). Cell-mediated immunity to respiratory virus infections. Current Opinion in Immunology, 15(4), 430–435. https://doi.org/10.1016/S0952-7915(03)00067-0
  • Wu, S., & Sun, J. (2011). Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discovery Medicine, 11(59), 325–335.
  • Wu, T., Zhang, T., Chen, Y., & Tang, M. (2016). Research advances on potential neurotoxicity of quantum dots. Journal of Applied Toxicology: JAT, 36(3), 345–351. https://doi.org/10.1002/jat.3229
  • Xiong, Y., Liu, Y., Cao, L., Wang, D., Guo, M., Jiang, A., Guo, D., Hu, W., Yang, J., Tang, Z., Wu, H., Lin, Y., Zhang, M., Zhang, Q., Shi, M., Liu, Y., Zhou, Y., Lan, K., & Chen, Y. (2020). Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerging Microbes & Infections, 9(1), 761–770. https://doi.org/10.1080/22221751.2020.1747363
  • XU, H., SORURI, A., GIESELER, R. K. H., & PETERS, J. H. (1993). 1,25‐Dihydroxyvitamin D3 exerts opposing effects to IL‐4 on MHC class‐II antigen expression, accessory activity, and phagocytosis of human monocytes. Scandinavian Journal of Immunology, 38(6), 535–540. https://doi.org/10.1111/j.1365-3083.1993.tb03237.x
  • Yagi, K., Huffnagle, G. B., Lukacs, N. W., & Asai, N. (2021). The lung microbiome during health and disease. International Journal of Molecular Sciences, 22(19), 10872. https://doi.org/10.3390/ijms221910872
  • Yang, D., Xing, Y., Song, X., & Qian, Y. (2020). The impact of lung microbiota dysbiosis on inflammation. Immunology, 159(2), 156–166. https://doi.org/10.1111/imm.13139
  • Yang, W., Peters, J. I., & Williams, R. O. (2008). Inhaled nanoparticles—A current review. International Journal of Pharmaceutics, 356(1–2), 239–247. https://doi.org/10.1016/j.ijpharm.2008.02.011
  • Yang, Y., Ding, Y., Fan, B., Wang, Y., Mao, Z., Wang, W., & Wu, J. (2020). Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis. Journal of Controlled Release: Official Journal of the Controlled Release Society, 321, 463–474. https://doi.org/10.1016/j.jconrel.2020.02.030
  • Yazdanbakhsh, M., Kremsner, P. G., & Van Ree, R. (2002). Immunology: Allergy, parasites, and the hygiene hypothesis. Science, 296(5567), 490–494. https://doi.org/10.1126/science.296.5567.490
  • Yoshida, T., Yoshioka, Y., Fujimura, M., Yamashita, K., Higashisaka, K., Morishita, Y., Kayamuro, H., Nabeshi, H., Nagano, K., Abe, Y., Kamada, H., Tsunoda, S. I., Itoh, N., Yoshikawa, T., & Tsutsumi, Y. (2011). Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice. Nanoscale Research Letters, 6(1). https://doi.org/10.1186/1556-276X-6-195
  • Yu, G., Gail, M. H., Consonni, D., Carugno, M., Humphrys, M., Pesatori, A. C., Caporaso, N. E., Goedert, J. J., Ravel, J., & Landi, M. T. (2016). Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biology, 17(1). https://doi.org/10.1186/s13059-016-1021-1
  • Yun, Y., Srinivas, G., Kuenzel, S., Linnenbrink, M., Alnahas, S., Bruce, K. D., Steinhoff, U., Baines, J. F., Schaible, U. E., & Di, Y. P. (2014). Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture. PLoS One, 9(12), e113466. https://doi.org/10.1371/journal.pone.0113466
  • Zhang, H., Christensen, C. L., Dries, R., Oser, M. G., Deng, J., Diskin, B., Li, F., Pan, Y., Zhang, X., Yin, Y., Papadopoulos, E., Pyon, V., Thakurdin, C., Kwiatkowski, N., Jani, K., Rabin, A. R., Castro, D. M., Chen, T. … Wong, K. K. (2020). CDK7 inhibition potentiates genome instability triggering anti-tumor immunity in small cell lung cancer. Cancer Cell, 37(1), 37–54.e9. https://doi.org/10.1016/j.ccell.2019.11.003
  • Zhang, J. M., & An, J. (2007). Cytokines, inflammation, and pain. International Anesthesiology Clinics. https://doi.org/10.1097/AIA.0b013e318034194e
  • Zhang, Y., Mortimer, M., & Guo, L. H. (2020). Interplay between engineered nanomaterials and microbiota. Environmental Science: Nano, 7(9), 2454–2485. https://doi.org/10.1039/d0en00557f
  • Zilker, C., Kozlova, D., Sokolova, V., Yan, H., Epple, M., Überla, K., & Temchura, V. (2017). Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands. Nanomedicine: Nanotechnology, Biology and Medicine, 13(1), 173–182. https://doi.org/10.1016/j.nano.2016.08.028
  • Zlatnik, E. Y., Sitkovskaya, A. O., Nepomnyashchaya, E. M., Dzhandigova, P. R., & Vashchenko, L. N. (2018). Achievements and prospects of cellular technologies based on the activated lymphocytes in the treatment of malignant tumors. Kazan Medical Journal, 99(5), 792–801. https://doi.org/10.17816/kmj2018-792
  • Zlotnik, A., & Yoshie, O. (2000). Chemokines: A new classification system and their role in immunity. Immunity. https://doi.org/10.1016/S1074-7613(00)80165-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.