1,270
Views
9
CrossRef citations to date
0
Altmetric
Review

A Review on Green Method of Extraction and Recovery of Energy Critical Element Cobalt from Spent Lithium-Ion Batteries (LIBs)

&

References

  • Aktas, S., D. J. Fray, O. Burheim, J. Fenstad, and E. Açma. 2006. Recovery of metallic values from spent Li ion secondary batteries. Mineral Processing and Extractive Metallurgy. 115(2):95–100. doi:10.1179/174328506X109040.
  • Amato, A., L. Rocchetti, V. Fonti, T. A. Atia, P. Altimari, E. Moscardini, L. Toro, F. Pagnanelli, and F. Beolchini, 2016, Recovery of critical metals from LCDs and Li-ion batteries.” In 2016 Electronics Goes Green 2016+(EGG). 1–5. Berlin, Germany: IEEE.
  • Chabhadiya, K., R. R. Srivastava, and P. Pathak. 2021. Two-step leaching process and kinetics for an eco-friendly recycling of critical metals from spent Li-ion batteries. Journal of Environmental Chemical Engineering 9 (3):105232. doi:10.1016/j.jece.2021.105232.
  • Chagnes, A., and B. Pospiech. 2013. A brief review on hydrometallurgical technologies for recycling spent lithium‐ion batteries. Journal of Chemical Technology and Biotechnology 88 (7):1191–99. doi:10.1002/jctb.4053.
  • Chen, X., C. Luo, J. Zhang, J. Kong, and T. Zhou. 2015. Sustainable recovery of metals from spent lithium-ion batteries: a green process. ACS Sustainable Chemistry & Engineering 3 (12):3104–13. doi:10.1021/acssuschemeng.5b01000.
  • Chen, X., D. Kang, L. Cao, J. Li, T. Zhou, and H. Ma. 2019. “Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step. Separation and Purification Technology 210:690–97. doi:10.1016/j.seppur.2018.08.072.
  • Datta, R., and M. Henry. 2006. Lactic acid: Recent advances in products, processes and technologies—a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 81 (7):1119–29. doi:10.1002/jctb.1486.
  • De Vries, K. S., and N. V. Akzo, 1989, Preparation of polylactic acid and copolymers of lactic acids. U.S. Patent 4,797,468.
  • Engel, C. A. R., A. J. Straathof, T. W. Zijlmans, W. M. van Gulik, and L. A. van der Wielen. 2008. “Fumaric acid production by fermentation. “Applied Microbiology and Biotechnology 78 (3):379–89. doi:10.1007/s00253-007-1341-x.
  • Fan, B., X. Chen, T. Zhou, J. Zhang, and B. Xu. 2016. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Waste Management & Research 34 (5):474–81. doi:10.1177/0734242X16634454.
  • Gao, W., J. Song, H. Cao, X. Lin, X. Zhang, X. Zheng, Y. Zhang, and Z. Sun. 2018. Selective recovery of valuable metals from spent lithium-ion batteries–process development and kinetics evaluation. Journal of Cleaner Production 178:833–45. doi:10.1016/j.jclepro.2018.01.040.
  • Garcia, E. M., U. Federal, D. S. Carlos, and E. C. Pereira. 2017. Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance. J. Power Sources 185:549–53. doi:10.1016/j.jpowsour.2008.07.011.
  • Garlotta, D. 2001. A literature review of poly (lactic acid). Journal of Polymers and the Environment 9 (2):63–84. doi:10.1023/A:1020200822435.
  • Golmohammadzadeh, R., F. Faraji, and F. Rashchi. 2018. Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation and Recycling 136:418–35. doi:10.1016/j.resconrec.2018.04.024.
  • Golmohammadzadeh, R., F. Rashchi, and E. Vahidi. 2017. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects. Waste Management 64:244–54. doi:10.1016/j.wasman.2017.03.037.
  • Greenacre, E. J., T. F. Brocklehurst, C. R. Waspe, D. R. Wilson, and P. D. G. Wilson. 2003. Salmonella enterica serovar Typhimurium and Listeria monocytogenes acid tolerance response induced by organic acids at 20 C: Optimization and modeling. Applied and Environmental Microbiology 69 (7):3945–51. doi:10.1128/AEM.69.7.3945-3951.2003.
  • Guzolu, J. S., M. Gharabaghi, M. Mobin, and H. Alilo. 2017. Extraction of Li and Co from Li-ion batteries by chemical methods. Journal of the Institution of Engineers (India): Series D 98 (1):43–48. doi:10.1007/s40033-016-0114-z.
  • He, L. P., S. Y. Sun, Y. Y. Mu, X. F. Song, and J. G. Yu. 2017. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant. ACS Sustainable Chemistry & Engineering 5 (1):714–21. doi:10.1021/acssuschemeng.6b02056.
  • Joulié, M., E. Billy, R. Laucournet, and D. Meyer. 2017. Current collectors as reducing agent to dissolve active materials of positive electrodes from Li-ion battery wastes. Hydrometallurgy 169:426–32. doi:10.1016/j.hydromet.2017.02.010.
  • Kang, S., S. L. Hsu, H. D. Stidham, P. B. Smith, M. A. Leugers, and X. Yang. 2001. A spectroscopic analysis of poly (lactic acid) structure. Macromolecules 34 (13):4542–48. doi:10.1021/ma0016026.
  • Kim, K. N., J. E. Pie, J. H. Park, Y. H. Park, H. W. Kim, and M. K. Kim. 2006. Retinoic acid and ascorbic acid act synergistically in inhibiting human breast cancer cell proliferation. The Journal of Nutritional Biochemistry 17 (7):454–62. doi:10.1016/j.jnutbio.2005.10.009.
  • Knipe, A. C., and M. G. Moloney . eds., 2012. Organic reaction mechanisms: 2010. Organic reaction Meachanism Series. Wiley. doi:10.1002/9781119288657.
  • Li, L., E. Fan, Y. Guan, X. Zhang, Q. Xue, L. Wei, F. Wu, and R. Chen. 2017. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system. ACS Sustainable Chemistry & Engineering 5 (6):5224–33. doi:10.1021/acssuschemeng.7b00571.
  • Li, L., J. B. Dunn, X. X. Zhang, L. Gaines, R. J. Chen, F. Wu, and K. Amine. 2013. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. Journal of Power Sources 233:180–89. doi:10.1016/j.jpowsour.2012.12.089.
  • Li, L., J. Ge, F. Wu, R. Chen, S. Chen, and B. Wu. 2010a. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Journal of Hazardous Materials 176 (1–3):288–93. doi:10.1016/j.jhazmat.2009.11.026.
  • Li, L., J. Ge, R. Chen, F. Wu, S. Chen, and X. Zhang. 2010b. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Management 30 (12):2615–21. doi:10.1016/j.wasman.2010.08.008.
  • Li, L., J. Lu, Y. Ren, X. X. Zhang, R. J. Chen, F. Wu, and K. Amine. 2012. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. Journal of Power Sources 218:21–27. doi:10.1016/j.jpowsour.2012.06.068.
  • Li, L., L. Zhai, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine. 2014. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of Power Sources 262:380–85. doi:10.1016/j.jpowsour.2014.04.013.
  • Li, L., Y. Bian, X. Zhang, Y. Guan, E. Fan, F. Wu, and R. Chen. 2018. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Management 71:362–71. doi:10.1016/j.wasman.2017.10.028.
  • Ma, L. W., X. L. Xi, Z. Z. Zhang, Z. Q. Huang, and J. P. Chen. 2017. Hydrometallurgical treatment for mixed waste battery material. IOP Conference Series: Materials Science and Engineering 170 (1):012024. doi:10.1088/1757-899X/170/1/012024.
  • Mansur, M. B., A. S. Guimarães, and M. Petraniková. 2021. An overview on the recovery of cobalt from end-of-life lithium ion batteries. Mineral Processing and Extractive Metallurgy Review 1–21. doi:10.1080/08827508.2021.1883014.
  • McKenzie, D. I., L. Denys, and A. Buchanan. 1987. The solubilization of nickel, cobalt and iron from laterites by means of organic chelating acids at low pH. International Journal of Mineral Processing 21 (3–4):275–92. doi:10.1016/0301-7516(87)90059-7.
  • Meng, F., J. McNeice, S. S. Zadeh, and A. Ghahreman. 2021. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Processing and Extractive Metallurgy Review 42 (2):123–41. doi:10.1080/08827508.2019.1668387.
  • Meng, F., Q. Liu, R. Kim, J. Wang, G. Liu, and A. Ghahreman. 2020. Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: Leaching optimization and kinetic analysis. Hydrometallurgy 191:105160. doi:10.1016/j.hydromet.2019.105160.
  • Meshram, P., B. D. Pandey, and T. R. Mankhand. 2015. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects. Waste Management 45:306–13. doi:10.1016/j.wasman.2015.05.027.
  • Mozzi, F., and G. M. Vignolo, eds. 2010. Biotechnology of lactic acid bacteria: Novel applications. USA: John Wiley & Sons.
  • Mulligan, C. N., M. Kamali, and B. F. Gibbs. 2004. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus Niger. Journal of Hazardous Materials 110 (1–3):77–84. doi:10.1016/j.jhazmat.2004.02.040.
  • Musariri, B., G. Akdogan, C. Dorfling, and S. Bradshaw. 2019. Evaluating organic acids as alternative leaching reagents for metal recovery from lithium-ion batteries. Minerals Engineering 137:108–17. doi:10.1016/j.mineng.2019.03.027.
  • Natarajan, S., A. B. Boricha, and H. C. Bajaj. 2018. “Recovery of value-added products from cathode and anode material of spent lithium-ion batteries. “Waste Management 77:455–65.
  • Nayaka, G. P., K. V. Pai, G. Santhosh, and J. Manjanna. 2016. “Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co. Hydrometallurgy 161:54–57. doi:10.1016/j.hydromet.2016.01.026.
  • Ning, P., Q. Meng, P. Dong, J. Duan, M. Xu, Y. Lin, and Y. Zhang. 2020. Recycling of cathode material from spent lithium-ion batteries using an ultrasound-assisted DL-malic acid leaching system. Waste Management 103:52–60. doi:10.1016/j.wasman.2019.12.002.
  • Pant, D., and T. Dolker. 2017. Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium-ion batteries. Waste Management 60:689–95. doi:10.1016/j.wasman.2016.09.039.
  • Parmar, N., and A. Singh, eds. 2013. Geomicrobiology and biogeochemistry, vol. 39. London: Springer Science & Business Media. doi:10.1007/978-3-642-41837-2.
  • Pathak, A., M. Vinoba, and R. Kothari. 2021. Emerging role of organic acids in leaching of valuable metals from refinery-spent hydro processing catalysts, and potential techno-economic challenges: A review. Critical Reviews in Environmental Science and Technology 51 (1):1–43. doi:10.1080/10643389.2019.1709399.
  • Paulino, J. F., N. G. Busnardo, and J. C. Afonso. 2008. Recovery of valuable elements from spent Li-batteries. Journal of Hazardous Materials 150 (3):843–49. doi:10.1016/j.jhazmat.2007.10.048.
  • Paustenbach, D. J., B. E. Tvermoes, K. M. Unice, B. L. Finley, and B. D. Kerger. 2013. A review of the health hazards posed by cobalt. Critical Reviews in Toxicology 43 (4):316–62. doi:10.3109/10408444.2013.779633.
  • Ren, J., ed. 2011. Biodegradable poly (lactic acid): Synthesis, modification, processing and applications. Beijing: Tsinghua University Press and New York: Springer.
  • Saidan, M., B. Brown, and M. Valix. 2012. Leaching of electronic waste using biometabolised acids. Chinese Journal of Chemical Engineering 20 (3):530–34. doi:10.1016/S1004-9541(11)60215-2.
  • Smith, M. B. 2010. Organic chemistry: An acid-base approach, 1592. 1st ed. Boca Raton: CRC Press. doi:10.1201/9781439894620.
  • Sun, L., and K. Qiu. 2012. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Management 32 (8):1575–82. doi:10.1016/j.wasman.2012.03.027.
  • Swain, B., J. Jeong, J. C. Lee, and G. H. Lee. 2008. Development of process flow sheet for recovery of high pure cobalt from sulfate leach liquor of LIB industry waste: A mathematical model correlation to predict optimum operational conditions. Separation and Purification Technology 63 (2):360–69. doi:10.1016/j.seppur.2008.05.022.
  • Teucher, O., and Cori. 2004. Enhancers of iron absorption: Ascorbic acid and other organic acids. International Journal for Vitamin and Nutrition Research 74 (6):403–19. doi:10.1024/0300-9831.74.6.403.
  • Theron, M. M., and J. F. Lues. 2007. Organic acids and meat preservation: A review. Food Reviews International 23 (2):141–58. doi:10.1080/87559120701224964.
  • Theron, M. M., and J. R. Lues. 2010. Organic acids and food preservation, 340. 1st ed. Boca Raton: CRC Press. doi:10.1021/9781420078435.
  • Tzeferis, P. G. 1994. Leaching of a low grade hematitic laterite ore using fungi and biologically produced acid metabolites. International Journal of Mineral Processing 42 (3–4):267–83. doi:10.1016/0301-7516(94)00032-8.
  • Vanitha, M., and N. Balasubramanian. 2013. Waste minimization and recovery of valuable metals from spent lithium-ion batteries–a review. Environmental Technology Reviews 2 (1):101–15. doi:10.1080/21622515.2013.853105.
  • Wang, W. Y., C. H. Yen, and J. K. Hsu. 2020. Selective recovery of cobalt from the cathode materials of NMC type Li-ion battery by ultrasound-assisted acid leaching and microemulsion extraction. Separation Science and Technology 55 (16):3028–35. doi:10.1080/01496395.2019.1665071.
  • Xu, J., H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang, and B. Liang. 2008. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources 177 (2):512–27. doi:10.1016/j.jpowsour.2007.11.074.
  • Yang, Y., S. Xu, and Y. He. 2017. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Management 64:219–27. doi:10.1016/j.wasman.2017.03.018.
  • Zeng, X., J. Li, and B. Shen. 2015. “Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of Hazardous Materials 295:112–18. doi:10.1016/j.jhazmat.2015.02.064.
  • Zhang, X., Y. Xie, X. Lin, H. Li, and H. Cao. 2013. An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries. Journal of Material Cycles and Waste Management 15 (4):420–30. doi:10.1007/s10163-013-0140-y.
  • Zheng, Q., M. Watanabe, Y. Iwatate, D. Azuma, K. Shibazaki, Y. Hiraga, A. Kishita, and Y. Nakayasu. 2020. Hydrothermal leaching of ternary and binary lithium-ion battery cathode materials with citric acid and the kinetic study. The Journal of Supercritical Fluids 165:104990. doi:10.1016/j.supflu.2020.104990.
  • Zheng, X., W. Gao, X. Zhang, M. He, X. Lin, H. Cao, Y. Zhang, and Z. Sun. 2017. Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Management 60:680–88. doi:10.1016/j.wasman.2016.12.007.
  • Zheng, Y., H. L. Long, L. Zhou, Z. S. Wu, X. Zhou, L. You, Y. Yang, and J. W. Liu. 2016. Leaching procedure and kinetic studies of cobalt in cathode materials from spent lithium ion batteries using organic citric acid as leachant. International Journal of Environmental Research 10 (1):159–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.