47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sarm1 Controls the MYD88-Mediated Inflammatory Responses in Inflammatory Bowel Disease via the Regulation of TRAF3 Recruitment

, &

References

  • Baumgart, D. C., & Carding, S. R. (2007). Inflammatory bowel disease: Cause and immunobiology. Lancet, 369(9573), 1627–1640. https://doi.org/10.1016/S0140-6736(07)60750-8
  • Bouma, G., & Strober, W. (2003). The immunological and genetic basis of inflammatory bowel disease. Nature Reviews Immunology, 3(7), 521–533. https://doi.org/10.1038/nri1132
  • Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay‐Kumar, M. (2014). Dextran sulfate sodium (DSS)‐induced colitis in mice. Current Protocols in Immunology, 104(1).15.25. 11–.15.25. 14. https://doi.org/10.1002/0471142735.im1525s104
  • Dingwall, C. B., Strickland, A., Yum, S. W., Yim, A. K., Zhu, J., Wang, P. L., Yamada, Y., Schmidt, R. E., Sasaki, Y., Bloom, A. J., DiAntonio, A., & Milbrandt, J. (2022). Macrophage depletion blocks congenital SARM1-dependent neuropathy. Journal of Clinical Investigation, 132(23). https://doi.org/10.1172/JCI159800
  • Doran, C. G., Sugisawa, R., Carty, M., Roche, F., Fergus, C., Hokamp, K., Kelly, V. P., & Bowie, A. G. (2021). CRISPR/Cas9-mediated SARM1 knockout and epitope-tagged mice reveal that SARM1 does not regulate nuclear transcription, but is expressed in macrophages. Journal of Biological Chemistry, 297(6), 101417. https://doi.org/10.1016/j.jbc.2021.101417
  • Jung, J., Gokhale, S., & Xie, P. (2023). TRAF3: A novel regulator of mitochondrial physiology and metabolic pathways in B lymphocytes. Frontiers in Oncology, 13, 1081253. https://doi.org/10.3389/fonc.2023.1081253
  • Liberati, N. T., Fitzgerald, K. A., Kim, D. H., Feinbaum, R., Golenbock, D. T., & Ausubel, F. M. (2004). Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proceedings of the National Academy of Sciences, 101(17), 6593–6598. https://doi.org/10.1073/pnas.0308625101
  • Lin, C.-W., Liu, H.-Y., Chen, C.-Y., & Hsueh, Y.-P. (2014). Neuronally-expressed Sarm1 regulates expression of inflammatory and antiviral cytokines in brains. Innate Immunity, 20(2), 161–172. https://doi.org/10.1177/1753425913485877
  • Lin, M., Ji, X., Lv, Y., Cui, D., & Xie, J. (2023). The roles of TRAF3 in immune responses. Disease Markers, 2023, 7787803. https://doi.org/10.1155/2023/7787803
  • Loring, H. S., & Thompson, P. R. (2020). Emergence of SARM1 as a potential therapeutic target for Wallerian-type diseases. Cell Chemical Biology, 27(1), 1–13. https://doi.org/10.1016/j.chembiol.2019.11.002
  • Mahida, Y. R. (2000). The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflammatory Bowel Diseases, 6(1), 21–33. https://doi.org/10.1097/00054725-200002000-00004
  • Mukherjee, P., Winkler, C. W., Taylor, K. G., Woods, T. A., Nair, V., Khan, B. A., & Peterson, K. E. (2015). SARM1, not MyD88, mediates TLR7/TLR9-induced apoptosis in neurons. Journal of Immunology, 195(10), 4913–4921. https://doi.org/10.4049/jimmunol.1500953
  • Neurath, M. F. (2019). Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nature Immunology, 20(8), 970–979. https://doi.org/10.1038/s41590-019-0415-0
  • Oliveira, S. B., & Monteiro, I. M. (2017). Diagnosis and management of inflammatory bowel disease in children. BMJ, 357, j2083. https://doi.org/10.1136/bmj.j2083
  • Pan, Z.-G., & An, X.-S. (2018). SARM1 deletion restrains NAFLD induced by high fat diet (HFD) through reducing inflammation, oxidative stress and lipid accumulation. Biochemical & Biophysical Research Communications, 498(3), 416–423. https://doi.org/10.1016/j.bbrc.2018.02.115
  • Panda, S. K., & Ravindran, B. (2013). Isolation of human PBMCs. Bio-protocol, 3(3), e323–e323. https://doi.org/10.21769/BioProtoc.323
  • Rugtveit, J., Brandtzaeg, P., Halstensen, T., Fausa, O., & Scott, H. (1994). Increased macrophage subset in inflammatory bowel disease: Apparent recruitment from peripheral blood monocytes. Gut, 35(5), 669–674. https://doi.org/10.1136/gut.35.5.669
  • Sambashivan, S., & Freeman, M. R. (2021). SARM1 signaling mechanisms in the injured nervous system. Current Opinion in Neurobiology, 69, 247–255. https://doi.org/10.1016/j.conb.2021.05.004
  • Shanahan, F. (2001). Inflammatory bowel disease: Immunodiagnostics, immunotherapeutics, and ecotherapeutics. Adenocarcin Barrett’s Epithelium Gastroenterol, 120(3), 622–635. https://doi.org/10.1053/gast.2001.22122
  • Shepanski, M. A., Hurd, L. B., Culton, K., Markowitz, J. E., Mamula, P., & Baldassano, R. N. (2005). Health-related quality of life improves in children and adolescents with inflammatory bowel disease after attending a camp sponsored by the Crohnʼs and Colitis foundation of America. Inflammatory Bowel Diseases, 11(2), 164–170. https://doi.org/10.1097/00054725-200502000-00010
  • Sun, Y., Wang, Q., Wang, Y., Ren, W., Cao, Y., Li, J., Zhou, X., Fu, W., & Yang, J. (2021). Sarm1-mediated neurodegeneration within the enteric nervous system protects against local inflammation of the colon. Protein & Cell, 12(8), 621–638. https://doi.org/10.1007/s13238-021-00835-w
  • Tseng, P. H., Matsuzawa, A., Zhang, W., Mino, T., Vignali, D. A., & Karin, M. (2010). Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature Immunology, 11(1), 70–75. https://doi.org/10.1038/ni.1819
  • Turunen, P., Kolho, K.-L., Auvinen, A., Iltanen, S., Huhtala, H., & Ashorn, M. (2006). Incidence of inflammatory bowel disease in Finnish children, 1987–2003. Inflammatory Bowel Diseases, 12(8), 677–683. https://doi.org/10.1097/00054725-200608000-00002
  • Uccellini, M. B., Bardina, S. V., Sánchez-Aparicio, M. T., White, K. M., Hou, Y.-J., Lim, J. K., & García-Sastre, A. (2020). Passenger mutations confound phenotypes of SARM1-deficient mice. Cell Reports, 31(1), 107498. https://doi.org/10.1016/j.celrep.2020.03.062
  • Weischenfeldt, J., & Porse, B. (2008). Bone marrow-derived macrophages (BMM): Isolation and applications. Cold Spring Harbor Protocols, 2008(12), pdb. prot5080. https://doi.org/10.1101/pdb.prot5080
  • Xiao, Y., Jin, J., Chang, M., Chang, J. H., Hu, H., Zhou, X., Brittain, G. C., Stansberg, C., Torkildsen, O., Wang, X., Brink, R., Cheng, X., & Sun, S.-C. (2013). Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nature Medicine, 19(5), 595–602. https://doi.org/10.1038/nm.3111
  • Yang, H., Liu, C., Zhang, Y.-Q., Ge, L.-T., Chen, J., Jia, X.-Q., Gu, R.-X., Sun, Y., & Sun, W.-D. (2015). Ilexgenin a induces B16-F10 melanoma cell G1/S arrest in vitro and reduces tumor growth in vivo. International Immunopharmacology, 24(2), 423–431. https://doi.org/10.1016/j.intimp.2014.12.040
  • Yi, Z., Wallis, A. M., & Bishop, G. A. (2015). Roles of TRAF3 in T cells: Many surprises. Cell Cycle, 14(8), 1156–1163. https://doi.org/10.1080/15384101.2015.1021524
  • Ying, W., Cheruku, P. S., Bazer, F. W., Safe, S. H., & Zhou, B. (2013). Investigation of macrophage polarization using bone marrow derived macrophages. Journal of Visualized Experiments: JoVE, (76). https://doi.org/10.3791/50323
  • Zhang, J. X., Li, Y., Tang, J. C., Li, K. Q., Shen, J. J., Liu, C., Jiang, Y. H., Zhang, Z. P., Wang, Y. L., & Zou, P. F. (2022). SARM suppresses TRIF, TRAF3, and IRF3/7 mediated antiviral signaling in large yellow croaker Larimichthys crocea. Frontiers in Immunology, 13, 1021443. https://doi.org/10.3389/fimmu.2022.1021443
  • Zhang, Y.-Z., & Li, Y.-Y. (2014). Inflammatory bowel disease: Pathogenesis. World Journal of Gastroenterology: WJG, 20(1), 91. https://doi.org/10.3748/wjg.v20.i1.91
  • Zhu, C., Li, B., Frontzek, K., Liu, Y., & Aguzzi, A. (2019). SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. Journal of Experimental Medicine, 216(4), 743–756. https://doi.org/10.1084/jem.20171885

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.