108
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The Role of Optical Coherence Tomography Angiography in Glaucoma

, , &
Received 08 Feb 2024, Accepted 09 Apr 2024, Published online: 20 Apr 2024

REFERENCES

  • Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi:10.1016/j.ophtha.2014.05.013.
  • Ahmad SS. Controversies in the vascular theory of glaucomatous optic nerve degeneration. Taiwan J Ophthalmol. 2016;6(4):182–186. doi:10.1016/j.tjo.2016.05.009.
  • Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retinal Eye Res. 2002;21(4):359–393. doi:10.1016/S1350-9462(02)00008-3.
  • Carter CJ, Brooks DE, Doyle DL, et al. Investigations into a vascular etiology for low-tension glaucoma. Ophthalmology. 1990;97(1):49–55. doi:10.1016/S0161-6420(90)32627-1.
  • Hayreh SS. Orbital vascular anatomy. Eye (Lond). 2006;20(10):1130–1144. doi:10.1038/sj.eye.6702377.
  • Varma DD, Cugati S, Lee AW. et al. A review of central retinal artery occlusion: clinical presentation and management. Eye (Lond). 2013;27(6):688–697. doi:10.1038/eye.2013.25.
  • Hayreh SS. The blood supply of the optic nerve head and the evaluation of it - myth and reality. Prog Retin Eye Res. 2001;20(5):563–593. doi:10.1016/S1350-9462(01)00004-0.
  • Mackenzie PJ, Cioffi GA. Vascular anatomy of the optic nerve head. Can J Ophthalmol. 2008;43(3):308–312. doi:10.3129/i08-042.
  • Zhao M, Lam A-C, Ying M-C, et al. Hemodynamic and morphological changes of the central retinal artery in myopic eyes. Sci Rep. 2022;12(1):7104. doi:10.1038/s41598-022-11087-x.
  • Piltz-Seymour JR. Laser doppler flowmetry of the optic nerve head in glaucoma. Surv Ophthalmol. 1999;43(Suppl 1):S191–8. doi:10.1016/S0039-6257(99)00053-3.
  • Gu C, Li A, Yu L. Diagnostic performance of laser speckle flowgraphy in glaucoma: a systematic review and meta-analysis. Int Ophthalmol. 2021;41(11):3877–3888. doi:10.1007/s10792-021-01954-3.
  • Baddam DO, Ophthalmic fluorescein angiography. Meth Mol Biol. 2023;2560:153–160.
  • Baddam DO, Protocol for indocyanine green angiography. Meth Mol Biol. 2023;2560:161–167.
  • Meng N, Zhang P, Huang H, et al. Color doppler imaging analysis of retrobulbar blood flow velocities in primary open-angle glaucomatous eyes: a meta-analysis. PLOS ONE. 2013;8(5):e62723. doi:10.1371/journal.pone.0062723.
  • Fischer J, Scanning laser ophthalmoscopy (SLO). In: Bille JF. ed. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics. Cham (CH), Springer Copyright; 2019:The Author(s)pp. 35–57.
  • Kagemann L, Harris A, Chung HS, et al. Heidelberg retinal flowmetry: factors affecting blood flow measurement. Br J Ophthalmol. 1998;82(2):131–136. doi:10.1136/bjo.82.2.131.
  • de Carlo TE, Romano A, Waheed NK, et al. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous. 2015;1(1):5. doi:10.1186/s40942-015-0005-8.
  • Kashani AH, Chen C-L, Gahm JK, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100. doi:10.1016/j.preteyeres.2017.07.002.
  • Munk MR, Giannakaki-Zimmermann H, Berger L, et al. OCT-angiography: A qualitative and quantitative comparison of 4 OCT-A devices. PLOS ONE. 2017;12(5):e0177059. doi:10.1371/journal.pone.0177059.
  • Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–4725. doi:10.1364/OE.20.004710.
  • Jia Y, Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Exp. 2012;3(12):3127–3137. doi:10.1364/BOE.3.003127.
  • Huang D, Optical coherence tomography angiography using the optovue device. Dev Ophthalmol. 2016;56:6–12.
  • Coscas G, Lupidi M, Coscas F. Heidelberg spectralis optical coherence tomography angiography: Technical aspects. Dev Ophthalmol. 2016;56:1–5.
  • Stanga PE, Swept-source optical coherence tomography angio™ (topcon corp, japan). Techn Rev Dev Ophthalmol. 2016;56:13–17.
  • Rosenfeld PJ, ZEISS angioplex™ spectral domain optical coherence tomography angiography: Technical aspects. Dev Ophthalmol. 2016;56:18–29.
  • Nascimento ESR, Microvasculature of the optic nerve head and peripapillary region in patients with primary open-angle glaucoma. J Glaucoma. 2019;28(4):281–288. doi:10.1097/IJG.0000000000001165.
  • Ghahari E, Bowd C, Zangwill LM, et al. Association of macular and circumpapillary microvasculature with visual field sensitivity in advanced glaucoma. Am J Ophthalmol. 2019;204:51–61. doi:10.1016/j.ajo.2019.03.004.
  • Song CH, Kim SH, Lee KM. Fractal Dimension of Peripapillary Vasculature in Primary Open-Angle Glaucoma. Korean J Ophthalmol. 2022;36(6):518–526. doi:10.3341/kjo.2022.0089.
  • Baptista PM, Vieira R, Ferreira A, et al. The role of multimodal approach in the assessment of glaucomatous damage in high myopes. Clin Ophthalmol. 2021;15:1061–1071. doi:10.2147/OPTH.S301781.
  • Yu PK, Balaratnasingam C, Xu J, et al. Label-free density measurements of radial peripapillary capillaries in the human retina. PLOS ONE. 2015;10(8):e0135151. doi:10.1371/journal.pone.0135151.
  • Liu L, Edmunds B, Takusagawa HL, et al. Projection-resolved optical coherence tomography angiography of the peripapillary retina in glaucoma. Am J Ophthalmol. 2019;207:99–109. doi:10.1016/j.ajo.2019.05.024.
  • Zeng R, Garg I, Bannai D, et al. Retinal microvasculature and vasoreactivity changes in hypertension using optical coherence tomography-angiography. Graefe’s Archive For Clinical And Expe Ophthalmology. 2022;260(11):3505–3515. doi:10.1007/s00417-022-05706-6.
  • Düzova E, Demirok G, Üney G, et al. Optical coherence tomography angiography findings in primary open-angle and pseudoexfoliation glaucoma. Turk J Ophthalmol. 2022;52(4):252–261. doi:10.4274/tjo.galenos.2021.72654.
  • Hohberger B, Lucio M, Schlick S, et al. OCT-angiography: Regional reduced macula microcirculation in ocular hypertensive and pre-perimetric glaucoma patients. PLOS ONE. 2021;16(2):e0246469. doi:10.1371/journal.pone.0246469.
  • Spooner K, Phan L, Cozzi M, et al. Comparison between two multimodal imaging platforms: Nidek mirante and heidelberg spectralis. Graefe’s Archive For Clinical And Expe Ophthalmology. 2021;259(7):1791–1802. doi:10.1007/s00417-020-05050-7.
  • Shoji T, Kanno J, Weinreb RN, et al. OCT angiography measured changes in the foveal avascular zone area after glaucoma surgery. Br J Ophthalmol. 2022;106(1):80–86. doi:10.1136/bjophthalmol-2020-317038.
  • Greig EC, Duker JS, Waheed NK. A practical guide to optical coherence tomography angiography interpretation. Int J Retina Vitreous. 2020;6(1):55. doi:10.1186/s40942-020-00262-9.
  • Hansen C, Bojikian KD, Chu Z, et al. Macular microvascular parameters in the ganglion cell-inner plexiform layer derived by optical coherence tomography angiography: Vascular structure-central visual function analysis. PLOS ONE. 2020;15(10):e0240111. doi:10.1371/journal.pone.0240111.
  • Chan KKW, Tang F, Tham CCY, Young AL, Cheung CY. Retinal vasculature in glaucoma: a review. BMJ Open Ophthalmol. 2017;1(1):e000032. doi:10.1136/bmjophth-2016-000032.
  • Hou TY, Kuang T-M, Ko Y-C, et al. Optic disc and macular vessel density measured by optical coherence tomography angiography in open-angle and angle-closure glaucoma. Sci Rep. 2020;10(1):5608. doi:10.1038/s41598-020-62633-4.
  • Richter GM, Diagnostic performance of macular versus peripapillary vessel parameters by optical coherence tomography angiography for glaucoma. Transl Vis Sci Technol. 2018;7(6):21. doi:10.1167/tvst.7.6.21.
  • Richter GM, Sylvester B, Chu Z, et al. Peripapillary microvasculature in the retinal nerve fiber layer in glaucoma by optical coherence tomography angiography: focal structural and functional correlations and diagnostic performance. Clin Ophthalmol. 2018;12:2285–2296. doi:10.2147/OPTH.S179816.
  • Lin YH, Correlation of visual field with peripapillary vessel density through optical coherence tomography angiography in normal-tension glaucoma. Transl Vis Sci Technol. 2020;9(13):26. doi:10.1167/tvst.9.13.26.
  • Zloto O, Veksler R, Moroz I, et al. Peripapillary and fovea avascular zone optical coherence tomography angiography parameters in exfoliation glaucoma versus primary open-angle glaucoma versus healthy eyes. Indian, J Ophthalmol. 2022;70(10):3562–3568. doi:10.4103/ijo.IJO_84_22.
  • Kalva P, Quantification of vascular morphology in optical coherence tomography angiography in primary open angle glaucoma. Adv Ophthalmol Pract Res. 2023;3(3):119–125. doi:10.1016/j.aopr.2023.05.002.
  • Lommatzsch C, Rothaus K, Koch JM, et al. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads. Int J Ophthalmol. 2018;11(5):835–843. doi:10.18240/ijo.2018.05.20.
  • Mansoori T, Gamalapati J, Sivaswamy J, et al. Optical coherence tomography angiography measured capillary density in the normal and glaucoma eyes. Saudi J Ophthalmol. 2018;32(4):295–302. doi:10.1016/j.sjopt.2018.09.006.
  • Triolo G, Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma Patients. Invest Ophthalmol Vis Sci. 2017;58(13):5713–5722. doi:10.1167/iovs.17-22865.
  • Manalastas PIC, The association between macula and onh optical coherence tomography angiography (oct-a) vessel densities in glaucoma, glaucoma suspect, and healthy eyes. J Glaucoma. 2018;27(3):227–232. doi:10.1097/IJG.0000000000000862.
  • Lee EJ, Kim T-W, Lee SH, Kim J-A. Underlying microstructure of parapapillary deep-layer capillary dropout identified by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(3):1621–1627. doi:10.1167/iovs.17-21440.
  • Lee EJ, Kim T-W, Kim J-A, Kim J-A. Parapapillary Deep-Layer Microvasculature Dropout in Primary Open-Angle Glaucoma Eyes With a Parapapillary γ-Zone. Invest Ophthalmol Vis Sci. 2017;58(13):5673–5680. doi:10.1167/iovs.17-22604.
  • Lee J, Park CK, Park HL. Determinants of vessel defects in superficial and deep vascular layers in normal-tension glaucoma using optical coherence tomography angiography. Sci Rep. 2021;11(1):9941. doi:10.1038/s41598-021-89428-5.
  • Micheletti E, Moghimi S, Nishida T, et al. Factors associated with choroidal microvascular dropout change. Br J Ophthalmol. 2023;107(10):1444–1451. doi:10.1136/bjo-2022-321157.
  • Kim GN, Lee EJ, Kim TW. Parapapillary choroidal microvasculature dropout in nonglaucomatous healthy eyes. Acta Ophthalmol. 2020;98(6):e754–e760. doi:10.1111/aos.14385.
  • Kong AW, A global and sector-based comparison of oct angiography and visual field defects in glaucoma. J Ophthalmol. 2022;2022:6182592. doi:10.1155/2022/6182592.
  • Köse HC, Tekeli O. Optical coherence tomography angiography of the peripapillary region and macula in normal, primary open angle glaucoma, pseudoexfoliation glaucoma and ocular hypertension eyes. Int J Ophthalmol. 2020;13(5):744–754. doi:10.18240/ijo.2020.05.08.
  • Lee EJ, Lee KM, Lee SH, et al. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016;57(14):6265–6270. doi:10.1167/iovs.16-20287.
  • Li Z, Xu Z, Liu Q, et al. Comparisons of retinal vessel density and glaucomatous parameters in optical coherence tomography angiography. PLOS ONE. 2020;15(6):e0234816. doi:10.1371/journal.pone.0234816.
  • Lin B, Zuo C, Gao X, Huang D, Lin M. Quantitative measurements of vessel density and blood flow areas primary angle closure diseases: A study of optical coherence tomography angiography. JCM. 2022;11(14):4040. doi:10.3390/jcm11144040.
  • Safizadeh M, Shaabani A, Kamalipour A, et al. Optic nerve head vessel density in different stages of pseudoexfoliation disease. Br J Ophthalmol. 2022;106(2):223–228. doi:10.1136/bjophthalmol-2020-317605.
  • Zhang S, Wu C, Liu L, et al. Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma. Am J Ophthalmol. 2017;182:194–200. doi:10.1016/j.ajo.2017.07.024.
  • Lin Y, Chen S, Zhang M. Peripapillary vessel density measurement of quadrant and clock-hour sectors in primary angle closure glaucoma using optical coherence tomography angiography. BMC Ophthalmol. 2021;21(1):328. doi:10.1186/s12886-021-02093-0.
  • Lévêque PM, Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography. J Ophthalmol. 2016;2016:6956717. doi:10.1155/2016/6956717.
  • Son KY, Han JC, Kee C. Parapapillary deep-layer microvasculature dropout is only found near the retinal nerve fibre layer defect location in open-angle glaucoma. Acta Ophthalmol. 2022;100(1):e174–e180. doi:10.1111/aos.14856.
  • Tan L, Ma D, He J, Wang H, Chen S, Lin Y. The topographic relationship between choroidal microvascular dropout and glaucomatous damage in primary angle-closure glaucoma. Transl Vis Sci Technol. 2022;11(10):20. doi:10.1167/tvst.11.10.20.
  • Suh MH, Jung DH, Weinreb RN, et al. Optic disc microvasculature dropout in glaucoma detected by swept-source optical coherence tomography angiography. Am J Ophthalmol. 2022;236:261–270. doi:10.1016/j.ajo.2021.10.029.
  • Suh MH, Zangwill LM, Manalastas PIC, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology. 2016;123(12):2509–2518. doi:10.1016/j.ophtha.2016.09.002.
  • Suh MH, Zangwill LM, Manalastas PIC, et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016;123(11):2309–2317. doi:10.1016/j.ophtha.2016.07.023.
  • Jeon SJ, Park HL, Park CK. Vessel density loss of the deep peripapillary area in glaucoma suspects and its association with features of the lamina cribrosa. J Clin Med. 2021;10(11):2373. doi:10.3390/jcm10112373.
  • Ghahari E, Macular vessel density in glaucomatous eyes with focal lamina cribrosa defects. J Glaucoma. 2018;27(4):342–349. doi:10.1097/IJG.0000000000000922.
  • Wong D, Focal structure-function relationships in primary open-angle glaucoma using OCT and OCT-A measurements. Invest Ophthalmol Vis Sci. 2020;61(14):33. doi:10.1167/iovs.61.14.33.
  • Akiyama K, Diagnostic ability and sectoral structure-function relationship of circumpapillary and macular superficial vessel density in early glaucomatous eyes. Sci Rep. 2022;12(1):5991. doi:10.1038/s41598-022-10033-1.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology. 2017;124(5):709–719. doi:10.1016/j.ophtha.2017.01.004.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology. 2016;123(12):2498–2508. doi:10.1016/j.ophtha.2016.08.041.
  • Nascimento ESR, Quantification of the peripapillary microvasculature in eyes with glaucomatous paracentral visual field loss. Ophthalmol Glaucoma. 2021;4(3):286–294. doi:10.1016/j.ogla.2020.10.009.
  • Chen HS, Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci. 2017;58(9):3637–3645. doi:10.1167/iovs.17-21846.
  • Chao SC, Early macular angiography among patients with glaucoma. Ocular Hypertension, And Normal Subjects J Ophthalmol. 2019;2019:7419470. doi:10.1155/2019/7419470.
  • Choi J, Kwon J, Shin JW, et al. Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma. PLOS ONE. 2017;12(9):e0184948. doi:10.1371/journal.pone.0184948.
  • Lever M, Glaser M, Chen Y, et al. Microvascular and structural alterations of the macula in early to moderate glaucoma: An optical coherence tomography-angiography study. J Clin Med. 2021;10(21):5017. doi:10.3390/jcm10215017.
  • Lin Y, Spatial positional relationship between macular superficial vessel density and ganglion cell-inner plexiform layer thickness in primary angle closure glaucoma. Int Ophthalmol. 2022;42(1):103–112. doi:10.1007/s10792-021-02005-7.
  • Penteado RC, Optical coherence tomography angiography macular vascular density measurements and the central 10-2 visual field in glaucoma. J Glaucoma. 2018;27(6):481–489. doi:10.1097/IJG.0000000000000964.
  • Richter GM, Structural and functional associations of macular microcirculation in the ganglion cell-inner plexiform layer in glaucoma using optical coherence tomography angiography. J Glaucoma. 2018;27(3):281–290. doi:10.1097/IJG.0000000000000888.
  • Takusagawa HL, Liu L, Ma KN, et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology. 2017;124(11):1589–1599. doi:10.1016/j.ophtha.2017.06.002.
  • Zabel K, Zabel P, Kaluzna M, et al. Correlation of retinal sensitivity in microperimetry with vascular density in optical coherence tomography angiography in primary open-angle glaucoma. PLOS ONE. 2020;15(7):e0235571. doi:10.1371/journal.pone.0235571.
  • Lun K, Investigating the macular choriocapillaris in early primary open-angle glaucoma using swept-source optical coherence tomography angiography. Front Med (Lausanne). 2022;9:999167. doi:10.3389/fmed.2022.999167.
  • Milani P, The macular choriocapillaris flow in glaucoma and within-day fluctuations: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci. 2021;62(1):22. doi:10.1167/iovs.62.1.22.
  • Wang YM, Characterization of macular choroid in normal-tension glaucoma: a swept-source optical coherence tomography study. Acta Ophthalmol. 2021;99(8):e1421–e1429. doi:10.1111/aos.14829.
  • Zivkovic M, Foveal avascular zone in normal tension glaucoma measured by optical coherence tomography angiography. Biomed Res Int. 2017;2017:3079141. doi:10.1155/2017/3079141.
  • Kwon J, An optical coherence tomography angiography study of the relationship between foveal avascular zone size and retinal vessel density. Invest Ophthalmol Vis Sci. 2018;59(10):4143–4153. doi:10.1167/iovs.18-24168.
  • Hwang HS, Lee EJ, Kim H, Kim T-W. Relationships of macular functional impairment with structural and vascular changes according to glaucoma severity. Invest Ophthalmol Vis Sci. 2023;64(12):5. doi:10.1167/iovs.64.12.5.
  • Kwon J, Choi J, Shin JW, Lee J, Kook MS. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects. Invest Ophthalmol Vis Sci. 2017;58(3):1637–1645. doi:10.1167/iovs.16-21079.
  • Jeon SJ, Park HL, Park CK. Effect of Macular Vascular Density on Central Visual Function and Macular Structure in Glaucoma Patients. Sci Rep. 2018;8(1):16009. doi:10.1038/s41598-018-34417-4.
  • Andrade De Jesus D, OCTA multilayer and multisector peripapillary microvascular modeling for diagnosing and staging of glaucoma. Transl Vis Sci Technol. 2020;9(2):58. doi:10.1167/tvst.9.2.58.
  • Chen HC, Chou M-Y, Lee M-T, et al. The diagnostic value of pulsar perimetry, optical coherence tomography, and optical coherence tomography angiography in pre-perimetric and perimetric glaucoma. J Clin Med. 2021;10(24):5825. doi:10.3390/jcm10245825.
  • Dutta A, Thulasidas M, Sasidharan A, et al. Comparison of peripapillary capillary plexus using optical coherence tomography angiography and retinal nerve fibre layer analysis using spectral domain optical coherence tomography in glaucoma patients, glaucoma suspects, and healthy subjects. Indian, J Ophthalmol. 2022;70(12):4146–4151. doi:10.4103/ijo.IJO_1456_22.
  • Yarmohammadi A, Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57(9):Oct451–9. doi:10.1167/iovs.15-18944.
  • Li C, Tan L, Xu X, et al. Changes of optic disc and macular vessel perfusion density in primary angle closure glaucoma: a quantitative study using optical coherence tomography angiograph. Ophthalmic Res. 2023;66(1):1245–1253. doi:10.1159/000533874.
  • Wan KH, Lam AKN, Leung CK. Optical coherence tomography angiography compared with optical coherence tomography macular measurements for detection of glaucoma. JAMA Ophthalmol. 2018;136(8):866–874. doi:10.1001/jamaophthalmol.2018.1627.
  • Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711–1720. doi:10.1016/S0140-6736(04)16257-0.
  • Akil H, Huang AS, Francis BA, et al. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLOS ONE. 2017;12(2):e0170476. doi:10.1371/journal.pone.0170476.
  • Hong KL, Burkemper B, Urrea AL, et al. Hemiretinal asymmetry in peripapillary vessel density in healthy, glaucoma suspect, and glaucoma eyes. Am J Ophthalmol. 2021;230:156–165. doi:10.1016/j.ajo.2021.05.019.
  • Mangouritsas G, Koutropoulou N, Ragkousis A, et al. Peripapillary vessel density in unilateral preperimetric glaucoma. Clin Ophthalmol. 2019;13:2511–2519. doi:10.2147/OPTH.S224757.
  • Montorio D, Criscuolo C, Breve MA, et al. Radial peripapillary vessel density as early biomarker in preperimetric glaucoma and amnestic mild cognitive impairment. Graefes Arch Clin Exp Ophthalmol. 2022;260(7):2321–2328. doi:10.1007/s00417-022-05561-5.
  • Kumar RS, Anegondi N, Chandapura RS, et al. Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma. Invest Ophthalmol Vis Sci. 2016;57(14):6079–6088. doi:10.1167/iovs.16-19984.
  • Kamalipour A, Measurements of OCT angiography complement oct for diagnosing early primary open-angle glaucoma. Ophthalmol Glaucoma. 2022;5(3):262–274. doi:10.1016/j.ogla.2021.09.012.
  • Khallouli A, Oueslati Y, Gouider D, et al. Diagnostic accuracy and relationship between optical coherence tomography angiography vessel density and structural/functional parameters in healthy, preperimetric, and manifest glaucoma eyes. J Curr Ophthalmol. 2022;34(2):173–179. doi:10.4103/joco.joco_326_21.
  • Kim SB, Lee EJ, Han JC, et al. Comparison of peripapillary vessel density between preperimetric and perimetric glaucoma evaluated by OCT-angiography. PLOS ONE. 2017;12(8):e0184297. doi:10.1371/journal.pone.0184297.
  • Hou H, Moghimi S, Zangwill LM, et al. Macula vessel density and thickness in early primary open-angle glaucoma. Am J Ophthalmol. 2019;199:120–132. doi:10.1016/j.ajo.2018.11.012.
  • Lee SY, Son N-H, Bae HW, et al. The role of pattern electroretinograms and optical coherence tomography angiography in the diagnosis of normal-tension glaucoma. Sci Rep. 2021;11(1):12257. doi:10.1038/s41598-021-91813-z.
  • Liu K, Xu H, Jiang H, et al. Macular vessel density and foveal avascular zone parameters in patients after acute primary angle closure determined by OCT angiography. Sci Rep. 2020;10(1):18717. doi:10.1038/s41598-020-73223-9.
  • Hou H, Macular thickness and microvasculature loss in glaucoma suspect eyes. Ophthalmol Glaucoma. 2022;5(2):170–178. doi:10.1016/j.ogla.2021.07.009.
  • Bowd C, Belghith A, Proudfoot JA, Gradient-boosting classifiers combining vessel density and tissue thickness measurements for classifying early to moderate glaucoma. Am J Ophthalmol. 2020;217:131–139. doi:10.1016/j.ajo.2020.03.024.
  • Jeon SJ, Shin D-Y, Park H-Y, et al. Association of retinal blood flow with progression of visual field in glaucoma. Sci Rep. 2019;9(1):16813. doi:10.1038/s41598-019-53354-4.
  • Kim JA, Lee EJ, Kim TW. Evaluation of parapapillary choroidal microvasculature dropout and progressive retinal nerve fiber layer thinning in patients with glaucoma. JAMA Ophthalmol. 2019;137(7):810–816. doi:10.1001/jamaophthalmol.2019.1212.
  • Micheletti E, Moghimi S, Nishida T, et al. Rates of choroidal microvasculature dropout and retinal nerve fiber layer changes in glaucoma. Am J Ophthalmol. 2022;241:130–138. doi:10.1016/j.ajo.2022.04.024.
  • Park HY, Shin DY, Jeon SJ, Park CK. Association between parapapillary choroidal vessel density measured with optical coherence tomography angiography and future visual field progression in patients with glaucoma. JAMA Ophthalmol. 2019;137(6):681–688. doi:10.1001/jamaophthalmol.2019.0422.
  • Rao HL, Optical coherence tomography angiography and visual field progression in primary angle closure glaucoma. J Glaucoma. 2021;30(3):e61–e67. doi:10.1097/IJG.0000000000001745.
  • Cornelius A, Pilger D, Riechardt A, et al. Macular, papillary and peripapillary perfusion densities measured with optical coherence tomography angiography in primary open angle glaucoma and pseudoexfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol. 2022;260(3):957–965. doi:10.1007/s00417-021-05321-x.
  • Wang R, Changes of macular blood flow and structure in acute primary angle closure glaucoma. Int Ophthalmol. 2022;42(12):3789–3801. doi:10.1007/s10792-022-02399-y.
  • Yoshikawa Y, Shoji T, Kanno J, et al. Optic disc vessel density in nonglaucomatous and glaucomatous eyes: an enhanced-depth imaging optical coherence tomography angiography study. Clin Ophthalmol. 2018;12:1113–1119. doi:10.2147/OPTH.S167222.
  • Yospon T, Rojananuangnit K. Optical coherence tomography angiography (octa) differences in vessel perfusion density and flux index of the optic nerve and peri-papillary area in healthy, glaucoma suspect and glaucomatous eyes. Clin Ophthalmol. 2023;17:3011–3021. doi:10.2147/OPTH.S429718.
  • Shang X, Wang X, Zhou K, et al. Faster macular vessel density loss in more advanced primary open angle glaucoma eyes. Ophthalmic Res. 2023;66:345–353. doi:10.1159/000526850.
  • Moghimi S, Bowd C, Zangwill LM, et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology. 2019;126(7):980–988. doi:10.1016/j.ophtha.2019.03.003.
  • Hou H, Moghimi S, Proudfoot JA, et al. Ganglion cell complex thickness and macular vessel density loss in primary open-angle glaucoma. Ophthalmology. 2020;127(8):1043–1052. doi:10.1016/j.ophtha.2019.12.030.
  • Shoji T, Zangwill LM, Akagi T, et al. Progressive macula vessel density loss in primary open-angle glaucoma: A longitudinal study. Am J Ophthalmol. 2017;182:107–117. doi:10.1016/j.ajo.2017.07.011.
  • Ghita AM, Iliescu DA, Ghita AC, Ilie LA, Otobic A. Ganglion cell complex analysis: correlations with retinal nerve fiber layer on optical coherence tomography. Diagnostics (Basel). 2023;13(2): doi:10.3390/diagnostics13020266.
  • Mwanza JC, Residual and dynamic range of retinal nerve fiber layer thickness in glaucoma: Comparison of three oct platforms. Invest Ophthalmol Vis Sci. 2015;56(11):6344–6351. doi:10.1167/iovs.15-17248.
  • Raza AS, Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol. 2011;129(12):1529–1536. doi:10.1001/archophthalmol.2011.352.
  • Phillips MJ, Dinh-Dang D, Bolo K, et al. Steps to measurement floor of an optical microangiography device in glaucoma. Am J Ophthalmol. 2021;231:58–69. doi:10.1016/j.ajo.2021.05.012.
  • Kiyota N, Ocular microcirculation measurement with laser speckle flowgraphy and optical coherence tomography angiography in glaucoma. Acta Ophthalmol. 2018;96(4):e485–e492. doi:10.1111/aos.13639.
  • Fan X, Peripapillary vascular reactivity in primary open-angle glaucoma with high myopia by using optical coherence tomography angiography. Front Med (Lausanne). 2022;9:850483. doi:10.3389/fmed.2022.850483.
  • Kim YJ, Na KI, Lim HW, et al. Combined wide-field optical coherence tomography angiography density map for high myopic glaucoma detection. Sci Rep. 2021;11(1):22034. doi:10.1038/s41598-021-01661-0.
  • Lee K, Maeng KJ, Kim JY, et al. Diagnostic ability of vessel density measured by spectral-domain optical coherence tomography angiography for glaucoma in patients with high myopia. Sci Rep. 2020;10(1):3027. doi:10.1038/s41598-020-60051-0.
  • Shin JW, Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia. Br J Ophthalmol. 2018;103(5):585–591. doi:10.1136/bjophthalmol-2018-312085.
  • Am S, Anany M, Awwad MA, et al. The Effect of myopia on vessel density in glaucomatous patients by optical coherence tomography angiography. Clin Ophthalmol. 2023;17:2429–2441. doi:10.2147/OPTH.S418194.
  • Santhosh LM, Elias A, Anup M, et al. Diagnostic ability of superficial vascular density measured by optical coherence tomography angiography to differentiate high myopic eyes from eyes with primary open angle glaucoma. Indian, J Ophthalmol. 2022;70(12):4138–4143. doi:10.4103/ijo.IJO_597_22.
  • Hong KE, Kim SA, Shin D-Y, Park CK, Park H-YL. Ocular and hemodynamic factors contributing to the central visual function in glaucoma patients with myopia. Invest Ophthalmol Vis Sci. 2022;63(5):26. doi:10.1167/iovs.63.5.26.
  • Lin F, Li F, Gao K, et al. Longitudinal changes in macular optical coherence tomography angiography metrics in primary open-angle glaucoma with high myopia: A prospective study. Invest Ophthalmol Vis Sci. 2021;62(1):30. doi:10.1167/iovs.62.1.30.
  • Fu D, Li M, Zeng L, et al. The role of magnification correction in macular vessel density assessment: a contralateral eye study in anisometropia patients. Ann Transl Med. 2021;9(5):380. doi:10.21037/atm-20-5698.
  • Lommatzsch C, Rothaus K, Koch JM, et al. Vessel density in glaucoma of different entities as measured with optical coherence tomography angiography. Clin Ophthalmol. 2019;13:2527–2534. doi:10.2147/OPTH.S230192.
  • Philip S, Najafi A, Tantraworasin A, Chui TYP, Rosen RB, Ritch R. Macula Vessel Density and Foveal Avascular Zone Parameters in Exfoliation Glaucoma Compared to Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci. 2019;60(4):1244–1253. doi:10.1167/iovs.18-25986.
  • Tangtammaruk P, Petpiroon P, Supakonatanasan W, et al. Peripapillary perfused capillary density in true versus pseudoexfoliation syndrome: An OCTA study. PLOS ONE. 2020;15(12):e0239109. doi:10.1371/journal.pone.0239109.
  • Shen R, Wang YM, Cheung CY, et al. Comparison of optical coherence tomography angiography metrics in primary angle-closure glaucoma and normal-tension glaucoma. Sci Rep. 2021;11(1):23136. doi:10.1038/s41598-021-02296-x.
  • Jo YH, Sung KR, Yun SC. The relationship between peripapillary vascular density and visual field sensitivity in primary open-angle and angle-closure glaucoma. Invest Ophthalmol Vis Sci. 2018;59(15):5862–5867. doi:10.1167/iovs.18-25423.
  • El-Haddad N, Abd Elwahab A, Shalaby S, et al. Comparison between open-angle glaucoma and angle-closure glaucoma regarding the short-term optic disc vessel density changes after trabeculectomy. Lasers Med Sci. 2023;38(1):246. doi:10.1007/s10103-023-03907-x.
  • Güngör D, Kayıkçıoğlu ÖR, Altınışık M, et al. Changes in optic nerve head and macula optical coherence tomography angiography parameters before and after trabeculectomy. Jpn J Ophthalmol. 2022;66(3):305–313. doi:10.1007/s10384-022-00919-y.
  • Kim JA, Kim T-W, Lee EJ, Girard MJA, Mari JM. Microvascular changes in peripapillary and optic nerve head tissues after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2018;59(11):4614–4621. doi:10.1167/iovs.18-25038.
  • Park HL, Hong KE, Shin DY, Jung Y, Kim EK, Park CK. Microvasculature recovery detected using optical coherence tomography angiography and the rate of visual field progression after glaucoma surgery. Invest Ophthalmol Vis Sci. 2021;62(15):17. doi:10.1167/iovs.62.15.17.
  • Liu L, Takusagawa HL, Greenwald MF, et al. Optical coherence tomographic angiography study of perfusion recovery after surgical lowering of intraocular pressure. Sci Rep. 2021;11(1):17251. doi:10.1038/s41598-021-96225-7.
  • Reitemeyer E, Pahlitzsch M, Cornelius A, et al. Stabilization of macular, peripapillary and papillary vascular parameters after XEN and trabeculectomy visualized by the optical coherence tomography angiography. Sci Rep. 2022;12(1):17251. doi:10.1038/s41598-022-22091-6.
  • Akrobetu DY, Intrasession repeatability of oct angiography parameters in neurodegenerative disease. Ophthalmol Sci. 2023;3(2):100275. doi:10.1016/j.xops.2023.100275.
  • Bochicchio S, Diurnal stability of peripapillary vessel density and nerve fiber layer thickness on optical coherence tomography angiography in healthy. Ocular Hypertension And Glaucoma Eyes Clin Ophthalmol. 2019;13:1823–1832. doi:10.2147/OPTH.S214877.
  • Manalastas PIC, Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma. 2017;26(10):851–859. doi:10.1097/IJG.0000000000000768.
  • Nishida T, Moghimi S, Hou H, et al. Long-term reproducibility of optical coherence tomography angiography in healthy and stable glaucomatous eyes. Br J Ophthalmol. 2023;107(5):657–662. doi:10.1136/bjophthalmol-2021-320034.
  • Venugopal JP, Rao HL, Weinreb RN, et al. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. Br J Ophthalmol. 2018;102(3):352–357. doi:10.1136/bjophthalmol-2017-310637.
  • Wu JH, Diurnal variation of retinal vessel density in healthy human eyes. J Glaucoma. 2021;30(9):820–826. doi:10.1097/IJG.0000000000001903.
  • Baek SU, Kim YK, Ha A, et al. Diurnal change of retinal vessel density and mean ocular perfusion pressure in patients with open-angle glaucoma. PLOS ONE. 2019;14(4):e0215684. doi:10.1371/journal.pone.0215684.
  • Mansouri K, Diurnal variations of peripapillary and macular vessel density in glaucomatous eyes using optical coherence tomography angiography. J Glaucoma. 2018;27(4):336–341. doi:10.1097/IJG.0000000000000914.
  • Park CK, Lee K, Kim EW, et al. Effect of systemic blood pressure on optical coherence tomography angiography in glaucoma patients. Eye (Lond). 2021;35(7):1967–1976. doi:10.1038/s41433-020-01199-x.
  • Lim HB, Kim YW, Nam KY, et al. Signal strength as an important factor in the analysis of peripapillary microvascular density using optical coherence tomography angiography. Sci Rep. 2019;9(1):16299. doi:10.1038/s41598-019-52818-x.
  • Pradhan ZS, Sreenivasaiah S, Srinivasan T, et al. The importance of signal strength index in optical coherence tomography angiography: a study of eyes with pseudoexfoliation syndrome. Clin Ophthalmol. 2022;16:3481–3489. doi:10.2147/OPTH.S378722.
  • Rabiolo A, Gelormini F, Sacconi R, et al. Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography. PLOS ONE. 2018;13(10):e0205773. doi:10.1371/journal.pone.0205773.
  • Sawaspadungkij M, Disagreement of radial peripapillary capillary density among four optical coherence tomography angiography devices. Transl Vis Sci Technol. 2023;12(8):7. doi:10.1167/tvst.12.8.7.
  • Anvari P, Ashrafkhorasani M, Habibi A, et al. Artifacts in optical coherence tomography angiography. J Ophthalmic Vis Res. 2021;16(2):271–286. doi:10.18502/jovr.v16i2.9091.
  • Geevarghese A, Optical coherence tomography and glaucoma. Annu Rev Vis Sci. 2021;7(1):693–726. doi:10.1146/annurev-vision-100419-111350.
  • Enders C, Lang GE, Dreyhaupt J, et al. Quantity and quality of image artifacts in optical coherence tomography angiography. PLOS ONE. 2019;14(1):e0210505. doi:10.1371/journal.pone.0210505.
  • Kamalipour A, Moghimi S, Hou H, et al. OCT angiography artifacts in glaucoma. Ophthalmology. 2021;128(10):1426–1437. doi:10.1016/j.ophtha.2021.03.036.
  • Park K, Kim J, Lee J. Macular vessel density and ganglion cell/inner plexiform layer thickness and their combinational index using artificial intelligence. J Glaucoma. 2018;27(9):750–760. doi:10.1097/IJG.0000000000001028.
  • Lee YJ, Sun S, Kim YK, et al. Diagnostic ability of macular microvasculature with swept-source OCT angiography for highly myopic glaucoma using deep learning. Sci Rep. 2023;13(1):5209. doi:10.1038/s41598-023-32164-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.