Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 53, 2024 - Issue 3
233
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in Metabolic Regulation of Macrophage Polarization State

, , , &

References

  • An, Y., & Yang, Q. (2021). Tumor-associated macrophage-targeted therapeutics in ovarian cancer. International Journal of Cancer Journal International du Cancer, 149(1), 21–30. https://doi.org/10.1002/ijc.33408
  • Baardman, J., Verberk, S. G. S., Prange, K. H. M., van Weeghel, M., van der Velden, S., Ryan, D. G., & Van den Bossche, J. (2018). A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Reports, 25(8), 2044–2052 e2045. https://doi.org/10.1016/j.celrep.2018.10.092
  • Banete, A., Barilo, J., Whittaker, R., & Basta, S. (2021). The activated macrophage - a tough fortress for virus invasion: How viruses strike back. Frontiers in Microbiology, 12, 803427. https://doi.org/10.3389/fmicb.2021.803427
  • Bel’skaya, L. V., Gundyrev, I. A., & Solomatin, D. V. (2023). The role of amino acids in the diagnosis, risk assessment, and treatment of breast cancer: A review. Current Issues in Molecular Biology, 45(9), 7513–7537. https://doi.org/10.3390/cimb45090474
  • Belgiovine, C., D’Incalci, M., Allavena, P., & Frapolli, R. (2016). Tumor-associated macrophages and anti-tumor therapies: Complex links. Cellular and Molecular Life Sciences: CMLS, 73(13), 2411–2424. https://doi.org/10.1007/s00018-016-2166-5
  • Blagih, J., & Jones, R. G. (2012). Polarizing macrophages through reprogramming of glucose metabolism. Cell Metabolism, 15(6), 793–795. https://doi.org/10.1016/j.cmet.2012.05.008
  • Boutilier, A. J., & Elsawa, S. F. (2021). Macrophage polarization states in the tumor microenvironment. International Journal of Molecular Sciences, 22(13), 6995. https://doi.org/10.3390/ijms22136995
  • Braga, T. T., Agudelo, J. S., & Camara, N. O. (2015). Macrophages during the fibrotic process: M2 as friend and foe. Frontiers in Immunology, 6, 602. https://doi.org/10.3389/fimmu.2015.00602
  • Chavakis, T., Alexaki, V. I., & Ferrante, A. W. (2023). Macrophage function in adipose tissue homeostasis and metabolic inflammation. Nature Immunology, 24(5), 757–766. https://doi.org/10.1038/s41590-023-01479-0
  • Chen, P., Zuo, H., Xiong, H., Kolar, M. J., Chu, Q., Saghatelian, A., Siegwart D. J., & Wan, Y. (2017). Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 114(3), 580–585. https://doi.org/10.1073/pnas.1614035114
  • Chen, S., Xia, Y., He, F., Fu, J., Xin, Z., Deng, B., & Ren, W. (2020). Serine supports IL-1β production in macrophages through mTOR signaling. Frontiers in Immunology, 11, 1866. https://doi.org/10.3389/fimmu.2020.01866
  • Choe, S. S., Shin, K. C., Ka, S., Lee, Y. K., Chun, J. S., & Kim, J. B. (2014). Macrophage HIF-2alpha ameliorates adipose tissue inflammation and insulin resistance in obesity. Diabetes, 63(10), 3359–3371. https://doi.org/10.2337/db13-1965
  • Colegio, O. R., Chu, N. Q., Szabo, A. L., Chu, T., Rhebergen, A. M., Jairam, V., & Medzhitov, R. (2014). Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature, 513(7519), 559–563. https://doi.org/10.1038/nature13490
  • Colin, S., Chinetti-Gbaguidi, G., & Staels, B. (2014). Macrophage phenotypes in atherosclerosis. Immunological Reviews, 262(1), 153–166. https://doi.org/10.1111/imr.12218
  • Darwish, S. F., Elbadry, A. M. M., Elbokhomy, A. S., Salama, G. A., & Salama, R. M. (2023). The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. Frontiers in Aging, 4, 1231706. https://doi.org/10.3389/fragi.2023.1231706
  • de Brito, N. M., Duncan-Moretti, J., da-Costa, H. C., Saldanha-Gama, R., Paula-Neto, H. A., Dorighello, G. G., & Barja-Fidalgo, C. (2020). Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research, 1867(2), 118604. https://doi.org/10.1016/j.bbamcr.2019.118604
  • Deng, Y., Deng, C., & Zhu, X. (2023). Research progress on the role and mechanism of 5-hydroxytryptamine and M2 macrophages in pulmonary interstitial fibrosis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 35(9), 1004–1008. https://doi.org/10.3760/cma.j.cn121430-20230724-00549
  • Di Gioia, M., Spreafico, R., Springstead, J. R., Mendelson, M. M., Joehanes, R., Levy, D., & Zanoni, I. (2020). Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nature Immunology, 21(1), 42–53. https://doi.org/10.1038/s41590-019-0539-2
  • El Kasmi, K. C., & Stenmark, K. R. (2015). Contribution of metabolic reprogramming to macrophage plasticity and function. Seminars in Immunology, 27(4), 267–275. https://doi.org/10.1016/j.smim.2015.09.001
  • Freemerman, A. J., Johnson, A. R., Sacks, G. N., Milner, J. J., Kirk, E. L., Troester, M. A., & Makowski, L. (2014). Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. The Journal of Biological Chemistry, 289(11), 7884–7896. https://doi.org/10.1074/jbc.M113.522037
  • Fu, Y., Zou, T., Shen, X., Nelson, P. J., Li, J., Wu, C., & Dong, Q. (2021). Lipid metabolism in cancer progression and therapeutic strategies. MedComm (2020), 2(1), 27–59. https://doi.org/10.1002/mco2.27
  • Fujisaka, S., Usui, I., Ikutani, M., Aminuddin, A., Takikawa, A., Tsuneyama, K., & Tobe, K. (2013). Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1alpha-dependent and HIF-1alpha-independent manner in obese mice. Diabetologia, 56(6), 1403–1412. https://doi.org/10.1007/s00125-013-2885-1
  • Gaber, T., Strehl, C., & Buttgereit, F. (2017). Metabolic regulation of inflammation. Nature Reviews Rheumatology, 13(5), 267–279. https://doi.org/10.1038/nrrheum.2017.37
  • Gao, X., Gao, H., Shao, W., Wang, J., Li, M., & Liu, S. (2023). The extracellular vesicle–macrophage regulatory axis: A novel pathogenesis for endometriosis. Biomolecules, 13(9), 1376. https://doi.org/10.3390/biom13091376
  • Gauthier, T., & Chen, W. (2022). Modulation of macrophage immunometabolism: A new approach to fight infections. Frontiers in Immunology, 13, 780839. https://doi.org/10.3389/fimmu.2022.780839
  • Geeraerts, X., Bolli, E., Fendt, S. M., & Van Ginderachter, J. A. (2017). Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Frontiers in Immunology, 8, 289. https://doi.org/10.3389/fimmu.2017.00289
  • Gleeson, L. E., & Sheedy, F. J. (2016). Metabolic reprogramming & inflammation: Fuelling the host response to pathogens. Seminars in Immunology, 28(5), 450–468. https://doi.org/10.1016/j.smim.2016.10.007
  • Goossens, P., Rodriguez-Vita, J., Etzerodt, A., Masse, M., Rastoin, O., Gouirand, V., & Lawrence, T. (2019). Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metabolism, 29(6), p1376–1389.E4 https://doi.org/10.1016/j.cmet.2019.02.016
  • Guilliams, M., Thierry, G. R., Bonnardel, J., & Bajenoff, M. (2020). Establishment and maintenance of the macrophage niche. Immunity, 52(3), 434–451. https://doi.org/10.1016/j.immuni.2020.02.015
  • Haschemi, A., Kosma, P., Gille, L., Evans, C. R., Burant, C. F., Starkl, P., & Wagner, O. (2012). The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metabolism, 15(6), 813–826. https://doi.org/10.1016/j.cmet.2012.04.023
  • Hasegawa, S., Ichiyama, T., Sonaka, I., Ohsaki, A., Okada, S., Wakiguchi, H., & Furukawa, S. (2012). Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clinical and Experimental Immunology, 167(2), 269–274. https://doi.org/10.1111/j.1365-2249.2011.04519.x
  • Hayes, C. S., Shicora, A. C., Keough, M. P., Snook, A. E., Burns, M. R., & Gilmour, S. K. (2014). Polyamine-blocking therapy reverses immunosuppression in the tumor microenvironment. Cancer Immunology Research, 2(3), 274–285. https://doi.org/10.1158/2326-6066.CIR-13-0120-T
  • Hu, X., Wan, X., Diao, Y., Shen, Z., Zhang, Z., Wang, P., & Ning, Q. (2023). Fibrinogen-like protein 2 regulates macrophage glycolytic reprogramming by directly targeting PKM2 and exacerbates alcoholic liver injury. International Immunopharmacology, 124(Pt B), 110957. https://doi.org/10.1016/j.intimp.2023.110957
  • Hu, Y., Yang, C., Shen, G., Yang, S., Cheng, X., Cheng, F., & Wang, X. (2019). Hyperglycemia-Triggered Sphingosine-1-Phosphate and Sphingosine-1-Phosphate Receptor 3 signaling worsens liver ischemia/reperfusion injury by regulating M1/M2 polarization. Liver Transplantation: Official Publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society, 25(7), 1074–1090. https://doi.org/10.1002/lt.25470
  • Huang, S. C., Everts, B., Ivanova, Y., O’Sullivan, D., Nascimento, M., Smith, A. M., & Pearce, E. J. (2014). Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nature Immunology, 15(9), 846–855. https://doi.org/10.1038/ni.2956
  • Hutton, M., Frazer, M., Lin, A., Patel, S., & Misra, A. (2023). New targets in atherosclerosis: Vascular smooth muscle cell plasticity and macrophage polarity. Clinical Therapeutics, 45(11), 1047–1054. https://doi.org/10.1016/j.clinthera.2023.08.015
  • Jha, A. K., Huang, S. C., Sergushichev, A., Lampropoulou, V., Ivanova, Y., Loginicheva, E., & Artyomov, M. N. (2015). Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 42(3), 419–430. https://doi.org/10.1016/j.immuni.2015.02.005
  • Jinnouchi, H., Guo, L., Sakamoto, A., Torii, S., Sato, Y., Cornelissen, A., & Finn, A. V. (2020). Diversity of macrophage phenotypes and responses in atherosclerosis. Cellular and Molecular Life Sciences: CMLS, 77(10), 1919–1932. https://doi.org/10.1007/s00018-019-03371-3
  • Kadomoto, S., Izumi, K., & Mizokami, A. (2021). Macrophage polarity and disease control. International Journal of Molecular Sciences, 23(1), 144. https://doi.org/10.3390/ijms23010144
  • Kelly, B., & O’Neill, L. A. (2015). Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Research, 25(7), 771–784. https://doi.org/10.1038/cr.2015.68
  • Kieler, M., Hofmann, M., & Schabbauer, G. (2021). More than just protein building blocks: How amino acids and related metabolic pathways fuel macrophage polarization. The FEBS Journal, 288(12), 3694–3714. https://doi.org/10.1111/febs.15715
  • Kim, M. J., Lee, H., Chanda, D., Thoudam, T., Kang, H. J., Harris, R. A., & Lee, I. K. (2023). The role of pyruvate metabolism in mitochondrial quality control and inflammation. Molecules and Cells, 46(5), 259–267. https://doi.org/10.14348/molcells.2023.2128
  • Kobayashi, E. H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., & Yamamoto, M. (2016). Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nature Communications, 7(1), 11624. https://doi.org/10.1038/ncomms11624
  • Kwon, D. H., Cha, H. J., Lee, H., Hong, S. H., Park, C., Park, S. H., & Choi, Y. H. (2019). Protective effect of glutathione against oxidative stress-induced cytotoxicity in raw 264.7 macrophages through activating the nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway. Antioxidants (Basel), 8(4), 82. https://doi.org/10.3390/antiox8040082
  • Kwon, D. H., Lee, H., Park, C., Hong, S. H., Hong, S. H., Kim, G. Y., & Choi, Y. H. (2019). Glutathione induced immune-stimulatory activity by promoting M1-like macrophages polarization via potential ROS scavenging capacity. Antioxidants (Basel), 8(9), 413. https://doi.org/10.3390/antiox8090413
  • Lenart, M., Rutkowska-Zapala, M., Baj-Krzyworzeka, M., Szatanek, R., Weglarczyk, K., Smallie, T., & Siedlar, M. (2017). Hyaluronan carried by tumor-derived microvesicles induces IL-10 production in classical (CD14(++)CD16(-)) monocytes via PI3K/Akt/mTOR-dependent signalling pathway. Immunobiology, 222(1), 1–10. https://doi.org/10.1016/j.imbio.2015.06.019
  • Leone, R. D., & Powell, J. D. (2020). Metabolism of immune cells in cancer. Nature Reviews Cancer, 20(9), 516–531. https://doi.org/10.1038/s41568-020-0273-y
  • Leone, R. D., Zhao, L., Englert, J. M., Sun, I. M., Oh, M. H., Sun, I. H., & Powell, J. D. (2019). Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science, 366(6468), 1013–1021. https://doi.org/10.1126/science.aav2588
  • Li, S. L., Wang, Z. M., Xu, C., Che, F. H., Hu, X. F., Cao, R., & Yang, J. (2022). Liraglutide attenuates hepatic ischemia-reperfusion injury by modulating macrophage polarization. Frontiers in Immunology, 13, 869050. https://doi.org/10.3389/fimmu.2022.869050
  • Li, Y., Dai, M., Wang, L., & Wang, G. (2021). Polysaccharides and glycosides from Aralia echinocaulis protect rats from arthritis by modulating the gut microbiota composition. Journal of Ethnopharmacology, 269, 113749. https://doi.org/10.1016/j.jep.2020.113749
  • Liberale, L., Dallegri, F., Montecucco, F., & Carbone, F. (2017). Pathophysiological relevance of macrophage subsets in atherogenesis. Thrombosis & Haemostasis, 117(1), 7–18. https://doi.org/10.1160/TH16-08-0593
  • Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211–218. https://doi.org/10.1016/j.tibs.2015.12.001
  • Littlewood-Evans, A., Sarret, S., Apfel, V., Loesle, P., Dawson, J., Zhang, J., & Carballido, J. M. (2016). GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. Journal of Experimental Medicine, 213(9), 1655–1662. https://doi.org/10.1084/jem.20160061
  • Liu, M., Chen, Y., Wang, S., Zhou, H., Feng, D., Wei, J., & Lv, X. (2020). α-Ketoglutarate modulates macrophage polarization through regulation of PPARγ transcription and mTorc1/p70s6k pathway to ameliorate ALI/ARDS. Shock, 53(1), 103–113. https://doi.org/10.1097/shk.0000000000001333
  • Liu, M., Zhang, P., & Lyu, X. (2020). Research progress of metabolism reprogramming in regulating macrophage polarization. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 32(6), 765–768. https://doi.org/10.3760/cma.j.cn121430-20200211-00177
  • Liu, P. S., Wang, H., Li, X., Chao, T., Teav, T., Christen, S., & Ho, P. C. (2017). Alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nature Immunology, 18(9), 985–994. https://doi.org/10.1038/ni.3796
  • Liu, S., Yang, J., & Wu, Z. (2021). The regulatory role of alpha-ketoglutarate metabolism in macrophages. Mediators of Inflammation, 2021, 5577577. https://doi.org/10.1155/2021/5577577
  • Liu, S., Zhang, H., Li, Y., Zhang, Y., Bian, Y., Zeng, Y., & Qin, Z. (2021). S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation. The Journal for ImmunoTherapy of Cancer, 9(6), e002548. https://doi.org/10.1136/jitc-2021-002548
  • Ma, P. F., Gao, C. C., Yi, J., Zhao, J. L., Liang, S. Q., Zhao, Y., & Qin, H. Y. (2017). Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. Journal of Hepatology, 67(4), 770–779. https://doi.org/10.1016/j.jhep.2017.05.022
  • Maurya, M., & Barthwal, M. K. (2021). MicroRNA-99a: A potential double-edged sword targeting macrophage inflammation and metabolism. Cellular & Molecular Immunology, 18(9), 2290–2292. https://doi.org/10.1038/s41423-021-00745-1
  • Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–435. https://doi.org/10.1038/nature07201
  • Meyiah, A., Alahdal, M., & Elkord, E. (2023). Role of exosomal ncRnas released by M2 macrophages in tumor progression of gastrointestinal cancers. iScience, 26(4), 106333. https://doi.org/10.1016/j.isci.2023.106333
  • Mills, C. D. (2015). Anatomy of a discovery: M1 and M2 macrophages. Frontiers in Immunology, 6, 212. https://doi.org/10.3389/fimmu.2015.00212
  • Mills, C. D., Shearer, J., Evans, R., & Caldwell, M. D. (1992). Macrophage arginine metabolism and the inhibition or stimulation of cancer. Journal of Immunology (Baltimore, Md: 1950), 149(8), 2709–2714. https://doi.org/10.4049/jimmunol.149.8.2709
  • Mills, E. L., Ryan, D. G., Prag, H. A., Dikovskaya, D., Menon, D., Zaslona, Z., & O’Neill, L. A. (2018). Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature, 556(7699), 113–117. https://doi.org/10.1038/nature25986
  • Moon, J. S., Lee, S., Park, M. A., Siempos, I. I., Haslip, M., Lee, P. J., & Choi, A. M. (2015). UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. Journal of Clinical Investigation, 125(2), 665–680. https://doi.org/10.1172/JCI78253
  • Mouton, A. J., Li, X., Hall, M. E., & Hall, J. E. (2020). Obesity, hypertension, and cardiac dysfunction: Novel roles of immunometabolism in macrophage activation and inflammation. Circulation Research, 126(6), 789–806. https://doi.org/10.1161/CIRCRESAHA.119.312321
  • Munoz, J., Akhavan, N. S., Mullins, A. P., & Arjmandi, B. H. (2020). Macrophage polarization and osteoporosis: A review. Nutrients, 12(10), 2999. https://doi.org/10.3390/nu12102999
  • Nahrendorf, M., & Swirski, F. K. (2016). Abandoning M1/M2 for a network model of macrophage function. Circulation Research, 119(3), 414–417. https://doi.org/10.1161/CIRCRESAHA.116.309194
  • Nalio Ramos, R., Missolo-Koussou, Y., Gerber-Ferder, Y., Bromley, C. P., Bugatti, M., Nunez, N. G., & Helft, J. (2022). Tissue-resident FOLR2(+) macrophages associate with CD8(+) T cell infiltration in human breast cancer. Cell, 185(7), 1189–1207 e1125. https://doi.org/10.1016/j.cell.2022.02.021
  • Nelson, V. L., Nguyen, H. C. B., Garcia-Canaveras, J. C., Briggs, E. R., Ho, W. Y., DiSpirito, J. R., & Lazar, M. A. (2018). PPARγ is a nexus controlling alternative activation of macrophages via glutamine metabolism. Genes & Development, 32(15–16), 1035–1044. https://doi.org/10.1101/gad.312355.118
  • Ó Maoldomhnaigh, C., Cox, D. J., Phelan, J. J., Mitermite, M., Murphy, D. M., Leisching, G., & Keane, J. (2021). Lactate alters metabolism in human macrophages and improves their ability to kill mycobacterium tuberculosis. Frontiers in Immunology, 12, 663695. https://doi.org/10.3389/fimmu.2021.663695
  • Okoro, E. U., Guo, Z., & Yang, H. (2016). Akt isoform-dependent regulation of ATP-Binding cassette A1 expression by apolipoprotein E. Biochemical and Biophysical Research Communications, 477(1), 123–128. https://doi.org/10.1016/j.bbrc.2016.06.031
  • Orecchioni, M., Ghosheh, Y., Pramod, A. B., & Ley, K. (2019). Macrophage polarization: Different gene signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively activated Macrophages. Frontiers in Immunology, 10, 1084. https://doi.org/10.3389/fimmu.2019.01084
  • Palmieri, E. M., Gonzalez-Cotto, M., Baseler, W. A., Davies, L. C., Ghesquiere, B., Maio, N., & McVicar, D. W. (2020). Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nature Communications, 11(1), 698. https://doi.org/10.1038/s41467-020-14433-7
  • Palmieri, E. M., Menga, A., Lebrun, A., Hooper, D. C., Butterfield, D. A., Mazzone, M., & Castegna, A. (2017). Blockade of glutamine synthetase enhances inflammatory response in microglial cells. Antioxidants & Redox Signaling, 26(8), 351–363. https://doi.org/10.1089/ars.2016.6715
  • Pan, Y., Yu, Y., Wang, X., & Zhang, T. (2020). Tumor-associated macrophages in tumor immunity. Frontiers in Immunology, 11, 583084. https://doi.org/10.3389/fimmu.2020.583084
  • Riksen, N. P., & Netea, M. G. (2021). Immunometabolic control of trained immunity. Molecular Aspects of Medicine, 77, 100897. https://doi.org/10.1016/j.mam.2020.100897
  • Russo, S., Kwiatkowski, M., Govorukhina, N., Bischoff, R., & Melgert, B. N. (2021). Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: The importance of metabolites. Frontiers in Immunology, 12, 746151. https://doi.org/10.3389/fimmu.2021.746151
  • Ruytinx, P., Proost, P., Van Damme, J., & Struyf, S. (2018). Chemokine-induced macrophage polarization in inflammatory conditions. Frontiers in Immunology, 9, 1930. https://doi.org/10.3389/fimmu.2018.01930
  • Saez, A., Herrero-Fernandez, B., Gomez-Bris, R., Sanchez-Martinez, H., & Gonzalez-Granado, J. M. (2023). Pathophysiology of inflammatory bowel disease: Innate immune system. International Journal of Molecular Sciences, 24(2), 1526. https://doi.org/10.3390/ijms24021526
  • Sag, D., Cekic, C., Wu, R., Linden, J., & Hedrick, C. C. (2015). The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nature Communications, 6(1), 6354. https://doi.org/10.1038/ncomms7354
  • Sedighzadeh, S. S., Khoshbin, A. P., Razi, S., Keshavarz-Fathi, M., & Rezaei, N. (2021). A narrative review of tumor-associated macrophages in lung cancer: Regulation of macrophage polarization and therapeutic implications. Translational Lung Cancer Research, 10(4), 1889–1916. https://doi.org/10.21037/tlcr-20-1241
  • Shan, X., Hu, P., Ni, L., Shen, L., Zhang, Y., Ji, Z., & Yu, Q. (2022). Serine metabolism orchestrates macrophage polarization by regulating the IGF1–p38 axis. Cellular & Molecular Immunology, 19(11), 1263–1278. https://doi.org/10.1038/s41423-022-00925-7
  • Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., & Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology, 233(9), 6425–6440. https://doi.org/10.1002/jcp.26429
  • Shi, J., & Cai, C. (2022). Research progress on the mechanism of itaconate regulating macrophage immunometabolism. Frontiers in Immunology, 13, 937247. https://doi.org/10.3389/fimmu.2022.937247
  • Sica, A., Erreni, M., Allavena, P., & Porta, C. (2015). Macrophage polarization in pathology. Cellular and Molecular Life Sciences: CMLS, 72(21), 4111–4126. https://doi.org/10.1007/s00018-015-1995-y
  • Song, Y., Gao, N., Yang, Z., Zhang, L., Wang, Y., Zhang, S., & Fan, T. (2023). Characteristics, polarization and targeted therapy of mononuclear macrophages in rheumatoid arthritis. American Journal of Translational Research, 15(3), 2109–2121.
  • Sowers, M. L., Tang, H., Singh, V. K., Khan, A., Mishra, A., Restrepo, B. I., & Zhang, K. (2022). Multi-OMICs analysis reveals metabolic and epigenetic changes associated with macrophage polarization. The Journal of Biological Chemistry, 298(10), 102418. https://doi.org/10.1016/j.jbc.2022.102418
  • Straub, R. H., Pongratz, G., Buttgereit, F., & Gaber, T. (2023). Energy metabolism of the immune system: Consequences in chronic inflammation. Zeitschrift fur Rheumatologie, 82(6), 479–490. https://doi.org/10.1007/s00393-023-01389-4
  • Sun, Q., Wu, H., Li, S., & Sun, Z. (2022). Regulation of inflammatory bowel disease by amino acids. Sheng Wu Gong Cheng Xue Bao, 38(6), 2128–2138. https://doi.org/10.13345/j.cjb.210697
  • Swain, A., Bambouskova, M., Kim, H., Andhey, P. S., Duncan, D., Auclair, K., & Artyomov, M. N. (2020). Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages. Nature Metabolism, 2(7), 594–602. https://doi.org/10.1038/s42255-020-0210-0
  • Tabas, I., & Bornfeldt, K. E. (2016). Macrophage phenotype and function in different stages of atherosclerosis. Circulation Research, 118(4), 653–667. https://doi.org/10.1161/CIRCRESAHA.115.306256
  • Takeda, H., Murakami, S., Liu, Z., Sawa, T., Takahashi, M., Izumi, Y., & Motohashi, H. (2023). Sulfur metabolic response in macrophage limits excessive inflammatory response by creating a negative feedback loop. Redox Biology, 65, 102834. https://doi.org/10.1016/j.redox.2023.102834
  • Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson McDermott, E. M., McGettrick, A. F., Goel, G., & O’Neill, L. A. (2013). Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature, 496(7444), 238–242. https://doi.org/10.1038/nature11986
  • Thorp, E. B. (2023). Cardiac macrophages and emerging roles for their metabolism after myocardial infarction. Journal of Clinical Investigation, 133(18). https://doi.org/10.1172/JCI171953
  • Vadevoo, S. M. P., Gunassekaran, G. R., Lee, C., Lee, N., Lee, J., Chae, S., & Lee, B. (2021). The macrophage odorant receptor Olfr78 mediates the lactate-induced M2 phenotype of tumor-associated macrophages. Proceedings of the National Academy of Sciences of the United States of America, 118(37). https://doi.org/10.1073/pnas.2102434118
  • van der Heijden, C., Deinum, J., Joosten, L. A. B., Netea, M. G., & Riksen, N. P. (2018). The mineralocorticoid receptor as a modulator of innate immunity and atherosclerosis. Cardiovascular Research, 114(7), 944–953. https://doi.org/10.1093/cvr/cvy092
  • van der Heijden, C., Keating, S. T., Groh, L., Joosten, L. A. B., Netea, M. G., & Riksen, N. P. (2020). Aldosterone induces trained immunity: The role of fatty acid synthesis. Cardiovascular Research, 116(2), 317–328. https://doi.org/10.1093/cvr/cvz137
  • Varol, C., Mildner, A., & Jung, S. (2015). Macrophages: Development and tissue specialization. Annual Review of Immunology, 33(1), 643–675. https://doi.org/10.1146/annurev-immunol-032414-112220
  • Vassiliou, E., & Farias-Pereira, R. (2023). Impact of lipid metabolism on macrophage polarization: Implications for inflammation and tumor immunity. International Journal of Molecular Sciences, 24(15), 12032. https://doi.org/10.3390/ijms241512032
  • Viola, A., Munari, F., Sanchez-Rodriguez, R., Scolaro, T., & Castegna, A. (2019). The metabolic signature of macrophage responses. Frontiers in Immunology, 10, 1462. https://doi.org/10.3389/fimmu.2019.01462
  • Vonderlin, J., Chavakis, T., Sieweke, M., & Tacke, F. (2023). The multifaceted roles of macrophages in NAFLD pathogenesis. Cellular and Molecular Gastroenterology and Hepatology, 15(6), 1311–1324. https://doi.org/10.1016/j.jcmgh.2023.03.002
  • Wang, F., Zhang, S., Vuckovic, I., Jeon, R., Lerman, A., Folmes, C. D., & Herrmann, J. (2018). Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metabolism, 28(3), p463–475. https://doi.org/10.1016/j.cmet.2018.08.012
  • Wang, H., Tian, T., & Zhang, J. (2021). Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): From mechanism to therapy and prognosis. International Journal of Molecular Sciences, 22(16), 8470. https://doi.org/10.3390/ijms22168470
  • Wang, S., Tan, K. S., Beng, H., Liu, F., Huang, J., Kuai, Y., & Tan, W. (2021). Protective effect of isosteviol sodium against LPS-induced multiple organ injury by regulating of glycerophospholipid metabolism and reducing macrophage-driven inflammation. Pharmacological Research: The Official Journal of the Italian Pharmacological Society, 172, 105781. https://doi.org/10.1016/j.phrs.2021.105781
  • Wang, Y., Guo, Y., Xu, Y., Wang, W., Zhuang, S., Wang, R., & Xiao, W. (2022). HIIT ameliorates inflammation and lipid metabolism by regulating macrophage polarization and mitochondrial dynamics in the liver of type 2 diabetes mellitus mice. Metabolites, 13(1), 14. https://doi.org/10.3390/metabo13010014
  • Watanabe, S., Alexander, M., Misharin, A. V., & Budinger, G. R. S. (2019). The role of macrophages in the resolution of inflammation. Journal of Clinical Investigation, 129(7), 2619–2628. https://doi.org/10.1172/JCI124615
  • Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A., & Sancho, D. (2022). Metabolism of tissue macrophages in homeostasis and pathology. Cellular & Molecular Immunology, 19(3), 384–408. https://doi.org/10.1038/s41423-021-00791-9
  • Wu, H. M., Ni, X. X., Xu, Q. Y., Wang, Q., Li, X. Y., & Hua, J. (2020). Regulation of lipid-induced macrophage polarization through modulating peroxisome proliferator-activated receptor-gamma activity affects hepatic lipid metabolism via a Toll-like receptor 4/NF-κB signaling pathway. Journal of Gastroenterology & Hepatology, 35(11), 1998–2008. https://doi.org/10.1111/jgh.15025
  • Wu, K., Yuan, Y., Yu, H., Dai, X., Wang, S., Sun, Z., & Chen, T. (2020). The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood, 136(4), 501–515. https://doi.org/10.1182/blood.2019003990
  • Wu, Y., Fang, W., Pan, S., Zhang, S., Li, D., Wang, Z., Chen, W., Yin, Q., & Zuo, J. (2021). Regulation of Sirt1 on energy metabolism and immune response in rheumatoid arthritis. International Immunopharmacology, 101, 108175. https://doi.org/10.1016/j.intimp.2021.108175
  • Xiong, K., Li, G., Zhang, Y., Bao, T., Li, P., Yang, X., & Chen, J. (2023). Effects of glutamine on plasma protein and inflammation in postoperative patients with colorectal cancer: A meta-analysis of randomized controlled trials. International Journal of Colorectal Disease, 38(1), 212. https://doi.org/10.1007/s00384-023-04504-8
  • Yan, J., & Horng, T. (2020). Lipid metabolism in regulation of macrophage functions. Trends in Cell Biology, 30(12), 979–989. https://doi.org/10.1016/j.tcb.2020.09.006
  • Yang, G., Yang, Y., Liu, Y., & Liu, X. (2023). Regulation of alveolar macrophage death in pulmonary fibrosis: A review. Apoptosis, 28(11–12), 1505–1519. https://doi.org/10.1007/s10495-023-01888-4
  • Yang, P., Chen, Z., Huang, W., Zhang, J., Zou, L., & Wang, H. (2023). Communications between macrophages and cardiomyocytes. Cell Communication and Signaling: CCS, 21(1), 206. https://doi.org/10.1186/s12964-023-01202-4
  • Yao, Y., Xu, X. H., & Jin, L. (2019). Macrophage polarization in physiological and pathological pregnancy. Frontiers in Immunology, 10, 792. https://doi.org/10.3389/fimmu.2019.00792
  • Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., & Zhao, Y. (2019). Metabolic regulation of gene expression by histone lactylation. Nature, 574(7779), 575–580. https://doi.org/10.1038/s41586-019-1678-1
  • Zhou, Y. (2023). Arctigenin mitigates insulin resistance by modulating the IRS2/GLUT4 pathway via TLR4 in type 2 diabetes mellitus mice. International Immunopharmacology, 114, 109529. https://doi.org/10.1016/j.intimp.2022.109529
  • Zhou, Y., Xiang, R., Qin, G., Ji, B., Yang, S., Wang, G., & Han, J. (2022). Xanthones from Securidaca inappendiculata Hassk. attenuate collagen-induced arthritis in rats by inhibiting the nicotinamide phosphoribosyltransferase/glycolysis pathway and macrophage polarization. International Immunopharmacology, 111, 109137. https://doi.org/10.1016/j.intimp.2022.109137

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.