249
Views
33
CrossRef citations to date
0
Altmetric
Research Article

HCMV INFECTION: MODULATING THE CELL CYCLE AND CELL DEATH

&
Pages 113-139 | Published online: 03 Aug 2009

REFERENCES

  • J.E.S., Mocarski, C. T., Courcelle. Cytomegaloviruses and their replication. Fields Virology, 4th ed., D. M., Knipe, P. M., Howley, Philadelphia, PA, Lipplncott Williams & Wilkins. 2629–2673, 2001
  • R. F., Pass. Cytomegalovirus. Fields Virology, 4th ed., D. M., Knipe, P. M., Howley, Philadelphia, PA, Lippincott Williams & Wilkins. 2575–2705, 2001
  • M., Ho. Cytomegalovirus: Biology & Infection. New York, Plenum Medical Book Company. 1982
  • I., Boldogh, E., Gonczol, L., Vaczi. Transformation of hamster embryonic fibroblast cells by UV-irradiated human cytomegalovirus. Acta Microbiol. Acad. Sci. Hung.. 25: 269–275, 1978
  • T., Albrecht, F., Rapp. Malignant transformation of hamster embryo fibroblasts following exposure to ultraviolet-irradiated human cytomegalovirus. Virology. 55: 53–61, 1973, [CROSSREF]
  • K. M., Geder, R., Lausch, F., O'Neill, F., Rapp. Oncogenic transformation of human embryo lung cells by human cytomegalovirus. Science. 192: 1134–1137, 1976
  • C. Y., Shen, M. S., Ho, S. F., Chang, M. S., Yen, H. T., Ng, E. S., Huang, C. W., Wu. High rate of concurrent genital infections with human cytomegalovirus and human papillomaviruses in cervical cancer patients. J. Infect. Dis.. 168: 449–452, 1993
  • J., Doniger, S., Muralidhar, L. J., Rosenthal. Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate. Clin. Microbiol. Rev.. 12: 367–382, 1999, [CSA]
  • D. M., Lukac, J. C., Alwine. Effects of human cytomegalovirus major immediate-early proteins in controlling the cell cycle and inhibiting apoptosis: Studies with ts13 cells. J. Virol.. 73: 2825–2831, 1999, [CSA]
  • Y., Shen, H., Zhu, T., Shenk. Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate “hit-and-run” oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc. Natl. Acad. Sci. USA. 94: 3341–3345, 1997, [CSA], [CROSSREF]
  • E., Speir, E. S., Huang, R., Modali, M. B., Leon, F., Shawl, T., Finkel, S. E., Epstein. Interaction of human cytomegalovirus with p53: Possible role in coronary restenosis. Scand. J. Infect. Dis. Suppl.. 99: 78–81, 1995, [CSA]
  • E., Speir, R., Modali, E. S., Huang, M. B., Leon, F., Shawl, T., Finkel, S. E., Epstein. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science. 265: 391–394, 1994
  • Y. F., Zhou, M. B., Leon, M. A., Waclawiw, J. J., Popma, Z. X., Yu, T., Finkel, S. E., Epstein. Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N. Engl. J. Med.. 335: 624–630, 1996, [CSA], [CROSSREF]
  • Y. F., Zhou, Z. X., Yu, C., Wanishsawad, M., Shou, S. E., Epstein. The immediate early gene products of human cytomegalovirus increase vascular smooth muscle cell migration, proliferation, and expression of PDGF beta-receptor. Biochem. Biophys. Res. Commun.. 256: 608–613, 1999, [CSA], [CROSSREF]
  • S., Michelson, P., Dal Monte, D., Zipeto, B., Bodaghi, L., Laurent, E., Oberlin, F., Arenzana-Seisdedos, J. L., Virelizier, M. P., Landini. Modulation of RANTES production by human cytomegalovirus infection of fibroblasts. J. Virol.. 71: 6495–6500, 1997, [CSA]
  • G., Steinhoff, X. M., You, C., Steinmuller, K., Boeke, F. S., Stals, C. A., Bruggeman, A., Haverich. Induction of endothelial adhesion molecules by rat cytomegalovirus in allogeneic lung transplantation in the rat. Scand. J. Infect. Dis. Suppl.. 99: 58–60, 1995, [CSA]
  • D. N., Streblow, C., Soderberg-Naucler, J., Vieira, P., Smith, E., Wakabayashi, F., Ruchti, K., Mattison, Y., Altschuler, J. A., Nelson. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell. 99: 511–520, 1999, [CROSSREF]
  • T., Albrecht, M., Nachtigal, S. C., St Jeor, F., Rapp. Induction of cellular DNA synthesis and increased mitotic activity in syrian hamster embryo cells abortively infected with human cytomegalovirus. J. Gen. Virol.. 30: 167–177, 1976
  • E., Gonczol, S. A., Plotkin. Cells infected with human cytomegalovirus release a factor(s) that stimulates cell DNA synthesis. J. Gen. Virol.. 65(Pt 10)1833–1837, 1984
  • S. C., St. Jeor, T. B., Albrecht, F. D., Funk, F., Rapp. Stimulation of cellular DNA Synthesis by Human Cytomegalovirus. J. Virol.. 13: 353–362; 1974
  • E., Speir, Z. X., Yu, K., Takeda, V. J., Ferrans, R. O., 3rd. Cannon. Antioxidant effect of estrogen on cytomegalovirus-induced gene expression in coronary artery smooth muscle cells. Circulation. 102: 2990–2996, 2000
  • H., Zhu, Y., Shen, T., Shenk. Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J. Virol.. 69: 7960–7970, 1995, [CSA]
  • F. M., Jault, J. M., Jault, F., Ruchti, E. A., Fortunato, C., Clark, J., Corbeil, D. D., Richman, D. H., Spector. Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. J. Virol.. 69: 6697–6704, 1995, [CSA]
  • M., Lu, T., Shenk. Human cytomegalovirus infection inhibits cell cycle progression at multiple points, including the transition from G1 to S. J. Virol.. 70: 8850–8857, 1996, [CSA]
  • D., Dittmer, E. S., Mocarski. Human cytomegalovirus infection inhibits G1/S transition. J. Virol.. 71: 1629–1634, 1997, [CSA]
  • W. A., Bresnahan, I., Boldogh, E. A., Thompson, T., Albrecht. Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1. Virology. 224: 150–160, 1996, [CSA], [CROSSREF]
  • J. R., Nevins. Cell transformation by viruses. Fields Virology, 4th ed., D. M., Knipe, P. M., Howley, Philadelphia, PA, Lippincott Williams & Wilkins. 245–283, 2001
  • J. W., Harbour, D. C., Dean. The Rb/E2F pathway: Expanding roles and emerging paradigms. Genes. Dev.. 14: 2393–2409, 2000, [CROSSREF]
  • J. M., Trimarchi, J. A., Lees. Transcriptionsibling rivalry in the E2f family. Nat. Rev. Mol. Cell. Biol.. 3: 11–20, 2002, [CSA], [CROSSREF]
  • J. R., Nevins. Toward an understanding of the functional complexity of the e2F and retinoblastoma families. Cell Growth Differ.. 9: 585–593, 1998, [CSA]
  • J., DeGregori, T. F., Kowalik, J. R., Nevins. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis and G1/S regulatory genes. Mol. Cell. Biol.. 15: 4215–4224, 1995
  • T., Kowalik, J., DeGregori, J. K., Schwarz, J. R., Nevins. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J. Virol.. 69: 2491–2500, 1995, [CSA]
  • C., Prives, P. A., Hall. The p53 pathway. J. Pathol.. 187: 112–126, 1999, [CROSSREF]
  • J. W., Harper, G. R., Adami, N., Wei, K., Keyomarsi, S. J., Elledge. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin- dependent kinases. Cell. 75: 805–816, 1993, [CROSSREF]
  • W. S., el-Deiry, T., Tokino, V. E., Velculescu, D. B., Levy, R., Parsons, J. M., Trent, D., Lin, W. E., Mercer, K. W., Kinzler, B., Vogelstein. WAF1, a potential mediator of p53 tumor suppression. Cell. 75: 817–825, 1993, [CROSSREF]
  • P., Sarnow, Y. S., Ho, J., Williams, A. J., Levine. Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell. 28: 387–394, 1982, [CROSSREF]
  • J., Bargonetti, I., Reynisdottir, P. N., Friedman, C., Prives. Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes. Dev.. 6: 1886–1898, 1992
  • S. W., Lowe, H. E., Ruley. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes. Dev.. 7: 535–545, 1993
  • S. A., McCarthy, H. S., Symonds, T., Van. Dyke, Regulation of apoptosis in transgenic mice by simian virus 40 T antigen- mediated inactivation of p53. Proc. Natl. Acad. Sci. USA. 91: 3979–3983, 1994, [CSA]
  • P. R., Yew, A. J., Berk. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature. 357: 82–85, 1992, [CROSSREF]
  • M., Scheffner, B. A., Werness, J. M., Huibregtse, A. J., Levine, P. M., Howley. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 63: 1129–1136, 1990, [CROSSREF]
  • D., Johnson, J. K., Schwarz, W. D., Cress, J. R., Nevins. Expression of transcription factor E2F1 induces quiescent cells to enter S-phase. Nature. 378: 206–208, 1993, [CROSSREF]
  • J., Sinclair, J., Baillie, L., Bryant, R., Caswell. Human cytomegalovirus mediates cell cycle progression through G(1) into early S phase in terminally differentiated cells. J. Gen. Virol.. 81(Pt 6)1553–1565, 2000, [CSA]
  • B., Ruger, S., Klages, B., Walla, J., Albrecht, B., Fleckenstein, P., Tomlinson, B., Barrell. Primary structure and transcription of the genes coding for the two virion phosphoproteins pp65 and pp71 of human cytomegalovirus. J. Virol.. 61: 446–453, 1987, [CSA]
  • C., Roby, W., Gibson. Characterization of phosphoproteins and protein kinase activity of virions, noninfectious enveloped particles, and dense bodies of human cytomegalovirus. J. Virol.. 59: 714–727, 1986, [CSA]
  • G. M., Hensel, H. H., Meyer, I., Buchmann, D., Pommerehne, S., Schmolke, B., Plachter, K., Radsak, H. F., Kern. Intracellular localization and expression of the human cytomegalovirus matrix phosphoprotein pp71 (ppUL82): Evidence for its translocation into the nucleus. J. Gen. Virol.. 77: 3087–3097, 1996, [CSA]
  • W. A., Bresnahan, T. E., Shenk. UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc. Natl. Acad. Sci. USA. 97: 14506–14511, 2000, [CSA], [CROSSREF]
  • R. F., Kalejta, J. T., Bechtel, T., Shenk. Mutations that abolish the ability of HCMV pp71 protein to induce DNA synthesis in quiescent cells do not affect its ability to accelerate G1 phase cell cycle progression. J. Virol.. 77: 3451–3459, 2003, [CSA], [CROSSREF]
  • R. F., Kalejta, T., Shenk, The HCMV. Protein pp71 Induces DNA synthesis in quiescent cells by targeting members of the RB family of tumor suppressor for degradation. Mol. Cell. Biol.. 23: 1885–1895, 2003, [CROSSREF]
  • R. F., Kalejta, T., Shenk. Manipulation of the cell cycle by human cytomegalovirus. Front. Biosci.. 7: d295–306, 2002, [CSA]
  • M. F., Stinski, D. R., Thomsen, R. M., Stenberg, L. C., Goldstein. Organization and expression of the immediate early genes of human cytomegalovirus. J. Virol.. 46: 1–14, 1983, [CSA]
  • R. F., Greaves, E. S., Mocarski. Defective growth correlates with reduced accumulation of a viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus ie1 mutant. J. Virol.. 72: 366–379, 1998, [CSA]
  • A. C., Iskenderian, L., Huang, A., Reilly, R. M., Stenberg, D. G., Anders. Four of eleven loci required for transient complementation of human cytomegalovirus DNA replication cooperate to activate expression of replication genes. J. Virol.. 70: 383–392, 1996, [CSA]
  • R. A., Johnson, A. D., Yurochko, E. E., Poma, L., Zhu, E. S., Huang. Domain mapping of the human cytomegalovirus IE1-72 and cellular p107 protein-protein interaction and the possible functional consequences. J. Gen. Virol.. 80: 1293–1303, 1999, [CSA]
  • E. E., Poma, T. F., Kowalik, L., Zhu, J. H., Sinclair, E. S., Huang. The human cytomegalovirus IE1-72 protein interacts with the cellular p107 protein and relieves p107-mediated transcriptional repression of an E2F-responsive promoter. J. Virol.. 70: 7867–7877, 1996, [CSA]
  • M. J., Margolis, S., Pajovic, E. L., Wong, M., Wade, R., Jupp, J. A., Nelson, J. C., Azizkhan. Interaction of the 72-kilodalton human cytomegalovirus IE1 gene product with E2F1 coincides with E2F-dependent activation of dihydrofolate reductase transcription. J. Virol.. 69: 7759–7767, 1995, [CSA]
  • G. P., Hayhurst, L. A., Bryant, R. C., Caswell, S. M., Walker, J. H., Sinclair. CCAAT box-dependent activation of the TATA-less human DNA polymerase alpha promoter by the human cytomegalovirus 72-kilodalton major immediate-early protein. J. Virol.. 69: 182–188, 1995, [CSA]
  • S., Pajovic, E. L., Wong, A. R., Black, J. C., Azizkhan. Identification of a viral kinase that phosphorylates specific E2Fs and pocket proteins. Mol. Cell. Biol.. 17: 6459–6464, 1997
  • L., Zhu, S., van den Heuvel, K., Helin, A., Fattaey, M., Ewen, D., Livingston, N., Dyson, E., Harlow. Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev.. 7: 1111–1125, 1993
  • J. P., Castillo, H. A., Rogoff, T. F., Kowalik. HCMV IE1-72 induces p53 through multiple pathways to induce a growth arrest response, (submitted for publication). 2003
  • J. P., Castillo, A. D., Yurochko, T. F., Kowalik. Role of human cytomegalovirus immediate-early proteins in cell growth control. J. Virol.. 74: 8028–8037, 2000, [CSA], [CROSSREF]
  • A., Marchini, H., Liu, H., Zhu. Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J. Virol.. 75: 1870–1878, 2001, [CSA], [CROSSREF]
  • C., Hagemeier, R., Caswell, G., Hayhurst, J., Sinclair, T., Kouzarides. Functional interaction between the HCMV IE2 transactivator and the retinoblastoma protein. EMBO J.. 13: 2897–2903, 1994, [CSA]
  • E. A., Fortunato, M. H., Sommer, K., Yoder, D. H., Spector. Identification of domains within the human cytomegalovirus major immediate-early 86-kilodalton protein and the retinoblastoma protein required for physical and functional interaction with each other. J. Virol.. 71: 8176–8185, 1997, [CSA]
  • Y., Song, M. F., Stinkski. Effect of the human cytomegalovirus IE86 protein on expression of E2F responsive genes: A DNA microarray analysis. Proc. Natl. Acad. Sci. USA. 99: 2836–2841, 2002, [CSA]
  • E. A., Murphy, D. N., Streblow, J. A., Nelson, M. F., Stinski. The human cytomegalovirus IE86 protein can block cell cycle progression after inducing transition into the S phase of permissive cells. J. Virol.. 74: 7108–7118, 2000, [CSA], [CROSSREF]
  • W. A., Bresnahan, T., Albrecht, E. A., Thompson. The cyclin E promoter is activated by human cytomegalovirus 86-kDa immediate early protein. J. Biol. Chem.. 273: 22075–22082, 1998, [CROSSREF]
  • H. L., Tsai, G. H., Kou, S. C., Chen, C. W., Wu, Y. S., Lin. Human cytomegalovirus immediate-early protein IE2 tethers a transcriptional repression domain to p53. J. Biol. Chem.. 271: 3534–3540, 1996, [CROSSREF]
  • M., Winkler, S. A., Rice, T., Stamminger. UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression. J. Virol.. 68: 3943–3954, 1994, [CSA]
  • M., Winkler, T., Stamminger. A specific subform of the human cytomegalovirus transactivator protein pUL69 is contained within the tegument of virus particles. J. Virol.. 70: 8984–8987, 1996, [CSA]
  • M., Winkler, T., aus Dem Siepen, T., Stamminger. Functional interaction between pleiotropic transactivator pUL69 of human cytomegalovirus and the human homolog of yeast chromatin regulatory protein SPT6. J. Virol.. 74: 8053–8064, 2000, [CSA], [CROSSREF]
  • M., Lu, T., Shenk. Human cytomegalovirus UL69 protein induces cells to accumulate in G1 phase of the cell cycle. J. Virol.. 73: 676–683, 1999, [CSA]
  • M. L., Hayashi, C., Blankenship, T., Shenk. Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc. Natl. Acad. Sci. USA. 97: 2692–2696, 2000, [CSA], [CROSSREF]
  • K. L., McQueen, P., Parham. Variable receptors controlling activation and inhibition of NK cells. Curr. Opin. Immunol.. 14: 615–621, 2002, [CSA], [CROSSREF]
  • T. R., Jones, E. J., Wiertz, L., Sun, K. N., Fish, J. A., Nelson, H. L., Ploegh. Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc. Natl. Acad. Sci. USA. 93: 11327–11333, 1996, [CSA], [CROSSREF]
  • K., Ahn, A., Angulo, P., Ghazal, P. A., Peterson, Y., Yang, K., Fruh. Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc. Natl. Acad. Sci. USA. 93: 10990–10995, 1996, [CSA], [CROSSREF]
  • S., Lee, J., Yoon, B., Park, Y., Jun, M., Jin, H. C., Sung, I. H., Kim, S., Kang, E. J., Choi, B. Y., Ahn, K., Ahn. Structural and functional dissection of human cytomegalovirus US3 in binding major histocompatibility complex class I molecules. J. Virol.. 74: 11262–11269, 2000, [CSA], [CROSSREF]
  • A. T., Bankier, S., Beck, R., Bohni, C. M., Brown, R., Cerny, M. S., Chee, C. A., Hutchison, 3rd, T., Kouzarides, J. A., Martignetti, E., Preddie, et al, The DNA sequence of the human cytomegalovirus genome. DNA Seq.. 2: 1–12, 1991
  • E. J., Wiertz, D., Tortorella, M., Bogyo, J., Yu, W., Mothes, T. R., Jones, T. A., Rapoport, H. L., Ploegh. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature. 384: 432–438, 1996, [CROSSREF]
  • D., Tortorella, C. M., Story, J. B., Huppa, E. J., Wiertz, T. R., Jones, I., Bacik, J. R., Bennink, J. W., Yewdell, H. L., Ploegh. Dislocation of type I membrane proteins from the ER to the cytosol is sensitive to changes in redox potential. J. Cell. Biol.. 142: 365–376, 1998, [CROSSREF]
  • C. M., Story, M. H., Furman, H. L., Ploegh. The cytosolic tail of class I MHC heavy chain is required for its dislocation by the human cytomegalovirus US2 and US11 gene products. Proc. Natl. Acad. Sci. USA. 96: 8516–8521, 1999, [CSA], [CROSSREF]
  • M. H., Furman, H. L., Ploegh, D., Tortorella. Membrane-specific, host-derived factors are required for US2- and US11-mediated degradation of major histocompatibility complex class I molecules. J. Biol. Chem.. 277: 3258–3267, 2002, [CROSSREF]
  • D. J., Schust, D., Tortorella, J., Seebach, C., Phan, H. L., Ploegh. Trophoblast class I major histocompatibility complex (MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus (HCMV) gene products US2 and US11. J. Exp. Med.. 188: 497–503, 1998, [CROSSREF]
  • E. A., Hughes, C., Hammond, P., Cresswell. Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc. Natl. Acad. Sci. USA. 94: 1896–1901, 1997, [CSA], [CROSSREF]
  • H., Hengel, T., Flohr, G. J., Hammerling, U. H., Koszinowski, F., Momburg. Human cytomegalovirus inhibits peptide translocation into the endoplasmic reticulum for MHC class I assembly. J. Gen. Virol.. 77(Pt 9)2287–2296, 1996
  • P. J., Lehner, J. T., Karttunen, G. W., Wilkinson, P., Cresswell. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc. Natl. Acad. Sci. USA. 94: 6904–6909, 1997, [CSA], [CROSSREF]
  • K., Ahn, A., Gruhler, B., Galocha, T. R., Jones, E. J., Wiertz, H. L., Ploegh, P. A., Peterson, Y., Yang, K., Fruh. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity. 6: 613–621, 1997, [CSA], [CROSSREF]
  • E. W., Hewitt, S. S., Gupta, P. J., Lehner. The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J.. 20: 387–396, 2001, [CSA], [CROSSREF]
  • C., Kyritsis, S., Gorbulev, S., Hutschenreiter, K., Pawlitschko, R., Abele, R., Tampe. Molecular mechanism and structural aspects of transporter associated with antigen processing inhibition by the cytomegalovirus protein US6. J. Biol. Chem.. 276: 48031–48039, 2001
  • L. K., Borysiewicz, J. K., Hickling, S., Graham, J., Sinclair, M. P., Cranage, G. L., Smith, J. G., Sissons. Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate early protein and glycoprotein B expressed by recombinant vaccinia viruses. J. Exp. Med.. 168: 919–931, 1988, [CROSSREF]
  • M. J., Gilbert, S. R., Riddell, B., Plachter, P. D., Greenberg. Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature. 383: 720–722, 1996, [CROSSREF]
  • H., Browne, M., Churcher, T., Minson. Construction and characterization of a human cytomegalovirus mutant with the UL18 (class I homolog) gene deleted. J. Virol.. 66: 6784–6787, 1992, [CSA]
  • T. L., Chapman, A. P., Heikeman, P. J., Bjorkman. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity. 11: 603–613, 1999, [CSA], [CROSSREF]
  • D., Cosman, N., Fanger, L., Borges, M., Kubin, W., Chin, L., Peterson, M. L., Hsu. A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity. 7: 273–282, 1997, [CSA], [CROSSREF]
  • M., Vitale, R., Castriconi, S., Parolini, D., Pende, M. L., Hsu, L., Moretta, D., Cosman, A., Moretta. The leukocyte Ig-like receptor (LIR)-1 for the cytomegalovirus UL18 protein displays a broad specificity for different HLA class I alleles: Analysis of LIR-1 + NK cell clones. Int. Immunol.. 11: 29–35, 1999, [CROSSREF]
  • H. T., Reyburn, O., Mandelboim, M., Vales-Gomez, D. M., Davis, L., Pazmany, J. L., Strominger. The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells [see comments]. Nature. 386: 514–517, 1997, [CROSSREF]
  • J., Odeberg, C., Cerboni, H., Browne, K., Karre, E., Moller, E., Carbone, C., Soderberg-Naucler. Human cytomegalovirus (HCMV)-infected endothelial cells and macrophages are less susceptible to natural killer lysis independent of the downregulation of classical HLA class I molecules or expression of the HCMV class I homologue, UL18. Scand. J. Immunol.. 55: 149–161, 2002, [CROSSREF]
  • C. C., Leong, T. L., Chapman, P. J., Bjorkman, D., Formankova, E. S., Mocarski, J. H., Phillips, L. L., Lanier. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: The role of endogenous class I major histocompatibility complex and a viral class I homolog. J. Exp. Med.. 187: 1681–1687, 1998, [CROSSREF]
  • N. A., Fanger, L., Borges, D., Cosman. The leukocyte immunoglobulin-like receptors (LIRs): A new family of immune regulators. J. Leukoc. Biol.. 66: 231–236, 1999, [CSA]
  • P., Tomasec, V. M., Braud, C., Rickards, M. B., Powell, B. P., McSharry, S., Gadola, V., Cerundolo, L. K., Borysiewicz, A. J., McMichael, G. W., Wilkinson. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science. 287: 1031, 2000, [CROSSREF]
  • M., Llano, N., Lee, F., Navarro, P., Garcia, J. P., Albar, D. E., Geraghty, M., Lopez-Botet. HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors: preferential response to an HLA-G-derived nonamer. Eur. J. Immunol.. 28: 2854–2863, 1998, [CSA]
  • M., Ulbrecht, S., Martinozzi, M., Grzeschik, H., Hengel, J. W., Ellwart, M., Pla, E. H., Weiss. Cutting edge: The human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J. Immunol.. 164: 5019–5022, 2000
  • E. C., Wang, B., McSharry, C., Retiere, P., Tomasec, S., Williams, L. K., Borysiewicz, V. M., Braud, G. W., Wilkinson. UL40-mediated NK evasion during productive infection with human cytomegalovirus. Proc. Natl. Acad. Sci. USA. 99: 7570–7575, 2002, [CSA], [CROSSREF]
  • A. G., Brooks, F., Borrego, P. E., Posch, A., Patamawenu, C. J., Scorzelli, M., Ulbrecht, E. H., Weiss, J. E., Coligan. Specific recognition of HLA-E, but not classical, HLA class I molecules by soluble CD94/NKG2A and NK cells. J. Immunol.. 162: 305–313, 1999
  • J., Kaye, H., Browne, M., Stoffel, T., Minson. The UL16 gene of human cytomegalovirus encodes a glycoprotein that is dispensable for growth in vitro. J. Virol.. 66: 6609–6615, 1992, [CSA]
  • D., Cosman, J., Mullberg, C. L., Sutherland, W., Chin, R., Armitage, W., Fanslow, M., Kubin, N. J., Chalupny. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. 14: 123–133, 2001, [CSA]
  • S., Bauer, V., Groh, J., Wu, A., Steinle, J. H., Phillips, L. L., Lanier, T., Spies. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 285: 727–729, 1999, [CROSSREF]
  • J. M., Fletcher, H. G., Prentice, J. E., Grundy. Natural killer cell lysis of cytomegalovirus (CMV)-infected cells correlates with virally induced changes in cell surface lymphocyte function-associated antigen-3 (LFA-3) expression and not with the CMV-induced down-regulation of cell surface class I HLA. J. Immunol.. 161: 2365–2374, 1998
  • D. J., Tenney, A. M., Colberg-Poley. Expression of the human cytomegalovirus UL36-38 immediate early region during permissive infection. Virology. 182: 199–210, 1991, [CSA]
  • E., Reichmann. The biological role of the Fas/FasL system during tumor formation and progression. Semin. Cancer. Biol.. 12: 309–315, 2002, [CSA], [CROSSREF]
  • A., Skaletskaya, L. M., Bartle, T., Chittenden, A. L., McCormick, E. S., Mocarski, V. S., Goldmacher. A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc. Natl. Acad. Sci. USA. 98: 7829–7834, 2001, [CSA], [CROSSREF]
  • S., Hu, C., Vincenz, M., Buller, V. M., Dixit. A novel family of viral death effector domain-containing molecules that inhibit both CD-95-and tumor necrosis factor receptor-1-induced apoptosis. J. Biol. Chem.. 272: 9621–9624, 1997, [CROSSREF]
  • V. S., Goldmacher, L. M., Bartle, A., Skaletskaya, C. A., Dionne, N. L., Kedersha, C. A., Vater, J. W., Han, R. J., Lutz, S., Watanabe, E. D., Cahir McFarland, E. D., Kieff, E. S., Mocarski, T., Chittenden. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl. Acad. Sci. USA. 96: 12536–12541, 1999, [CSA], [CROSSREF]
  • D. J., Tenney, A. M., Colberg-Poley. Human cytomegalovirus UL36-38 and US3 immediate-early genes: Temporally regulated expression of nuclear, cytoplasmic, and polysome-associated transcripts during infection. J. Virol.. 65: 6724–6734, 1991, [CSA]
  • W. A., Hayajneh, A. M., Colberg-Poley, A., Skaletskaya, L. M., Bartle, M. M., Lesperance, D. G., Contopoulos-Ioannidis, N. L., Kedersha, V. S., Goldmacher. The sequence and antiapoptotic functional domains of the human cytomegalovirus UL37 exon 1 immediate early protein are conserved in multiple primary strains. Virology. 279: 233–240, 2001, [CSA], [CROSSREF]
  • A. M., Colberg-Poley, M. B., Patel, D. P., Erezo, J. E., Slater. Human cytomegalovirus UL37 immediate-early regulatory proteins traffic through the secretory apparatus and to mitochondria. J. Gen. Virol.. 81(Pt 7)1779–1789, 2000, [CSA]
  • J. A., Kerry, A., Sehgal, S. W., Barlow, V. J., Cavanaugh, K., Fish, J. A., Nelson, R. M., Stenberg. Isolation and characterization of a low-abundance splice variant from the human cytomegalovirus major immediate-early gene region. J. Virol.. 69: 3868–3872, 1995, [CSA]
  • P., Muganda, R., Carrasco, Q., Qian. The human cytomegalovirus IE2 86 kDa protein elevates p53 levels and transactivates the p53 promoter in human fibroblasts. Cell. Mol. Biol. (Noisy-le-grand). 44: 321–331, 1998, [CSA]
  • K., Tanaka, J. P., Zou, K., Takeda, V. J., Ferrans, G. R., Sandford, T. M., Johnson, T., Finkel, S. E., Epstein. Effects of human cytomegalovirus immediate-early proteins on p53- mediated apoptosis in coronary artery smooth muscle cells. Circulation. 99: 1656–1659, 1999, [CSA]
  • Y., Yu, J. C., Alwine. Human cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3′-OH kinase pathway and the cellular kinase Akt. J. Virol.. 76: 3731–3738, 2002, [CSA], [CROSSREF]
  • S. R., Datta, A., Brunet, M. E., Greenberg. Cellular survival: a play in three Akts. Genes. Dev.. 13: 2905–2927, 1999, [CROSSREF]
  • A. D., Yurochko, T. F., Kowalik, S. M., Huong, E. S., Huang. Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50 and p65 promoters. J. Virol.. 69: 5391–5400, 1995, [CSA]
  • A. D., Yurochko, M. W., Mayo, E. E., Poma, A. S., Baldwin, Jr., E. S., Huang. Induction of the transcription factor Sp1 during human cytomegalovirus infection mediates upregulation of the p65 and p105/p50 NF-kappaB promoters. J. Virol.. 71: 4638–4648, 1997, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.