1,236
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Retinal Findings on OCT in Systemic Conditions

, , , &
Pages 525-546 | Received 28 Nov 2016, Accepted 11 May 2017, Published online: 22 Jun 2017

REFERENCES

  • Lee YS, Amadi-Obi A, Yu CR, Egwuagu CE. Retinal cells suppress intraocular inflammation (uveitis) through production of interleukin-27 and interleukin-10. Immunology 2011;132(4):492–502.
  • Iseri PK, Altinas O, Tokay T, Yuksel N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. Journal of Neuro-ophthalmology 2006;26(1):18–24.
  • Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neuroscience Letters 2007;420(2):97–99.
  • Kesler A, Vakhapova V, Korczyn AD, Naftaliev E, Neudorfer M. Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clinical Neurology and Neurosurgery 2011;113(7):523–526.
  • Kromer R, Serbecic N, Hausner L, Froelich L, Aboul-Enein F, Beutelspacher SC. Detection of retinal nerve fiber layer defects in Alzheimer’s disease using SD-OCT. Frontiers in Psychiatry 2014;5:22.
  • Blanks JC, Torigoe Y, Hinton DR, Blanks RH. Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiology of Aging 1996;17(3):377–384.
  • Bayhan HA, Aslan Bayhan S, Celikbilek A, Tanik N, Gurdal C. Evaluation of the chorioretinal thickness changes in Alzheimer’s disease using spectral-domain optical coherence tomography. Clinical & Experimental Ophthalmology 2015;43(2):145–151.
  • Kromer R, Serbecic N, Hausner L, Froelich L, Beutelspacher SC. Comparison of visual evoked potentials and retinal nerve fiber layer thickness in Alzheimer’s disease. Frontiers in Neurology 2013;4:203.
  • Marziani E, Pomati S, Ramolfo P, Cigada M, Giani A, Mariani C, et al. Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer’s disease using spectral-domain optical coherence tomography. Investigative Ophthalmology & Visual Science 2013;54(9):5953–5958.
  • Larrosa JM, Garcia-Martin E, Bambo MP, Pinilla J, Polo V, Otin S, et al. Potential new diagnostic tool for Alzheimer’s disease using a linear discriminant function for Fourier domain optical coherence tomography. Investigative Ophthalmology & Visual Science 2014;55(5):3043–3051.
  • Walter SD, Ishikawa H, Galetta KM, Sakai RE, Feller DJ, Henderson SB, et al. Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology 2012;119(6):1250–1257.
  • Galetta KM, Calabresi PA, Frohman EM, Balcer LJ. Optical coherence tomography (OCT): Imaging the visual pathway as a model for neurodegeneration. Neurotherapeutics 2011;8(1):117–132.
  • Syc SB, Warner CV, Hiremath GS, Farrell SK, Ratchford JN, Conger A, et al. Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Multiple Sclerosis 2010;16(7):829–839.
  • Cettomai D, Pulicken M, Gordon-Lipkin E, Salter A, Frohman TC, Conger A, et al. Reproducibility of optical coherence tomography in multiple sclerosis. Archives of Neurology 2008;65(9):1218–1222.
  • Su KG, Banker G, Bourdette D, Forte M. Axonal degeneration in multiple sclerosis: The mitochondrial hypothesis. Current Neurology and Neuroscience Reports 2009;9(5):411–417.
  • Zheng J, Bizzozero OA. Decreased activity of the 20S proteasome in the brain white matter and gray matter of patients with multiple sclerosis. Journal of Neurochemistry 2011;117(1):143–153.
  • Fisher E, Lee JC, Nakamura K, Rudick RA. Gray matter atrophy in multiple sclerosis: A longitudinal study. Annals of Neurology 2008;64(3):255–265.
  • Fisniku LK, Chard DT, Jackson JS, Anderson VM, Altmann DR, Miszkiel KA, et al. Gray matter atrophy is related to long-term disability in multiple sclerosis. Annals of Neurology 2008;64(3):247–254.
  • Burgansky-Eliash Z, Wollstein G, Chu T, Ramsey JD, Glymour C, Noecker RJ, et al. Optical coherence tomography machine learning classifiers for glaucoma detection: A preliminary study. Investigative Ophthalmology & Visual Science 2005;46(11):4147–4152.
  • Garcia-Martin E, Pablo LE, Herrero R, Satue M, Polo V, Larrosa JM, et al. Diagnostic ability of a linear discriminant function for spectral-domain optical coherence tomography in patients with multiple sclerosis. Ophthalmology 2012;119(8):1705–1711.
  • Garcia-Martin E, Pablo LE, Herrero R, Ara JR, Martin J, Larrosa JM, et al. Neural networks to identify multiple sclerosis with optical coherence tomography. Acta Ophthalmologica 2013;91(8):e628–634.
  • Lamirel C, Newman NJ, Biousse V. Optical coherence tomography (OCT) in optic neuritis and multiple sclerosis. Revue Neurologique 2010;166(12):978–986.
  • Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG. Revised diagnostic criteria for neuromyelitis optica. Neurology 2006;66(10):1485–1489.
  • Naismith RT, Tutlam NT, Xu J, Klawiter EC, Shepherd J, Trinkaus K, et al. Optical coherence tomography differs in neuromyelitis optica compared with multiple sclerosis. Neurology 2009;72(12):1077–1082.
  • Ratchford JN, Quigg ME, Conger A, Frohman T, Frohman E, Balcer LJ, et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 2009;73(4):302–308.
  • Scott TF. Nosology of idiopathic transverse myelitis syndromes. Acta Neurologica Scandinavica 2007;115(6):371–376.
  • Transverse Myelitis Consortium Working Group. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 2002;59(4):499–505.
  • Moura FC, Fernandes DB, Apostolos-Pereira SL, Callegaro D, Marchiori PE, Monteiro ML. Optical coherence tomography evaluation of retinal nerve fiber layer in longitudinally extensive transverse myelitis. Arquivos de Neuro-Psiquiatria 2011;69(1):69–73.
  • de Seze J, Blanc F, Jeanjean L, Zephir H, Labauge P, Bouyon M, et al. Optical coherence tomography in neuromyelitis optica. Archives of Neurology 2008;65(7):920–923.
  • Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rub U. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). Journal of Neurology 2002;249 Suppl 3: III/1–5.
  • Archibald NK, Clarke MP, Mosimann UP, Burn DJ. The retina in Parkinson’s disease. Brain 2009;132(Pt 5):1128–1145.
  • La Morgia C, Barboni P, Rizzo G, Carbonelli M, Savini G, Scaglione C, et al. Loss of temporal retinal nerve fibers in Parkinson disease: A mitochondrial pattern? European Journal of Neurology 2013;20(1):198–201.
  • Aaker GD, Myung JS, Ehrlich JR, Mohammed M, Henchcliffe C, Kiss S. Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clinical Ophthalmology 2010;4:1427–1432.
  • Garcia-Martin E, Satue M, Otin S, Fuertes I, Alarcia R, Larrosa JM, et al. Retina measurements for diagnosis of Parkinson disease. Retina 2014;34(5):971–980.
  • Garcia-Martin E, Satue M, Fuertes I, Otin S, Alarcia R, Herrero R, et al. Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson’s disease. Ophthalmology 2012;119(10):2161–2167.
  • Ward KE, Friedman L, Wise A, Schulz SC. Meta-analysis of brain and cranial size in schizophrenia. Schizophrenia Research 1996;22(3):197–213.
  • Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET. Meta-analysis of regional brain volumes in schizophrenia. The American Journal of Psychiatry 2000;157(1):16–25.
  • Cahn W, Hulshoff Pol HE, Lems EB, van Haren NE, Schnack HG, van der Linden JA, et al. Brain volume changes in first-episode schizophrenia: A 1-year follow-up study. Archives of General Psychiatry 2002;59(11):1002–1010.
  • Lieberman J, Chakos M, Wu H, Alvir J, Hoffman E, Robinson D, et al. Longitudinal study of brain morphology in first episode schizophrenia. Biological Psychiatry 2001;49(6):487–499.
  • Woods BT, Ward KE, Johnson EH. Meta-analysis of the time-course of brain volume reduction in schizophrenia: Implications for pathogenesis and early treatment. Schizophrenia Research 2005;73(2–3):221–228.
  • Yeap S, Kelly SP, Sehatpour P, Magno E, Garavan H, Thakore JH, et al. Visual sensory processing deficits in schizophrenia and their relationship to disease state. European Archives of Psychiatry and Clinical Neuroscience 2008;258(5):305–316.
  • Butler PD, Schechter I, Zemon V, Schwartz SG, Greenstein VC, Gordon J, et al. Dysfunction of early-stage visual processing in schizophrenia. The American Journal of Psychiatry 2001;158(7):1126–1133.
  • Deutsch SI, Rosse RB, Schwartz BL, Mastropaolo J. A revised excitotoxic hypothesis of schizophrenia: Therapeutic implications. Clinical Neuropharmacology 2001;24(1):43–49.
  • Lee WW, Tajunisah I, Sharmilla K, Peyman M, Subrayan V. Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: Evidence from optical coherence tomography. Investigative Ophthalmology & Visual Science 2013;54(12):7785–7792.
  • Morohoshi K, Goodwin AM, Ohbayashi M, Ono SJ. Autoimmunity in retinal degeneration: Autoimmune retinopathy and age-related macular degeneration. Journal of Autoimmunity 2009;33(3–4):247–254.
  • Heckenlively JR, Ferreyra HA. Autoimmune retinopathy: A review and summary. Seminars in Immunopathology 2008;30(2):127–134.
  • Shildkrot Y, Sobrin L, Gragoudas ES. Cancer-associated retinopathy: Update on pathogenesis and therapy. Seminars in Ophthalmology 2011;26(4–5):321–328.
  • Ohguro H, Yokoi Y, Ohguro I, Mamiya K, Ishikawa F, Yamazaki H, et al. Clinical and immunologic aspects of cancer-associated retinopathy. American Journal of Ophthalmology 2004;137(6):1117–1119.
  • Abazari A, Allam SS, Adamus G, Ghazi NG. Optical coherence tomography findings in autoimmune retinopathy. American Journal of Ophthalmology 2012;153(4):750–756.
  • Mohamed Q, Harper CA. Acute optical coherence tomographic findings in cancer-associated retinopathy. Archives of Ophthalmology 2007;125(8):1132–1133.
  • Pepple KL, Cusick M, Jaffe GJ, Mruthyunjaya P. SD-OCT and autofluorescence characteristics of autoimmune retinopathy. The British Journal of Ophthalmology 2013;97(2):139–144.
  • Nagpal KC, Goldberg MF, Rabb MF. Ocular manifestations of sickle hemoglobinopathies. Survey of Ophthalmology 1977;21(5):391–411.
  • Foos RY. Regional ischemic infarcts of the retina. Albrecht von Graefe’s Archive for Clinical and Experimental Ophthalmology 1976;200(3):183–194.
  • Hoang QV, Chau FY, Shahidi M, Lim JI. Central macular splaying and outer retinal thinning in asymptomatic sickle cell patients by spectral-domain optical coherence tomography. American Journal of Ophthalmology 2011;151(6):990–994, e991.
  • Chow CC, Genead MA, Anastasakis A, Chau FY, Fishman GA, Lim JI. Structural and functional correlation in sickle cell retinopathy using spectral-domain optical coherence tomography and scanning laser ophthalmoscope microperimetry. American Journal of Ophthalmology 2011;152(4):704–711 e702.
  • Chow CC, Shah RJ, Lim JI, Chau FY, Hallak JA, Vajaranant TS. Peripapillary retinal nerve fiber layer thickness in sickle-cell hemoglobinopathies using spectral-domain optical coherence tomography. American Journal of Ophthalmology 2013;155(3):456–464, e452.
  • Eleftheriadou M, Theodossiadis P, Rouvas A, Alonistiotis D, Theodossiadis G. New optical coherence tomography fundus findings in a case of beta-thalassemia. Clinical Ophthalmology 2012;6:2119–2122.
  • Ortiz JM, Ruiz-Moreno JM, Pozo-Martos P, Montero JA. Visual acuity loss and OCT changes as initial signs of leukaemia. International Journal of Ophthalmology 2010;3(3):281–282.
  • Plummer DJ, Sample PA, Arevalo JF, Grant I, Quiceno JI, Dua R, et al. Visual field loss in HIV-positive patients without infectious retinopathy. American Journal of Ophthalmology 1996;122(4):542–549.
  • Geier SA, Nohmeier C, Lachenmayr BJ, Klauss V, Goebel FD. Deficits in perimetric performance in patients with symptomatic human immunodeficiency virus infection or acquired immunodeficiency syndrome. American Journal of Ophthalmology 1995;119(3):335–344.
  • Quiceno JI, Capparelli E, Sadun AA, Munguia D, Grant I, Listhaus A, et al. Visual dysfunction without retinitis in patients with acquired immunodeficiency syndrome. American Journal of Ophthalmology 1992;113(1):8–13.
  • Mueller AJ, Plummer DJ, Dua R, Taskintuna I, Sample PA, Grant I, et al. Analysis of visual dysfunctions in HIV-positive patients without retinitis. American Journal of Ophthalmology 1997;124(2):158–167.
  • Geier SA, Kronawitter U, Bogner JR, Hammel G, Berninger T, Klauss V, et al. Impairment of colour contrast sensitivity and neuroretinal dysfunction in patients with symptomatic HIV infection or AIDS. The British Journal of Ophthalmology 1993;77(11):716–720.
  • Geier SA, Hammel G, Bogner JR, Kronawitter U, Berninger T, Goebel FD. HIV-related ocular microangiopathic syndrome and color contrast sensitivity. Investigative Ophthalmology & Visual Science 1994;35(7):3011–3021.
  • Iragui VJ, Kalmijn J, Plummer DJ, Sample PA, Trick GL, Freeman WR. Pattern electroretinograms and visual evoked potentials in HIV infection: Evidence of asymptomatic retinal and postretinal impairment in the absence of infectious retinopathy. Neurology 1996; 47(6): 1452–1456.
  • Latkany PA, Holopigian K, Lorenzo-Latkany M, Seiple W. Electroretinographic and psychophysical findings during early and late stages of human immunodeficiency virus infection and cytomegalovirus retinitis. Ophthalmology 1997;104(3):445–453.
  • Pepose JS, Holland GN, Nestor MS, Cochran AJ, Foos RY. Acquired immune deficiency syndrome: Pathogenic mechanisms of ocular disease. Ophthalmology 1985;92(4):472–484.
  • Kozak I, Bartsch DU, Cheng L, Kosobucki BR, Freeman WR. Objective analysis of retinal damage in HIV-positive patients in the HAART era using OCT. American Journal of Ophthalmology 2005;139(2):295–301.
  • Arantes TE, Matos K, Garcia CR, Silva TG, Sabrosa AS, Muccioli C. Fundus autofluorescence and spectral domain optical coherence tomography in recurrent serpiginous choroiditis: Case report. Ocular Immunology and Inflammation 2011;19(1):39–41.
  • Arantes TE, Garcia CR, Tavares IM, Mello PA, Muccioli C. Relationship between retinal nerve fiber layer and visual field function in human immunodeficiency virus-infected patients without retinitis. Retina 2012;32(1):152–159.
  • Tan FU, Akarsu C, Gullu R. Retinal nerve fiber layer thickness is unaffected in migraine patients. Acta Neurologica Scandinavica 2005;112(1):19–23.
  • Martinez A, Proupim N, Sanchez M. Retinal nerve fibre layer thickness measurements using optical coherence tomography in migraine patients. The British Journal of Ophthalmology 2008;92(8):1069–1075.
  • Gipponi S, Scaroni N, Venturelli E, Forbice E, Rao R, Liberini P, et al. Reduction in retinal nerve fiber layer thickness in migraine patients. Neurological Sciences 2013;34(6):841–845.
  • Ekinci M, Ceylan E, Cagatay HH, Keles S, Huseyinoglu N, Tanyildiz B, et al. Retinal nerve fibre layer, ganglion cell layer and choroid thinning in migraine with aura. BMC Ophthalmology 2014;14:75.
  • Heidary G, Rizzo JF 3rd. Use of optical coherence tomography to evaluate papilledema and pseudopapilledema. Seminars in Ophthalmology 2010;25(5–6):198–205.
  • Kaufhold F, Kadas EM, Schmidt C, Kunte H, Hoffmann J, Zimmermann H, et al. Optic nerve head quantification in idiopathic intracranial hypertension by spectral domain OCT. PloS One 2012;7(5):e36965.
  • Kardon R. Optical coherence tomography in papilledema: What am I missing? Journal of Neuro-ophthalmology 2014;34 Suppl:S10–17.
  • Frisen L. Swelling of the optic nerve head: A staging scheme. Journal of Neurology, Neurosurgery, and Psychiatry 1982;45(1):13–18.
  • Scott CJ, Kardon RH, Lee AG, Frisen L, Wall M. Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Archives of Ophthalmology 2010;128(6):705–711.
  • Sinclair AJ, Burdon MA, Nightingale PG, Matthews TD, Jacks A, Lawden M, et al. Rating papilloedema: An evaluation of the Frisen classification in idiopathic intracranial hypertension. Journal of Neurology 2012;259(7):1406–1412.
  • Yri HM, Wegener M, Sander B, Jensen R. Idiopathic intracranial hypertension is not benign: A long-term outcome study. Journal of Neurology 2012;259(5):886–894.
  • Wang JK, Kardon RH, Kupersmith MJ, Garvin MK. Automated quantification of volumetric optic disc swelling in papilledema using spectral-domain optical coherence tomography. Investigative Ophthalmology & Visual Science 2012;53(7):4069–4075.
  • Skau M, Sander B, Milea D, Jensen R. Disease activity in idiopathic intracranial hypertension: A 3-month follow-up study. Journal of Neurology 2011;258(2):277–283.
  • Group OCTS-SCfNIIHS, Auinger P, Durbin M, Feldon S, Garvin M, Kardon R, et al. Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part II: Correlations and relationship to clinical features. Investigative Ophthalmology & Visual Science 2014;55(12):8173–8179.
  • Rebolleda G, Munoz-Negrete FJ. Follow-up of mild papilledema in idiopathic intracranial hypertension with optical coherence tomography. Investigative Ophthalmology & Visual Science 2009;50(11):5197–5200.
  • Rebolleda G, Diez-Alvarez L, Casado A, Sanchez-Sanchez C, de Dompablo E, Gonzalez-Lopez JJ, et al. OCT: New perspectives in neuro-ophthalmology. Saudi Journal of Ophthalmology 2015;29(1):9–25.
  • Bassi ST, Mohana KP. Optical coherence tomography in papilledema and pseudopapilledema with and without optic nerve head drusen. Indian Journal of Ophthalmology 2014;62(12):1146–1151.
  • Bloch RS, Gartner S. The incidence of ocular metastatic carcinoma. Archives of Ophthalmology 1971;85(6):673–675.
  • Arepalli S, Kaliki S, Shields CL. Choroidal metastases: Origin, features, and therapy. Indian Journal of Ophthalmology 2015;63(2):122–127.
  • Char DH, Miller T, Kroll S. Orbital metastases: Diagnosis and course. The British Journal of Ophthalmology 1997;81(5):386–390.
  • Natesh S, Chin KJ, Finger PT. Choroidal metastases fundus autofluorescence imaging: Correlation to clinical, OCT, and fluorescein angiographic findings. Ophthalmic Surgery,Lasers & imaging 2010;41(4):406–412.
  • Arevalo JF, Fernandez CF, Garcia RA. Optical coherence tomography characteristics of choroidal metastasis. Ophthalmology 2005;112(9):1612–1619.
  • Iuliano L, Scotti F, Gagliardi M, Bianchi I, Pierro L. SD-OCT patterns of the different stages of choroidal metastases. Ophthalmic Surgery, Lasers & Imaging 2012;43 Online:e30–34.
  • Perez-Alvarez MJ, Arriola-Villalobos P, Reche-Frutos J, Garcia-Sanchez J. [Choroidal metastasis from a breast carcinoma: Diagnosis and follow-up with optical coherence tomography and fluorescein angiography and autofluorescence with HRA-II (Heidelberg Retina Angiograph)]. Archivos de la Sociedad Espanola de Oftalmologia 2009;84(5):267–270.
  • Saxena S, Jain A, Ramindar Sharma S, Meyer CH. Three-dimensional spectral domain optical coherence tomography of retina in choroidal metastasis due to uterine endometrial carcinoma. BMJ Case Reports 2012; 2012:2012006599.
  • Torres VL, Brugnoni N, Kaiser PK, Singh AD. Optical coherence tomography enhanced depth imaging of choroidal tumors. American Journal of Ophthalmology 2011;151(4):586–593 e582.
  • Al-Dahmash SA, Shields CL, Kaliki S, Johnson T, Shields JA. Enhanced depth imaging optical coherence tomography of choroidal metastasis in 14 eyes. Retina 2014;34(8):1588–1593.
  • Demirci H, Reed D, Elner VM. Tissue-based microarray expression of genes predictive of metastasis in uveal melanoma and differentially expressed in metastatic uveal melanoma. Journal of Ophthalmic & Vision Research 2013;8(4):303–307.
  • Witkin AJ, Fischer DH, Shields CL, Reichstein D, Shields JA. Enhanced depth imaging spectral-domain optical coherence tomography of a subtle choroidal metastasis. Eye 2012;26(12):1598–1599.
  • Shields CL, Manalac J, Das C, Saktanasate J, Shields JA. Review of spectral domain enhanced depth imaging optical coherence tomography of tumors of the choroid. Indian Journal of Ophthalmology 2015;63(2):117–121.
  • Corbett JJ, Jacobson DM, Mauer RC, Thompson HS. Enlargement of the blind spot caused by papilledema. American Journal of Ophthalmology 1988;105(3):261–265.
  • Hoye VJ 3rd, Berrocal AM, Hedges TR 3rd, Amaro-Quireza ML. Optical coherence tomography demonstrates subretinal macular edema from papilledema. Archives of Ophthalmology 2001;119(9):1287–1290.
  • Savini G, Bellusci C, Carbonelli M, Zanini M, Carelli V, Sadun AA, et al. Detection and quantification of retinal nerve fiber layer thickness in optic disc edema using stratus OCT. Archives of Ophthalmology 2006;124(8):1111–1117.
  • Savini G, Barboni P, Carbonelli M, Carelli V, Sadun AA. Optical coherence tomography for optic disc edema. Archives of Ophthalmology 2011;129(9):1245–1246; author reply 1246–1247.
  • Hedges TR 3rd, Flattem NL, Bagga A. Vitreopapillary traction confirmed by optical coherence tomography. Archives of Ophthalmology 2006;124(2):279–281.
  • Nakamura M, Kanamori A, Nagai-Kusuhara A, Kusuhara S, Yamada Y, Negi A. Serous macular detachment due to diabetic papillopathy detected using optical coherence tomography. Archives of Ophthalmology 2009;127(1):105–107.
  • Hedges TR 3rd, Vuong LN, Gonzalez-Garcia AO, Mendoza-Santiesteban CE, Amaro-Quierza ML. Subretinal fluid from anterior ischemic optic neuropathy demonstrated by optical coherence tomography. Archives of Ophthalmology 2008;126(6):812–815.
  • Gelfand JM, Cree BA, Nolan R, Arnow S, Green AJ. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurology 2013;70(5):629–633.
  • Abegg M, Zinkernagel M, Wolf S. Microcystic macular degeneration from optic neuropathy. Brain 2012;135(Pt 12):e225.
  • Barboni P, Carelli V, Savini G, Carbonelli M, La Morgia C, Sadun AA. Microcystic macular degeneration from optic neuropathy: Not inflammatory, not trans-synaptic degeneration. Brain 2013;136(Pt 7):e239.
  • Wolff B, Basdekidou C, Vasseur V, Mauget-Faysse M, Sahel JA, Vignal C. Retinal inner nuclear layer microcystic changes in optic nerve atrophy: A novel spectral-domain OCT finding. Retina 2013;33(10):2133–2138.
  • Vanburen JM. Trans-synaptic retrograde degeneration in the visual system of primates. Journal of Neurology, Neurosurgery, and Psychiatry 1963;26:402–409.
  • Parrozzani R, Clementi M, Kotsafti O, Miglionico G, Trevisson E, Orlando G, et al. Optical coherence tomography in the diagnosis of optic pathway gliomas. Investigative Ophthalmology & Visual Science 2013;54(13):8112–8118.
  • Chang L, El-Dairi MA, Frempong TA, Burner EL, Bhatti MT, Young TL, et al. Optical coherence tomography in the evaluation of neurofibromatosis type-1 subjects with optic pathway gliomas. Journal of AAPOS 2010;14(6):511–517.
  • Avery RA, Cnaan A, Schuman JS, Chen CL, Glaug NC, Packer RJ, et al. Intra- and inter-visit reproducibility of ganglion cell-inner plexiform layer measurements using handheld optical coherence tomography in children with optic pathway gliomas. American Journal of Ophthalmology 2014;158(5):916–923.
  • Gu S, Glaug N, Cnaan A, Packer RJ, Avery RA. Ganglion cell layer-inner plexiform layer thickness and vision loss in young children with optic pathway gliomas. Investigative Ophthalmology & Visual Science 2014;55(3):1402–1408.
  • Xu L, Burke TR, Greenberg JP, Mahajan VB, Tsang SH. Infrared imaging and optical coherence tomography reveal early-stage astrocytic hamartomas not detectable by fundoscopy. American Journal of Ophthalmology 2012;153(5):883–889, e882.
  • Shields CL, Benevides R, Materin MA, Shields JA. Optical coherence tomography of retinal astrocytic hamartoma in 15 cases. Ophthalmology 2006;113(9):1553–1557.
  • Colville D, Wang YY, Tan R, Savige J. The retinal “lozenge” or “dull macular reflex” in Alport syndrome may be associated with a severe retinopathy and early-onset renal failure. The British Journal of Ophthalmology 2009;93(3):383–386.
  • Colville DJ, Savige J. Alport syndrome: A review of the ocular manifestations. Ophthalmic Genetics 1997;18(4):161–173.
  • Ahmed F, Kamae KK, Jones DJ, Deangelis MM, Hageman GS, Gregory MC, et al. Temporal macular thinning associated with X-linked Alport syndrome. JAMA Ophthalmology 2013;131(6):777–782.
  • Yang SJ, Han YH, Song GI, Lee CH, Sohn SW. Changes of choroidal thickness, intraocular pressure and other optical coherence tomographic parameters after haemodialysis. Clinical & experimental Optometry 2013;96(5):494–499.
  • Haslett RS, Duvall-Young J, McGalliard JN. Traumatic retinal angiopathy and seat belts: Pathogenesis of whiplash injury. Eye 1994;8(Pt 6):615–617.
  • Mavrakanas N, Dreifuss S, Safran AB. OCT III imaging of whiplash maculopathy. Eye 2008;22(6):860–861.
  • McCannel CA. OCT III imaging of whiplash maculopathy. Eye 2011;25(4):531–532.
  • Marshall DH, Brownstein S, Dorey MW, Addison DJ, Carpenter B. The spectrum of postmortem ocular findings in victims of shaken baby syndrome. Canadian Journal of Ophthalmology 2001;36(7):377–383; discussion 383–374.
  • Watts P, Obi E. Retinal folds and retinoschisis in accidental and non-accidental head injury. Eye 2008;22(12):1514–1516.
  • Sturm V, Landau K, Menke MN. Optical coherence tomography findings in Shaken Baby syndrome. American Journal of Ophthalmology 2008;146(3):363–368.
  • Koozekanani DD, Weinberg DV, Dubis AM, Beringer J, Carroll J. Hemorrhagic retinoschisis in Shaken Baby Syndrome imaged with spectral domain optical coherence tomography. Ophthalmic Surgery, Lasers & Imaging 2010;1–3.
  • Rahi AH, Hungerford JL, Ahmed AI. Ocular toxicity of desferrioxamine: Light microscopic histochemical and ultrastructural findings. The British Journal of Ophthalmology 1986;70(5):373–381.
  • Good PA, Claxson A, Morris CJ, Blake DR. A model for desferrioxamine-induced retinopathy using the albino rat. Ophthalmologica Journal International 1990;201(1):32–36.
  • Viola F, Barteselli G, Dell’Arti L, Vezzola D, Mapelli C, Villani E, et al. Multimodal imaging in deferoxamine retinopathy. Retina 2014;34(7):1428–1438.
  • Wu CH, Yang CP, Lai CC, Wu WC, Chen YH. Deferoxamine retinopathy: Spectral domain-optical coherence tomography findings. BMC Ophthalmology 2014;14:88.
  • Kim DY, Silverman RH, Chan RV, Khanifar AA, Rondeau M, Lloyd H, et al. Measurement of choroidal perfusion and thickness following systemic sildenafil (Viagra(R)). Acta Ophthalmologica 2013;91(2):183–188.
  • Vance SK, Imamura Y, Freund KB. The effects of sildenafil citrate on choroidal thickness as determined by enhanced depth imaging optical coherence tomography. Retina 2011;31(2):332–335.
  • Eisner A, Luoh SW. Breast cancer medications and vision: Effects of treatments for early-stage disease. Current Eye Research 2011;36(10):867–885.
  • Georgalas I, Paraskevopoulos T, Papaconstaninou D, Brouzas D, Koutsandrea C. Large bilateral foveal cysts in the inner retina of a patient treated with tamoxifen, diagnosed with Fourier-domain optical coherence tomography. Clinical Ophthalmology 2013;7:707–709.
  • Doshi RR, Fortun JA, Kim BT, Dubovy SR, Rosenfeld PJ. Pseudocystic foveal cavitation in tamoxifen retinopathy. American Journal of Ophthalmology 2014;157(6):1291–1298, e1293.
  • Gualino V, Cohen SY, Delyfer MN, Sahel JA, Gaudric A. Optical coherence tomography findings in tamoxifen retinopathy. American Journal of Ophthalmology 2005;140(4):757–758.
  • Rynes RI. Antimalarial drugs in the treatment of rheumatological diseases. British Journal of Rheumatology 1997;36(7):799–805.
  • Wolfe F, Marmor MF. Rates and predictors of hydroxychloroquine retinal toxicity in patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Care & Research 2010;62(6):775–784.
  • Ulviye Y, Betul T, Nur TH, Selda C. Spectral domain optical coherence tomography for early detection of retinal alterations in patients using hydroxychloroquine. Indian Journal of Ophthalmology 2013;61(4):168–171.
  • Korah S, Kuriakose T. Optical coherence tomography in a patient with chloroquine-induced maculopathy. Indian Journal of Ophthalmology 2008;56(6):511–513.
  • Stepien KE, Han DP, Schell J, Godara P, Rha J, Carroll J. Spectral-domain optical coherence tomography and adaptive optics may detect hydroxychloroquine retinal toxicity before symptomatic vision loss. Transactions of the American Ophthalmological Society 2009;107:28–33.
  • Carelli V, Ross-Cisneros FN, Sadun AA. Optic nerve degeneration and mitochondrial dysfunction: Genetic and acquired optic neuropathies. Neurochemistry International 2002;40(6):573–584.
  • Zoumalan CI, Agarwal M, Sadun AA. Optical coherence tomography can measure axonal loss in patients with ethambutol-induced optic neuropathy. Graefe’s Archive for Clinical and Experimental Ophthalmology 2005;243(5):410–416.
  • Ekinci M, Ceylan E, Cagatay HH, Keles S, Altinkaynak H, Kartal B, et al. Occupational exposure to lead decreases macular, choroidal, and retinal nerve fiber layer thickness in industrial battery workers. Current Eye Research 2014;39(8):853–858.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.