104
Views
23
CrossRef citations to date
0
Altmetric
Original

Heat Shock Protein Vaccines: From Bench to Bedside

Pages 353-375 | Published online: 03 Aug 2009

REFERENCES

  • P.K. Srivastava and M.R. Das, The serologically unique cell surface antigen of Zajdela ascitic hepatoma is also its tumor-associated transplantation antigen, Int. J. Cancer, 33: 417–422, 1984. [CSA]
  • P.K. Srivastava, A.B. DeLeo, and L.J. Old, Tumor rejection antigens of chemically induced sarcomas of inbred mice, Proc. Natl. Acad. Sci. U. S. A., 83: 3407–3411, 1986. [CSA], [CROSSREF]
  • C. Donawho and M.L. Kripke, Immunogenicity and cross-reactivity of syngeneic murine melanomas, Cancer Commun., 2: 101–107, 1990. [CSA]
  • A.B. Frey and S. Cestari, Expression of activated H-rasval12 in nontumorigenic and non-cross-reactive syngeneic cells induces tumor antigens cross-reactive with rat mammary adenocarcinoma 13762, J. Immunol., 155: 4783–4789, 1995. [CSA]
  • J.H. Coggin, Jr. and N.G. Anderson, Cancer, differentiation and embryonic antigens: Some central problems, Adv. Cancer Res., 19: 105–165, 1974. [CSA]
  • L.J. Old, Cancer immunology: The search for specificity—G. H. A. Clowes Memorial lecture, Cancer Res., 41: 361–375, 1981. [CSA]
  • P.A. Monach, S.C. Meredith, C.T. Siegel, and H. Schreiber, A unique tumor antigen produced by a single amino acid substitution, Immunity, 2: 45–59, 1995. [CSA], [CROSSREF]
  • T. Boon and P. van der Bruggen, Human tumor antigens recognized by T lymphocytes, J. Exp. Med., 183: 725–729, 1996. [CSA], [CROSSREF]
  • H. Udono and P.K. Srivastava, Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70, J. Immunol., 152: 5398–5403, 1994. [CSA]
  • H. Udono and P.K. Srivastava, Heat shock protein 70-associated peptides elicit specific cancer immunity, J. Exp. Med., 178: 1391–1396, 1993. [CSA], [CROSSREF]
  • S. Basu and P.K. Srivastava, Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity, J. Exp. Med., 189: 797–802, 1999. [CSA], [CROSSREF]
  • X.Y. Wang, L. Kazim, E.A. Repasky, and J.R Subjeck, Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity, J. Immunol., 166: 490–497, 2001. [CSA]
  • M.A. Palladino, Jr., P.K. Srivastava, H.F. Oettgen, and A.B. DeLeo, Expression of a shared tumor-specific antigen by two chemically induced BALB/c sarcomas, Cancer Res., 47: 5074–5079, 1987. [CSA]
  • A.M. Feldweg and P.K. Srivastava, Molecular heterogeneity of tumor rejection antigen/heat shock protein GP96, Int. J. Cancer, 63: 310–314, 1995. [CSA]
  • S.P. Yedavelli, L. Guo, M.E. Daou, P.K. Srivastava, A. Mittelman, and R.K. Tiwari, Preventive and therapeutic effect of tumor derived heat shock protein, gp96, in an experimental prostate cancer model, Int. J. Mol. Med., 4: 243–248, 1999. [CSA]
  • S. Janetzki, N.E. Blachere, and P.K. Srivastava, Generation of tumor-specific cytotoxic T lymphocytes and memory T cells by immunization with tumor-derived heat shock protein gp96, J. Immunother., 21: 269–276, 1998. [CSA]
  • Y. Tamura, P. Peng, K. Liu, M. Daou, and P.K. Srivastava, Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations, Science, 278: 117–120, 1997. [CSA], [CROSSREF]
  • P.K. Srivastava, Peptide-binding heat shock proteins in the endoplasmic reticulum: Role in immune response to cancer and in antigen presentation, Adv. Cancer Res., 62: 153–177, 1993. [CSA]
  • Z. Li and P.K. Srivastava, Tumor rejection antigen gp96/grp94 is an ATPase: Implications for protein folding and antigen presentation, EMBO J., 12: 3143–3151, 1993. [CSA]
  • P. Peng, A. Menoret, and P.K. Srivastava, Purification of immunogenic heat shock protein 70-peptide complexes by ADP-affinity chromatography, J. Immunol. Methods, 204: 13–21, 1997. [CSA], [CROSSREF]
  • N.E. Blachere, Z. Li, R.Y. Chandawarkar, R. Suto, N.S. Jaikaria, S. Basu, H. Udono, and P.K. Srivastava, Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity, J. Exp. Med., 186: 1315–1322, 1997. [CSA], [CROSSREF]
  • X. Zhu, X. Zhao, W.F. Burkholder, A. Gragerov, C.M. Ogata, M.E. Gottesman, and W.A. Hendrickson, Structural analysis of substrate binding by the molecular chaperone DnaK, Science, 272: 1606–1614, 1996. [CSA], [CROSSREF]
  • M.E. Grossmann, B.J. Madden, F. Gao, Y.P. Pang, J.E. Carpenter, D. McCormick, and C.Y. Young, Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo, Exp. Cell. Res., 297: 108–117, 2001. [CSA], [CROSSREF]
  • P.A. Wearsch and C.V. Nicchitta, Interaction of endoplasmic reticulum chaperone GRP94 with peptide substrates is adenine nucleotide-independent, J. Biol. Chem., 272: 5152–5156, 1997. [CSA], [CROSSREF]
  • S. Sastry and N. Linderoth, Molecular mechanisms of peptide loading by the tumor rejection antigen/heat shock chaperone gp96 (GRP94), J. Biol. Chem., 274: 12023–12035, 1999. [CSA], [CROSSREF]
  • N.A. Linderoth, A. Popowicz, and S. Sastry, Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94) J. Biol. Chem., 275: 5472–5477, 2000. [CSA], [CROSSREF]
  • T. Gidalevitz, C. Biswas, H. Ding, D. Schneidman-Duhovny, H.J. Wolfson, F. Stevens, S. Radford, and Y. Argon, Identification of the N-terminal peptide binding site of glucose-regulated protein 94, J. Biol. Chem., 279: 16543–16552, 1994. [CSA], [CROSSREF]
  • R. Demine and P. Walden, Testing the role of gp96 as peptide chaperone in antigen processing, J. Biol. Chem., 280: 17573–17578, 2005. [CSA], [CROSSREF]
  • T. Ishii, H. Udono, T. Yamano, H. Ohta, A. Uenaka, T. Ono, A. Hizuta, N. Tanaka, P.K. Srivastava, and E. Nakayama, Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96, J. Immunol., 162: 1303–1309, 1999. [CSA]
  • C. Castelli, A.M. Ciupitu, F. Rini, L. Rivoltini, A. Mazzocchi, R. Kiessling, and G. Parmiani, Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells, Cancer Res., 61: 222–227, 2001. [CSA]
  • R. Suto and P.K. Srivastava, A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides, Science, 269: 1585–1588, 1995. [CSA], [CROSSREF]
  • T.J. Nieland, M.C. Tan, M. Monne-van Muijen, F. Koning, A.M. Kruisbeek, and G.M. van Bleek, Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94, Proc. Natl. Acad. Sci. U.S.A., 93: 6135–6139, 1996. [CSA], [CROSSREF]
  • A. Heikema, E. Agsteribbe, J. Wilschut, and A. Huckriede, Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides, Immunol. Lett., 57: 69–74, 1997. [CSA], [CROSSREF]
  • M. Navaratnam, M.S. Deshpande, M.J. Hariharan, D.S. Zatechka, Jr., and S. Srikumaran, Heat shock protein-peptide complexes elicit cytotoxic T-lymphocyte and antibody responses specific for bovine herpesvirus 1, Vaccine, 19: 1425–1434, 2001. [CSA], [CROSSREF]
  • S.D. Meng, T. Gao, G.F. Gao, and P. Tien, HBV-specific peptide associated with heat-shock protein gp96, Lancet, 357: 528–529, 2001. [CSA], [CROSSREF]
  • U. Zugel, A.M. Sponaas, J. Neckermann, B. Schoel, and S.H. Kaufmann, 96-peptide vaccination of mice against intracellular bacteria, Infect. Immun., 69: 4164–4167, 2001. [CSA], [CROSSREF]
  • M. Breloer, T. Marti, B. Fleischer, and A. von Bonin, Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96, Eur. J. Immunol., 28: 1016–1021, 1998. [CSA], [CROSSREF]
  • D. Arnold, S. Faath, H. Rammensee and H. Schild, Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96, J. Exp. Med., 182: 885–889, 1995. [CSA], [CROSSREF]
  • D. Arnold, C. Wahl, S. Faath, H.G. Rammensee, and H. Schild, Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96, J. Exp. Med., 186: 461–466, 1997. [CSA], [CROSSREF]
  • R.J. Binder, N.E. Blachere, and P.K. Srivastava, Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules, J. Biol. Chem., 276: 17163–17171, 2001. [CSA], [CROSSREF]
  • P. Paz, N. Brouwenstijn, R. Perry, and N. Shastri. Discrete proteolytic intermediates in the MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER, Immunity, 11: 241–251, 1999. [CSA], [CROSSREF]
  • P.K. Srivastava, H. Udono, N.E. Blachere, and Z. Li, Heat shock proteins transfer peptides during antigen processing and CTL priming, Immunogenetics, 39: 93–98. 1994. [CSA]
  • R.Y. Chandawarkar, M.S. Wagh, and P.K. Srivastava, The dual nature of specific immunological activity of tumor-derived gp96 preparations, J. Exp. Med., 189: 1437–1442, 1999. [CSA], [CROSSREF]
  • R.Y. Chandawarkar, M.S. Wagh, J.T. Kovalchin, and P.K. Srivastava, Immune modulation with high-dose heat-shock protein gp96: Therapy of murine autoimmune diabetes and encephalomyelitis, Int. Immunol., 16: 615–624, 2004. [CSA], [CROSSREF]
  • J.T. Kovalchin, C. Mendonca, M.S. Wagh, R. Wang, and R.Y. Chandawarkar, In vivo treatment of mice with heat shock protein, gp96, improves survival of skin grafts with minor and major antigenic disparity, Transpl. Immunol., 15: 179–185, 2006. [CSA], [CROSSREF]
  • B. Liu, J. Dai, H. Zheng, D. Stoilova, S. Sun, and Z. Li, Cell surface expression of an endoplasmic reticulum resident heat shock protein gp96 triggers MyD88-dependent systemic autoimmune diseases, Proc. Natl. Acad. Sci. U. S. A., 100: 15824–15829, 2003. [CSA], [CROSSREF]
  • H. Udono, D.L. Levey, and P.K. Srivastava, Cellular requirements for tumor-specific immunity elicited by heat shock proteins: Tumor rejection antigen gp96 primes CD8+ T cells in vivo, Proc. Natl. Acad. Sci. U. S. A., 91: 3077–3081, 1994. [CSA], [CROSSREF]
  • R.J. Binder, M.L Harris, A. Menoret, and P.K. Srivastava, Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells, J. Immunol., 165: 2582–2587, 2000. [CSA]
  • D. Arnold-Schild, D. Hanau, D. Spehner, C. Schmid, H.G. Rammensee, H. de la Salle, and H. Schild, Cutting edge: Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells, J. Immunol., 162: 3757–3760, 1999. [CSA]
  • H. Singh-Jasuja, R.E. Toes, P. Spee, C. Munz, N. Hilf, S.P. Schoenberger, P. Ricciardi-Castagnoli, J. Neefjes, H.G. Rammensee, D. Arnold-Schild, and H. Schild, Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis, J. Exp. Med., 191: 1965–1974, 2000. [CSA], [CROSSREF]
  • C. Habich, K. Baumgart, H. Kolb, and V. Burkart, The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins, J. Immunol., 168: 569–576, 2002. [CSA]
  • R.J Binder, D.K. Han, and P.K. Srivastava, CD91: A receptor for heat shock protein gp96, Nat. Immunol., 1: 151–155, 2000. [CSA]
  • S. Basu, R.J. Binder, T. Ramalingam, and P.K. Srivastava, CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin, Immunity, 14: 303–313, 2001. [CSA], [CROSSREF]
  • R.J. Binder and P.K. Srivastava, Essential role of CD91 in re-presentation of gp96-chaperoned peptides, Proc. Natl. Acad. Sci. U. S. A., 101: 6128–6133, 2004. [CSA], [CROSSREF]
  • P.P. Banerjee, D.S. Vinay, A. Mathew, M. Raje, V. Parekh, D.V. Prasad, A. Kumar, D. Mitra, and G.C. Mishra, Evidence that glycoprotein 96 (B2), a stress protein, functions as a Th2-specific costimulatory molecule, J. Immunol., 169: 3507–3518, 2002. [CSA]
  • C.A. Ogden, A. deCathelineau, P.R. Hoffmann, D. Bratton, B. Ghebrehiwet, V.A. Fadok, and P.M. Henson, C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells, J. Exp. Med., 194: 781–795, 2001. [CSA], [CROSSREF]
  • R.W. Vandivier, C.A. Ogden, V.A. Fadok, P.R. Hoffmann, K.K. Brown, M. Botto, M.J. Walport, J.H. Fisher, P.M. Henson, and K.E. Greene, Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: Calreticulin and CD91 as a common collectin receptor complex, J. Immunol., 169: 3978–3986, 2002. [CSA]
  • A.W. Orr, C.E. Pedraza, M.A. Pallero, C.A. Elzie, S. Goicoechea, D.K. Strickland, and J.E. Murphy-Ullrich, Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly, J. Cell. Biol., 161: 1179–1189, 2003. [CSA], [CROSSREF]
  • J. Stebbing, B. Gazzard, S. Portsmouth, F. Gotch, L. Kim, M. Bower, S. Mandalia, R. Binder, P. Srivastava, and S. Patterson, Disease-associated dendritic cells respond to disease-specific antigens through the common heat shock protein receptor, Blood, 102: 1806–1814, 2003. [CSA], [CROSSREF]
  • Y. Delneste, G. Magistrelli, J. Gauchat, J. Haeuw, J. Aubry, K. Nakamura, N. Kawakami-Honda, L. Goetsch, T. Sawamura, J. Bonnefoy, and P. Jeannin, Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation, Immunity, 17: 353–362, 2002. [CSA], [CROSSREF]
  • B. Berwin, J.P. Hart, S. Rice, C. Gass, S.V. Pizzo, S.R. Post, and C.V. Nicchitta, Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells, EMBO J., 22: 6127–6136, 2003. [CSA], [CROSSREF]
  • T. Becker, F.U. Hartl, and F. Wieland, CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes, J. Cell. Biol., 158: 1277–1285, 2002. [CSA], [CROSSREF]
  • A. Asea, M. Rehli, E. Kabingu, J.A. Boch, O. Bare, P.E. Auron, M.A. Stevenson, and S.K. Calderwood, Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4, J. Biol. Chem., 277: 15028–15034, 2002. [CSA], [CROSSREF]
  • R.M. Vabulas, P. Ahmad-Nejad, S. Ghose, C.J. Kirschning, R.D. Issels, and H. Wagner, HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway, J. Biol. Chem., 277: 15107–15112, 2002. [CSA], [CROSSREF]
  • R.M. Vabulas, S. Braedel, N. Hilf, H. Singh-Jasuja, S. Herter, P. Ahmad-Nejad, C.J. Kirschning, C. Da Costa, H.G. Rammensee, H. Wagner, and H. Schild, The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway, J. Biol. Chem., 277: 20847–20853, 2002. [CSA], [CROSSREF]
  • K. Ohashi, V. Burkart, S. Flohe, and H. Kolb, Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex, J. Immunol., 164: 558–561, 2000. [CSA]
  • R.J. Binder, R. Vatner, and P.K. Srivastava, The heat-shock protein receptors: Some answers and more questions. Tissue Antigens, 64: 442–451, 2004. [CSA], [CROSSREF]
  • A.A. Tobian, D.H. Canaday, W.H. Boom, and C.V. Harding, Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages, J. Immunol., 172: 5277–5286, 2004. [CSA]
  • A.D. Doody, J.T. Kovalchin, M.A. Mihalyo, A.T. Hagymasi, C.G. Drake, and A.J. Adler, Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8(+) T cell effector function, J. Immunol., 172: 6087–6092, 2004. [CSA]
  • D. SenGupta, P.J Norris, T.J. Suscovich, M. Hassan-Zahraee, H.F. Moffett, A. Trocha, R. Draenert, P.J. Goulder, R.J. Binder, D.L. Levey, B.D. Walker, P.K. Srivastava, and C. Brander, Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II, J. Immunol., 173: 1987–1993, 2004. [CSA]
  • A.A. Tobian, D.H. Canaday, and C.V. Harding, Bacterial heat shock proteins enhance class II MHC antigen processing and presentation of chaperoned peptides to CD4+ T cells, J. Immunol., 173: 5130–5137, 2004. [CSA]
  • R.J. Binder, D. Karimeddini, and P.K. Srivastava, Adjuvanticity of alpha 2-macroglobulin, an independent ligand for the heat shock protein receptor CD91, J. Immunol., 166: 4968–4972, 2001. [CSA]
  • R.J. Binder, S.K. Kumar, and P.K. Srivastava, Naturally formed or artificially reconstituted non-covalent alpha2-macroglobulin-peptide complexes elicit CD91-dependent cellular immunity, Cancer Immun., 2: 16, 2002. [CSA]
  • C.T. Chu and S.V. Pizzo, Receptor-mediated antigen delivery into macrophages. Complexing antigen to alpha 2-macroglobulin enhances presentation to T cells, J. Immunol., 150: 48–58, 1993. [CSA]
  • S. Basu, R.J. Binder, R. Suto, K.M. Anderson, and P.K. Srivastava, Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway, Int. Immunol., 12: 1539–1546, 2000. [CSA], [CROSSREF]
  • H. Singh-Jasuja, H.U. Scherer, N. Hilf, D. Arnold-Schild, H.G. Rammensee, R.E. Toes, and H. Schild, The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor, Eur. J. Immunol., 30: 2211–2215, 2000. [CSA]
  • N.N. Panjwani, L. Popova, and P.K. Srivastava, Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs, J. Immunol., 168: 2997–3003, 2002. [CSA]
  • N.N. Panjwani, L. Popova, and P.K. Srivastava, Production of chemokines by hsp70 and gp96 stimulated antigen presenting cells, Cell Stress Chap., 5: 392, 2000. [CSA]
  • T. Lehner, L.A. Bergmeier, Y. Wang, L. Tao, M. Sing, R. Spallek, and R. van der Zee, Heat shock proteins generate beta-chemokines which function as innate adjuvants enhancing adaptive immunity, Eur. J. Immunol., 30: 594–603, 2000. [CSA], [CROSSREF]
  • W. Chen, U. Syldath, K. Bellmann, V. Burkart, and H. Kolb, Human 60-kDa heat-shock protein: A danger signal to the innate immune system, J. Immunol., 162: 3212–3219, 1999. [CSA]
  • R.J. Binder, K.M. Anderson, S. Basu, and P.K. Srivastava, Cutting edge: Heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo, J. Immunol., 165: 6029–6035, 2000. [CSA]
  • M. Bevan. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay, J. Exp. Med., 143: 1283–1288, 1976. [CSA], [CROSSREF]
  • M. Li, G.M. Davey, R.M. Sutherland, C. Kurts, A.M. Lew, C. Hirst, F.R. Carbone, and W.R. Heath, Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo, J. Immunol., 166: 6099–6103, 2001. [CSA]
  • R.J. Binder and P.K. Srivastava, Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells, Nat. Immunol., 6: 593–599, 2005. [CSA], [CROSSREF]
  • C.C. Norbury, S. Basta, K.B. Donohue, D.C. Tscharke, M.F. Princiotta, P. Berglund, J. Gibbs, J.R. Bennink, and J.W. Yewdell, CD8+ T cell cross-priming via transfer of proteasome substrates. Science, 304: 1318–1321, 2004. [CSA], [CROSSREF]
  • L. Shen and K.L Rock, Cellular protein is the source of cross-priming antigen in vivo, Proc. Natl. Acad. Sci. U.S.A., 101: 3035–3040, 2004. [CSA], [CROSSREF]
  • A. Serna, M.C. Ramirez, A. Soukhanova, and L.J. Sigal, Cutting edge: efficient MHC class I cross-presentation during early vaccinia infection requires the transfer of proteasomal intermediates between antigen donor and presenting cells, J. Immunol., 171: 5668–5672, 2003. [CSA]
  • N.E. Blachere, R.B. Darnell, and M.L. Albert, Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation, PLoS Biol., 3: e185, 2005. [CSA], [CROSSREF]
  • A. Lanzavecchia, Antigen-specific interaction between T and B cells, Nature, 314: 537–539, 1985. [CSA], [CROSSREF]
  • M.F. Princiotta, D. Finzi, S.B. Qian, J. Gibbs, S. Schuchmann, F. Buttgereit, J.R. Bennink, and J.W. Yewdell, Quantitating protein synthesis, degradation, and endogenous antigen processing, Immunity, 18: 343–354, 2003. [CSA], [CROSSREF]
  • B.C. Gil-Torregrosa, A.M. Lennon-Dumenil, B. Kessler, P. Guermonprez, H.L. Ploegh, D. Fruci, P. van Endert, and S. Amigorena, Control of cross-presentation during dendritic cell maturation, Eur. J. Immunol., 34: 398–407, 2004. [CSA], [CROSSREF]
  • C.C. Norbury, Drinking a lot is good for dendritic cells, Immunology, 117: 443–451, 2006. [CSA], [CROSSREF]
  • P.K. Srivastava, Immunotherapy of human cancer: Lessons from mice, Nat. Immunol., 1: 363–366, 2000. [CSA], [CROSSREF]
  • U. Kumaraguru, S. Suvas, P.S. Biswas, A.K. Azkur, and B.T. Rouse, Concomitant helper response rescues otherwise low avidity CD8+ memory CTLs to become efficient effectors in vivo, J. Immunol., 172: 3719–3724, 2004. [CSA]
  • S. Janetzki, D. Palla, V. Rosenhauer, H. Lochs, J.J. Lewis, and P.K. Srivastava, Immunization of cancer patients with autologous cancer-derived heat shock protein gp96: A pilot study, Int. J. Cancer, 88, 232–238, 2000. [CSA], [CROSSREF]
  • R.J. Amato, L. Murray, L. Wood, C. Savary, S. Tomasovic, and D. Reitsma, Active specific immunotherapy in patients with renal cell carcinoma (RCC) using autologous tumor derived heat shock protein-peptide completes-96 (HSPP-96) vaccine [abstract 1278] Atlanta, GA, May 15–18, ASCO Meeting, 2000.
  • R.J. Amato, L. Murray, L. Wood, C. Savary, S. Tomasovic, P.K. Srivastava, and D. Reitsma, Active specific immunotherapy in patients with renal cell carcinoma (RCC) using autologous tumor derived heat shock protein-peptide completes-96 (HSPP-96) vaccine [abstract 1782] New Orleans, LA, May 21–24, ASCO Meeting, 1999.
  • O. Eton, M.J. East, M. Ross, C. Savary, S. Tomasovic, D. Reitsma, E. Hawkins, and P.K. Srivastava, Autologous tumor-derived heat shock protein-peptide comples-96 (HSPP-96) in patients (PTS) with metastatic melanoma, Proc. Am. Assoc. Cancer Res., 41: 543, 2000. [CSA]
  • F. Belli, A. Testori, L. Rivoltini, M. Maio, G. Andreola, M.R. Sertoli, G. Gallino, A. Piris, A. Cattelan, I Lazzari, M. Carrabba, G. Scita, C. Santantonio, L. Pilla, G. Tragni, C. Lombardo, F. Arienti, A. Marchiano, P. Queirolo, F. Bertolini, A. Cova, E. Lamaj, L. Ascani, R. Camerini, M. Corsi, N. Cascinelli, J.J. Lewis, P.K. Srivastava, and G. Parmiani, Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes, J. Clin. Oncol., 20: 4169–4180, 2002. [CSA], [CROSSREF]
  • V. Mazzaferro, J. Coppa, M.G. Carrabba, L. Rivoltini, M. Schiavo, E. Regalia, L. Mariani, T. Camerini, A. Marchiano, S. Andreola, R. Camerini, M. Corsi, J.J. Lewis, P.K. Srivastava, and G. Parmiani, Vaccination with autologous tumor derived heat shock protein peptide complex Gp-96 (HSPPC-96) following curative resection of colorectal liver metastases, Clin. Cancer Res., 9: 3235–3245, 2003. [CSA]
  • L. Rivoltini, C. Castelli, M. Carrabba, V. Mazzaferro, L. Pilla, V. Huber, J. Coppa, G. Gallino, C. Scheibenbogen, P. Squarcina, A. Cova, R. Camerini, J.J. Lewis, P.K. Srivastava, and G. Parmiani, Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma and colon carcinoma-specific T cells, J. Immunol., 171: 3467–3474, 2003. [CSA]
  • Z. Li, Y. Qiao, B. Liu, E.J. Laska, P. Chakravarthi, J.M. Kulko, R.D. Bona, M. Fang, U. Hegde, V. Moyo, S.H. Tannenbaum, A. Menoret, J. Gaffney, L. Glynn, C.D. Runowicz, and P.K. Srivastava, Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia, Clin. Cancer Res., 11: 4460–4468, 2005. [CSA], [CROSSREF]
  • L. Gross, Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line, Cancer Res., 3: 326–333, 1943. [CSA]
  • R.T Prehn and J.M. Main, Immunity to methylcholanthrene-induced sarcomas, J. Natl. Cancer Inst., 18: 769–778, 1957. [CSA]
  • G. Klein, H.O. Sjogren, E. Klein, and K.E. Hellstrom, Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host, Cancer Res., 20: 1561–1572, 1960. [CSA]
  • L.J. Old, E.A. Boyse, D.A Clarke, and E.A. Carswell, Antigenic properties of chemically induced tumors, Ann. N.Y. Acad. Sci., 101: 80–89, 1962. [CSA]
  • A. Globerson and M. Feldman, Antigenic specificity of benzo(a)pyrene-induced sarcomas, J. Natl. Cancer Inst., 32: 1229–1243, 1964. [CSA]
  • M.A. Basombrio, Search for common antigenicities among 25 sarcomas induced by methylcholanthrene, Cancer Res., 30: 2458–2462, 1970. [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.