641
Views
171
CrossRef citations to date
0
Altmetric
Special Topic: NF-κB, Immunity and Cancer

NF-κB Signaling Pathway and Its Therapeutic Implications in Human Diseases

, , &
Pages 293-319 | Published online: 03 Aug 2009

REFERENCES

  • Sen R., Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986; 46: 705–716
  • Sen R., Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 1986; 47: 921–928
  • Karin M., Greten F. R. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5: 749–759
  • Barnes P. J., Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–1071
  • Anest V., Hanson J. L., Cogswell P. C., Steinbrecher K. A., Strahl B. D., Baldwin A. S. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 2003; 423: 659–663
  • Granet C., Maslinski W., Miossec P. Increased AP-1 and NF-kappaB activation and recruitment with the combination of the proinflammatory cytokines IL-1beta, tumor necrosis factor alpha and IL-17 in rheumatoid synoviocytes. Arthritis Res Ther 2004; 6: R190–R198
  • Zhu Y. M., Bradbury D. A., Pang L., Knox A. J. Transcriptional regulation of interleukin (IL)-8 by bradykinin in human airway smooth muscle cells involves prostanoid-dependent activation of AP-1 and nuclear factor (NF)-IL-6 and prostanoid-independent activation of NF-kappaB. J Biol Chem 2003; 278: 29366–29375
  • Hseu Y. C., Wu F. Y., Wu J. J., Chen J. Y., Chang W. H., Lu F. J., Lai Y. C., Yang H. L. Anti-inflammatory potential of Antrodia camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol 2005; 5: 1914–1925
  • Kiemer A. K., Hartung T., Huber C., Vollmar A. M. Phyllanthus amarus has anti-inflammatory potential by inhibition of iNOS, COX-2, and cytokines via the NF-kappaB pathway. J Hepatol 2003; 38: 289–297
  • Jobin C., Morteau O., Han D. S., Balfour S. R. Specific NF-kappaB blockade selectively inhibits tumour necrosis factor-alpha-induced COX-2 but not constitutive COX-1 gene expression in HT-29 cells. Immunology 1998; 95: 537–543
  • Van Antwerp D. J., Martin S. J., Kafri T., Green D. R., Verma I. M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 1996; 274: 787–789
  • Wu M., Lee H., Bellas R. E., Schauer S. L., Arsura M., Katz D., FitzGerald M. J., Rothstein T. L., Sherr D. H., Sonenshein G. E. Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. EMBO J 1996; 15: 4682–4690
  • Helbig G., Christopherson K. W., Bhat-Nakshatri P., Kumar S., Kishimoto H., Miller K. D., Broxmeyer H. E., Nakshatri H. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 2003; 278: 21631–21638
  • Huang S., Pettaway C. A., Uehara H., Bucana C. D., Fidler I. J. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001; 20: 4188–4197
  • Samant R. S., Clark D. W., Fillmore R. A., Cicek M., Metge B. J., Chandramouli K. H., Chambers A. F., Casey G., Welch D. R., Shevde L. A. Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation. Mol Cancer 2007; 6: 6
  • van den B. R., Haenen G. R., van den B. H., Bast A. Transcription factor NF-kappaB as a potential biomarker for oxidative stress. Br J Nutr 2001; 86(Suppl 1)S121–S127
  • Davis J. N., Kucuk O., Djuric Z., Sarkar F. H. Soy isoflavone supplementation in healthy men prevents NF-kappa B activation by TNF-alpha in blood lymphocytes. Free Radic Biol Med 2001; 30: 1293–1302
  • Deng L., Lin-Lee Y. C., Claret F. X., Kuo M. T. 2-acetylaminofluorene up-regulates rat mdr1b expression through generating reactive oxygen species that activate NF-kappa B pathway. J Biol Chem 2001; 276: 413–420
  • Galaris D., Evangelou A. The role of oxidative stress in mechanisms of metal-induced carcinogenesis. Crit Rev Oncol Hematol 2002; 42: 93–103
  • Karin M. Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441: 431–436
  • Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408: 239–247
  • Ho E., Bray T. M. Antioxidants, NFkappaB activation, and diabetogenesis. Proc Soc Exp Biol Med 1999; 222: 205–213
  • Lamhamedi-Cherradi S. E., Zheng S., Hilliard B. A., Xu L., Sun J., Alsheadat S., Liou H. C., Chen Y. H. Transcriptional regulation of type I diabetes by NF-kappa B. J. Immunol 2003; 171: 4886–4892
  • Mollah Z. U., Pai S., Moore C., O'Sullivan B. J., Harrison M. J., Peng J., Phillips K., Prins J. B., Cardinal J., Thomas R. Abnormal NF-kappa B function characterizes human type 1 diabetes dendritic cells and monocytes. J Immunol 2008; 180: 3166–3175
  • Beal M. F. Oxidatively modified proteins in aging and disease. Free Radic Biol Med 2002; 32: 797–803
  • Kaltschmidt B., Uherek M., Volk B., Baeuerle P. A., Kaltschmidt C. Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci U. S. A 1997; 94: 2642–2647
  • Hunot S., Brugg B., Ricard D., Michel P. P., Muriel M. P., Ruberg M., Faucheux B. A., Agid Y., Hirsch E. C. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci U. S. A 1997; 94: 7531–7536
  • Simmonds R. E., Foxwell B. M. Signalling, inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology (Oxford) 2008; 47: 584–590
  • Hajra L., Evans A. I., Chen M., Hyduk S. J., Collins T., Cybulsky M. I. The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci U. S. A 2000; 97: 9052–9057
  • Isomoto H., Mizuta Y., Miyazaki M., Takeshima F., Omagari K., Murase K., Nishiyama T., Inoue K., Murata I., Kohno S. Implication of NF-kappaB in Helicobacter pylori-associated gastritis. Am. J. Gastroenterol 2000; 95: 2768–2776
  • Schreiber S., Nikolaus S., Hampe J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut 1998; 42: 477–484
  • Brown M. A., Jones W. K. NF-kappaB action in sepsis: the innate immune system and the heart. Front. Biosci 2004; 9: 1201–1217
  • Burgos P., Metz C., Bull P., Pincheira R., Massardo L., Errazuriz C., Bono M. R., Jacobelli S., Gonzalez A. Increased expression of c-rel, from the NF-kappaB/Rel family, in T cells from patients with systemic lupus erythematosus. J Rheumatol 2000; 27: 116–127
  • Bauerova K., Bezek A. Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. Gen Physiol Biophys 1999; 18: 15–20, (Spec No)
  • Yoshizumi M., Tsuchiya K., Tamaki T. Signal transduction of reactive oxygen species and mitogen-activated protein kinases in cardiovascular disease. J Med Invest 2001; 48: 11–24
  • Yamamoto Y., Gaynor R. B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 2001; 107: 135–142
  • Bharti A. C., Aggarwal B. B. Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol 2002; 64: 883–888
  • Algul H., Treiber M., Lesina M., Schmid R. M. Mechanisms of disease: chronic inflammation and cancer in the pancreas—a potential role for pancreatic stellate cells?. Nat Clin Pract Gastroenterol Hepatol 2007; 4: 454–462
  • Perwez H. S., Harris C. C. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 2007; 121: 2373–2380
  • Bargou R. C., Emmerich F., Krappmann D., Bommert K., Mapara M. Y., Arnold W., Royer H. D., Grinstein E., Greiner A., Scheidereit C., Dorken B. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest 1997; 100: 2961–2969
  • Hideshima T., Chauhan D., Richardson P., Mitsiades C., Mitsiades N., Hayashi T., Munshi N., Dang L., Castro A., Palombella V., Adams J., Anderson K. C. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002; 277: 16639–16647
  • Nakshatri H., Bhat-Nakshatri P., Martin D. A., Goulet R. J., Jr., Sledge G. W., Jr. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 1997; 17: 3629–3639
  • Shukla S., MacLennan G. T., Fu P., Patel J., Marengo S. R., Resnick M. I., Gupta S. Nuclear factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia 2004; 6: 390–400
  • Li L., Aggarwal B. B., Shishodia S., Abbruzzese J., Kurzrock R. Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 2004; 101: 2351–2362
  • Holcomb B., Yip-Schneider M., Schmidt C. M. The role of nuclear factor kappaB in pancreatic cancer and the clinical applications of targeted therapy. Pancreas 2008; 36: 225–235
  • Levidou G., Korkolopoulou P., Nikiteas N., Tzanakis N., Thymara I., Saetta A. A., Tsigris C., Rallis G., Vlasis K., Patsouris E. Expression of nuclear factor kappaB in human gastric carcinoma: relationship with I kappaB a and prognostic significance. Virchows Arch 2007; 450: 519–527
  • Allen C. T., Ricker J. L., Chen Z., Van W. C. Role of activated nuclear factor-kappaB in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head Neck 2007; 29: 959–971
  • Liptay S., Weber C. K., Ludwig L., Wagner M., Adler G., Schmid R. M. Mitogenic and antiapoptotic role of constitutive NF-kappaB/Rel activity in pancreatic cancer. Int J Cancer 2003; 105: 735–746
  • Fujioka S., Sclabas G. M., Schmidt C., Frederick W. A., Dong Q. G., Abbruzzese J. L., Evans D. B., Baker C., Chiao P. J. Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 2003; 9: 346–354
  • Fujioka S., Sclabas G. M., Schmidt C., Niu J., Frederick W. A., Dong Q. G., Abbruzzese J. L., Evans D. B., Baker C., Chiao P. J. Inhibition of constitutive NF-kappa B activity by I kappa B alpha M suppresses tumorigenesis. Oncogene 2003; 22: 1365–1370
  • Wang W., Abbruzzese J. L., Evans D. B., Chiao P. J. Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene 1999; 18: 4554–4563
  • Chuang S. E., Yeh P. Y., Lu Y. S., Lai G. M., Liao C. M., Gao M., Cheng A. L. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol 2002; 63: 1709–1716
  • Li Y., Ahmed F., Ali S., Philip P. A., Kucuk O., Sarkar F. H. Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 2005; 65: 6934–6942
  • Yeh P. Y., Chuang S. E., Yeh K. H., Song Y. C., Ea C. K., Cheng A. L. Increase of the resistance of human cervical carcinoma cells to cisplatin by inhibition of the MEK to ERK signaling pathway partly via enhancement of anticancer drug-induced NF kappa B activation. Biochem Pharmacol 2002; 63: 1423–1430
  • Arlt A., Vorndamm J., Muerkoster S., Yu H., Schmidt W. E., Folsch U. R., Schafer H. Autocrine production of interleukin 1beta confers constitutive nuclear factor kappaB activity and chemoresistance in pancreatic carcinoma cell lines. Cancer Res 2002; 62: 910–916
  • Muerkoster S., Arlt A., Sipos B., Witt M., Grossmann M., Kloppel G., Kalthoff H., Folsch U. R., Schafer H. Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res 2005; 65: 1316–1324
  • Thiery J. P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2002; 2: 442–454
  • Brabletz T., Jung A., Reu S., Porzner M., Hlubek F., Kunz-Schughart L. A., Knuechel R., Kirchner T. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U. S. A 2001; 98: 10356–10361
  • Stemmer V., de C. B., Berx G., Behrens J. Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene 2008
  • Graham T. R., Zhau H. E., Odero-Marah V. A., Osunkoya A. O., Kimbro K. S., Tighiouart M., Liu T., Simons J. W., O'Regan R. M. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2008; 68: 2479–2488
  • Yang M. H., Wu M. Z., Chiou S. H., Chen P. M., Chang S. Y., Liu C. J., Teng S. C., Wu K. J. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 2008; 10: 295–305
  • Spaderna S., Schmalhofer O., Wahlbuhl M., Dimmler A., Bauer K., Sultan A., Hlubek F., Jung A., Strand D., Eger A., Kirchner T., Behrens J., Brabletz T. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 2008; 68: 537–544
  • Yang J., Mani S. A., Donaher J. L., Ramaswamy S., Itzykson R. A., Come C., Savagner P., Gitelman I., Richardson A., Weinberg R. A. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939
  • Muller T., Bain G., Wang X., Papkoff J. Regulation of epithelial cell migration and tumor formation by beta-catenin signaling. Exp Cell Res 2002; 280: 119–133
  • Min C., Eddy S. F., Sherr D. H., Sonenshein G. E. NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 2008
  • Radisky D. C., Bissell M. J. NF-kappaB links oestrogen receptor signalling and EMT. Nat Cell Biol 2007; 9: 361–363
  • Chua H. L., Bhat-Nakshatri P., Clare S. E., Morimiya A., Badve S., Nakshatri H. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 2007; 26: 711–724
  • Julien S., Puig I., Caretti E., Bonaventure J., Nelles L., van R. F., Dargemont C., de Herreros A. G., Bellacosa A., Larue L. Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007; 26: 7445–7456
  • Wang X., Belguise K., Kersual N., Kirsch K. H., Mineva N. D., Galtier F., Chalbos D., Sonenshein G. E. Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 2007; 9: 470–478
  • Kong D., Wang Z., Sarkar S. H., Li Y., Banerjee S., Saliganan A., Kim H. R., Cher M. L., Sarkar F. H. PDGF-D over-expression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells 2008; 26: 1425–1435
  • Chung C. H., Parker J. S., Ely K., Carter J., Yi Y., Murphy B. A., Ang K. K., El-Naggar A. K., Zanation A. M., Cmelak A. J., Levy S., Slebos R. J., Yarbrough W. G. Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-kappaB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 2006; 66: 8210–8218
  • Zhang M., Xie X., Lee A. H., Binns C. W. Soy and isoflavone intake are associated with reduced risk of ovarian cancer in southeast China. Nutr Cancer 2004; 49: 125–130
  • Wu A. H., Yu M. C., Tseng C. C., Twaddle N. C., Doerge D. R. Plasma isoflavone levels versus self-reported soy isoflavone levels in Asian-American women in Los Angeles County. Carcinogenesis 2004; 25: 77–81
  • Hamalainen M., Nieminen R., Vuorela P., Heinonen M., Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007; 2007: 45673
  • Kang J. L., Lee H. W., Lee H. S., Pack I. S., Chong Y., Castranova V., Koh Y. Genistein prevents nuclear factor-kappa B activation and acute lung injury induced by lipopolysaccharide. Am J Respir Crit Care Med 2001; 164: 2206–2212
  • Kalhan R., Smith L. J., Nlend M. C., Nair A., Hixon J. L., Sporn P. H. A mechanism of benefit of soy genistein in asthma: inhibition of eosinophil p38-dependent leukotriene synthesis. Clin Exp Allergy 2008; 38: 103–112
  • Smith L. J., Holbrook J. T., Wise R., Blumenthal M., Dozor A. J., Mastronarde J., Williams L. Dietary intake of soy genistein is associated with lung function in patients with asthma. J Asthma 2004; 41: 833–843
  • Banerjee S., Zhang Y., Ali S., Bhuiyan M., Wang Z., Chiao P. J., Philip P. A., Abbruzzese J., Sarkar F. H. Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 2005; 65: 9064–9072
  • Li Y., Sarkar F. H. Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res 2002; 8: 2369–2377
  • Raffoul J. J., Banerjee S., Singh-Gupta V., Knoll Z. E., Fite A., Zhang H., Abrams J., Sarkar F. H., Hillman G. G. Down-regulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res 2007; 67: 2141–2149
  • Takimoto C. H., Glover K., Huang X., Hayes S. A., Gallot L., Quinn M., Jovanovic B. D., Shapiro A., Hernandez L., Goetz A., Llorens V., Lieberman R., Crowell J. A., Poisson B. A., Bergan R. C. Phase I pharmacokinetic and pharmacodynamic analysis of unconjugated soy isoflavones administered to individuals with cancer. Cancer Epidemiol Biomarkers Prev 2003; 12: 1213–1221
  • Banerjee M., Tripathi L. M., Srivastava V. M., Puri A., Shukla R. Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacol Immunotoxicol 2003; 25: 213–224
  • Rao C. V., Rivenson A., Simi B., Reddy B. S. Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 1995; 55: 259–266
  • Bharti A. C., Donato N., Singh S., Aggarwal B. B. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 2003; 101: 1053–1062
  • Aggarwal B. B., Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006; 71: 1397–1421
  • Chuang S. E., Cheng A. L., Lin J. K., Kuo M. L. Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem Toxicol 2000; 38: 991–995
  • Sugimoto K., Hanai H., Tozawa K., Aoshi T., Uchijima M., Nagata T., Koide Y. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology 2002; 123: 1912–1922
  • Leclercq I. A., Farrell G. C., Sempoux C., dela P. A., Horsmans Y. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. J Hepatol 2004; 41: 926–934
  • Kim Y. S., Ahn Y., Hong M. H., Joo S. Y., Kim K. H., Sohn I. S., Park H. W., Hong Y. J., Kim J. H., Kim W., Jeong M. H., Cho J. G., Park J. C., Kang J. C. Curcumin attenuates inflammatory responses of TNF-alpha-stimulated human endothelial cells. J Cardiovasc Pharmacol 2007; 50: 41–49
  • Reyes-Gordillo K., Segovia J., Shibayama M., Vergara P., Moreno M. G., Muriel P. Curcumin protects against acute liver damage in the rat by inhibiting NF-kappaB, proinflammatory cytokines production and oxidative stress. Biochim Biophys Acta 2007; 1770: 989–996
  • Weisberg S. P., Leibel R., Tortoriello D. V. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 2008; 149: 3549–3558
  • Duvoix A., Morceau F., Delhalle S., Schmitz M., Schnekenburger M., Galteau M. M., Dicato M., Diederich M. Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1-1 inhibition. Biochem Pharmacol 2003; 66: 1475–1483
  • Wang Z., Zhang Y., Banerjee S., Li Y., Sarkar F. H. Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer 2006; 106: 2503–2513
  • Bachmeier B. E., Mohrenz I. V., Mirisola V., Schleicher E., Romeo F., Hohneke C., Jochum M., Nerlich A. G., Pfeffer U. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFkappaB. Carcinogenesis 2008; 29: 779–789
  • Lin Y. G., Kunnumakkara A. B., Nair A., Merritt W. M., Han L. Y., rmaiz-Pena G. N., Kamat A. A., Spannuth W. A., Gershenson D. M., Lutgendorf S. K., Aggarwal B. B., Sood A. K. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res 2007; 13: 3423–3430
  • Aggarwal S., Takada Y., Singh S., Myers J. N., Aggarwal B. B. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-kappaB signaling. Int J Cancer 2004; 111: 679–692
  • Plummer S. M., Holloway K. A., Manson M. M., Munks R. J., Kaptein A., Farrow S., Howells L. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 1999; 18: 6013–6020
  • Aggarwal B. B., Shishodia S., Takada Y., Banerjee S., Newman R. A., Bueso-Ramos C. E., Price J. E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 2005; 11: 7490–7498
  • Sharma R. A., Euden S. A., Platton S. L., Cooke D. N., Shafayat A., Hewitt H. R., Marczylo T. H., Morgan B., Hemingway D., Plummer S. M., Pirmohamed M., Gescher A. J., Steward W. P. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 2004; 10: 6847–6854
  • Cheng A. L., Hsu C. H., Lin J. K., Hsu M. M., Ho Y. F., Shen T. S., Ko J. Y., Lin J. T., Lin B. R., Ming-Shiang W., Yu H. S., Jee S. H., Chen G. S., Chen T. M., Chen C. A., Lai M. K., Pu Y. S., Pan M. H., Wang Y. J., Tsai C. C., Hsieh C. Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001; 21: 2895–2900
  • Dhillon N., Aggarwal B. B., Newman R. A., Wolff R. A., Kunnumakkara A. B., Abbruzzese J. L., Ng C. S., Badmaev V., Kurzrock R. Phase I I trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 2008; 14: 4491–4499
  • Li L., Ahmed B., Mehta K., Kurzrock R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol Cancer Ther 2007; 6: 1276–1282
  • Li L., Braiteh F. S., Kurzrock R. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 2005; 104: 1322–1331
  • Nho C. W., Jeffery E. Crambene, a bioactive nitrile derived from glucosinolate hydrolysis, acts via the antioxidant response element to upregulate quinone reductase alone or synergistically with indole-3-carbinol. Toxicol Appl Pharmacol 2004; 198: 40–48
  • Benabadji S. H., Wen R., Zheng J. B., Dong X. C., Yuan S. G. Anticarcinogenic and antioxidant activity of diindolylmethane derivatives. Acta Pharmacol Sin 2004; 25: 666–671
  • Cho H. J., Seon M. R., Lee Y. M., Kim J., Kim J. K., Kim S. G., Park J. H. 3,3′-Diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. J Nutr 2008; 138: 17–23
  • Kim D. J., Shin D. H., Ahn B., Kang J. S., Nam K. T., Park C. B., Kim C. K., Hong J. T., Kim Y. B., Yun Y. W., Jang D. D., Yang K. H. Chemoprevention of colon cancer by Korean food plant components. Mutat Res 2003; 523–524: 99–107
  • Li Y., Chinni S. R., Sarkar F. H. Selective growth regulatory and pro-apoptotic effects of DIM is mediated by AKT and NF-kappaB pathways in prostate cancer cells. Front Biosci 2005; 10: 236–243
  • Rahman K. W., Sarkar F. H. Inhibition of nuclear translocation of nuclear factor-kappaB contributes to 3,3′-diindolylmethane-induced apoptosis in breast cancer cells. Cancer Res 2005; 65: 364–371
  • Cover C. M., Hsieh S. J., Cram E. J., Hong C., Riby J. E., Bjeldanes L. F., Firestone G. L. Indole-3-carbinol and tamoxifen cooperate to arrest the cell cycle of MCF-7 human breast cancer cells. Cancer Res 1999; 59: 1244–1251
  • Sarkar F. H., Li Y. Indole-3-carbinol and prostate cancer. J Nutr 2004; 134: 3493S–3498S
  • Naik R., Nixon S., Lopes A., Godfrey K., Hatem M. H., Monaghan J. M. A randomized phase II trial of indole-3-carbinol in the treatment of vulvar intraepithelial neoplasia. Int J Gynecol Cancer 2006; 16: 786–790
  • Reed G. A., Peterson K. S., Smith H. J., Gray J. C., Sullivan D. K., Mayo M. S., Crowell J. A., Hurwitz A. A phase I study of indole-3-carbinol in women: tolerability and effects. Cancer Epidemiol Biomarkers Prev 2005; 14: 1953–1960
  • Mukhtar H., Ahmad N. Green tea in chemoprevention of cancer. Toxicol Sci 1999; 52: 111–117
  • Afaq F., Adhami V. M., Ahmad N., Mukhtar H. Inhibition of ultraviolet B-mediated activation of nuclear factor kappaB in normal human epidermal keratinocytes by green tea Constituent (-)-epigallocatechin-3-gallate. Oncogene 2003; 22: 1035–1044
  • Wheeler D. S., Lahni P. M., Hake P. W., Denenberg A. G., Wong H. R., Snead C., Catravas J. D., Zingarelli B. The green tea polyphenol epigallocatechin-3-gallate improves systemic hemodynamics and survival in rodent models of polymicrobial sepsis. Shock 2007; 28: 353–359
  • Aktas O., Prozorovski T., Smorodchenko A., Savaskan N. E., Lauster R., Kloetzel P. M., Infante-Duarte C., Brocke S., Zipp F. Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 2004; 173: 5794–5800
  • Abboud P. A., Hake P. W., Burroughs T. J., Odoms K., O'Connor M., Mangeshkar P., Wong H. R., Zingarelli B. Therapeutic effect of epigallocatechin-3-gallate in a mouse model of colitis. Eur J Pharmacol 2008; 579: 411–417
  • Rizvi S. I., Zaid M. A., Anis R., Mishra N. Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Clin. Exp. Pharmacol. Physiol 2005; 32: 70–75
  • Shimada M., Mochizuki K., Sakurai N., Goda T. Dietary supplementation with epigallocatechin gallate elevates levels of circulating adiponectin in non-obese type-2 diabetic Goto-Kakizaki rats. Biosci Biotechnol Biochem 2007; 71: 2079–2082
  • Song E. K., Hur H., Han M. K. Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Arch Pharm Res 2003; 26: 559–563
  • Hastak K., Gupta S., Ahmad N., Agarwal M. K., Agarwal M. L., Mukhtar H. Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene 2003; 22: 4851–4859
  • Zhang Q., Wei D., Liu J. In vivo reversal of doxorubicin resistance by (−)-epigallocatechin gallate in a solid human carcinoma xenograft. Cancer Lett 2004; 208: 179–186
  • Shanafelt T. D., Lee Y. K., Call T. G., Nowakowski G. S., Dingli D., Zent C. S., Kay N. E. Clinical effects of oral green tea extracts in four patients with low grade B-cell malignancies. Leuk Res 2006; 30: 707–712
  • Olas B., Wachowicz B., Saluk-Juszczak J., Zielinski T. Effect of resveratrol, a natural polyphenolic compound, on platelet activation induced by endotoxin or thrombin. Thromb Res 2002; 107: 141–145
  • Lu C. C., Lai H. C., Hsieh S. C., Chen J. K. Resveratrol ameliorates Serratia marcescens-induced acute pneumonia in rats. J Leukoc Biol 2008; 83: 1028–1037
  • Yoshida Y., Shioi T., Izumi T. Resveratrol ameliorates experimental autoimmune myocarditis. Circ J 2007; 71: 397–404
  • Elmali N., Baysal O., Harma A., Esenkaya I., Mizrak B. Effects of resveratrol in inflammatory arthritis. Inflammation 2007; 30: 1–6
  • Kolgazi M., Sener G., Cetinel S., Gedik N., Alican I. Resveratrol reduces renal and lung injury caused by sepsis in rats. J Surg Res 2006; 134: 315–321
  • Delmas D., Jannin B., Latruffe N. Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res 2005; 49: 377–395
  • Rossi L., Mazzitelli S., Arciello M., Capo C. R., Rotilio G. Benefits from dietary polyphenols for brain aging and alzheimer's disease. Neurochem. Res 2008
  • Scarlatti F., Sala G., Somenzi G., Signorelli P., Sacchi N., Ghidoni R. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. FASEB J 2003; 17: 2339–2341
  • Delmas D., Rebe C., Lacour S., Filomenko R., Athias A., Gambert P., Cherkaoui-Malki M., Jannin B., Dubrez-Daloz L., Latruffe N., Solary E. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 2003; 278: 41482–41490
  • Estrov Z., Shishodia S., Faderl S., Harris D., Van Q., Kantarjian H. M., Talpaz M., Aggarwal B. B. Resveratrol blocks interleukin-1beta-induced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells. Blood 2003; 102: 987–995
  • Fulda S., Debatin K. M. Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res 2004; 64: 337–346
  • Ohsugi T., Kumasaka T., Ishida A., Ishida T., Horie R., Watanabe T., Umezawa K., Yamaguchi K. In vitro and in vivo antitumor activity of the NF-kappaB inhibitor DHMEQ in the human T-cell leukemia virus type I-infected cell line, HUT-102. Leuk Res 2006; 30: 90–97
  • Nagai N., Izumi-Nagai K., Oike Y., Koto T., Satofuka S., Ozawa Y., Yamashiro K., Inoue M., Tsubota K., Umezawa K., Ishida S. Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-kappaB pathway. Invest Ophthalmol Vis Sci 2007; 48: 4342–4350
  • Kubota T., Hoshino M., Aoki K., Ohya K., Komano Y., Nanki T., Miyasaka N., Umezawa K. NF-kappaB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor. Arthritis Res Ther 2007; 9: R97
  • Watanabe M., Ohsugi T., Shoda M., Ishida T., Aizawa S., Maruyama-Nagai M., Utsunomiya A., Koga S., Yamada Y., Kamihira S., Okayama A., Kikuchi H., Uozumi K., Yamaguchi K., Higashihara M., Umezawa K., Watanabe T., Horie R. Dual targeting of transformed and untransformed HTLV-1-infected T cells by DHMEQ, a potent and selective inhibitor of NF-kappaB, as a strategy for chemoprevention and therapy of adult T-cell leukemia. Blood 2005; 106: 2462–2471
  • Poma P., Notarbartolo M., Labbozzetta M., Sanguedolce R., Alaimo A., Carina V., Maurici A., Cusimano A., Cervello M., D'Alessandro N. Antitumor effects of the novel NF-kappaB inhibitor dehydroxymethyl-epoxyquinomicin on human hepatic cancer cells: analysis of synergy with cisplatin and of possible correlation with inhibition of pro-survival genes and IL-6 production. Int J Oncol 2006; 28: 923–930
  • Matsumoto G., Muta M., Umezawa K., Suzuki T., Misumi K., Tsuruta K., Okamoto A., Toi M. Enhancement of the caspase-independent apoptotic sensitivity of pancreatic cancer cells by DHMEQ, an NF-kappaB inhibitor. Int J Oncol 2005; 27: 1247–1255
  • Cyrus T., Sung S., Zhao L., Funk C. D., Tang S., Pratico D. Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 2002; 106: 1282–1287
  • Sclabas G. M., Uwagawa T., Schmidt C., Hess K. R., Evans D. B., Abbruzzese J. L., Chiao P. J. Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin. Cancer 2005; 103: 2485–2490
  • Wong B. C., Jiang X., Fan X. M., Lin M. C., Jiang S. H., Lam S. K., Kung H. F. Suppression of RelA/p65 nuclear translocation independent of IkappaB-alpha degradation by cyclooxygenase-2 inhibitor in gastric cancer. Oncogene 2003; 22: 1189–1197
  • Shishodia S., Koul D., Aggarwal B. B. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-kappa B activation through inhibition of activation of I kappa B alpha kinase and Akt in human non-small cell lung carcinoma: correlation with suppression of COX-2 synthesis. J Immunol 2004; 173: 2011–2022
  • Ali S., El-Rayes B. F., Sarkar F. H., Philip P. A. Simultaneous targeting of the epidermal growth factor receptor and cyclooxygenase-2 pathways for pancreatic cancer therapy. Mol Cancer Ther 2005; 4: 1943–1951
  • El-Rayes B. F., Ali S., Sarkar F. H., Philip P. A. Cyclooxygenase-2-dependent and -independent effects of celecoxib in pancreatic cancer cell lines. Mol Cancer Ther 2004; 3: 1421–1426
  • Lev-Ari S., Zinger H., Kazanov D., Yona D., Ben-Yosef R., Starr A., Figer A., Arber N. Curcumin synergistically potentiates the growth inhibitory and pro-apoptotic effects of celecoxib in pancreatic adenocarcinoma cells. Biomed. Pharmacother 2005; 59(Suppl 2)S276–S280
  • Saadane A., Masters S., DiDonato J., Li J., Berger M. Parthenolide inhibits IkappaB kinase, NF-kappaB activation, and inflammatory response in cystic fibrosis cells and mice. Am J Respir Cell Mol Biol 2007; 36: 728–736
  • Lopez-Franco O., Hernandez-Vargas P., Ortiz-Munoz G., Sanjuan G., Suzuki Y., Ortega L., Blanco J., Egido J., Gomez-Guerrero C. Parthenolide modulates the NF-kappaB-mediated inflammatory responses in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26: 1864–1870
  • Zhang S., Lin Z. N., Yang C. F., Shi X., Ong C. N., Shen H. M. Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells. Carcinogenesis 2004; 25: 2191–2199
  • Yip-Schneider M. T., Nakshatri H., Sweeney C. J., Marshall M. S., Wiebke E. A., Schmidt C. M. Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-kappa B pathway in pancreatic carcinoma cells. Mol Cancer Ther 2005; 4: 587–594
  • Lappas M., Yee K., Permezel M., Rice G. E. Sulfasalazine and BAY 11–7082 interfere with the nuclear factor-kappa B and I kappa B kinase pathway to regulate the release of proinflammatory cytokines from human adipose tissue and skeletal muscle in vitro. Endocrinology 2005; 146: 1491–1497
  • Muerkoster S., Arlt A., Witt M., Gehrz A., Haye S., March C., Grohmann F., Wegehenkel K., Kalthoff H., Folsch U. R., Schafer H. Usage of the NF-kappaB inhibitor sulfasalazine as sensitizing agent in combined chemotherapy of pancreatic cancer. Int J Cancer 2003; 104: 469–476
  • Elliott P. J., Zollner T. M., Boehncke W. H. Proteasome inhibition: a new anti-inflammatory strategy. J Mol Med 2003; 81: 235–245
  • Dong Q. G., Sclabas G. M., Fujioka S., Schmidt C., Peng B., Wu T., Tsao M. S., Evans D. B., Abbruzzese J. L., McDonnell T. J., Chiao P. J. The function of multiple IkappaB : NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene 2002; 21: 6510–6519
  • Lu Y., Wahl L. M. Production of matrix metalloproteinase-9 by activated human monocytes involves a phosphatidylinositol-3 kinase/Akt/IKKalpha/NF-kappaB pathway. J Leukoc Biol 2005; 78: 259–265
  • Kim K., Ryu K., Ko Y., Park C. Effects of nuclear factor-kappaB inhibitors and its implication on natural killer T-cell lymphoma cells. Br J Haematol 2005; 131: 59–66
  • Garcia M. G., Alaniz L., Lopes E. C., Blanco G., Hajos S. E., Alvarez E. Inhibition of NF-kappaB activity by BAY 11-7082 increases apoptosis in multidrug resistant leukemic T-cell lines. Leuk Res 2005; 29: 1425–1434
  • Hansson A., Marin Y. E., Suh J., Rabson A. B., Chen S., Huberman E., Chang R. L., Conney A. H., Zheng X. Enhancement of TPA-induced growth inhibition and apoptosis in myeloid leukemia cells by BAY 11-7082, an NF-kappaB inhibitor. Int J Oncol 2005; 27: 941–948

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.