202
Views
30
CrossRef citations to date
0
Altmetric
Original

HIV-1 Tat-Based Vaccines: An Overview and Perspectives in the Field of HIV/AIDS Vaccine Development

, , , , , , , , , , , , & show all
Pages 285-334 | Published online: 09 Sep 2009

REFERENCES

  • Wensing A. M., Boucher C. A. Worldwide transmission of drug-resistant HIV. AIDS Rev 2003; 5: 140–155
  • Girard M. P., Bansal G. P. HIV/AIDS vaccines: A need for new concepts?. Int Rev Immunol 2008; 27: 447–471
  • Sekaly R. P. The failed HIV Merck vaccine study: A step back or a launching point for future vaccine development?. J Exp Med 2008; 205: 7–12
  • Titti F., Cafaro A., Ferrantelli F., Tripiciano A., Moretti S., Caputo A., et al. Problems and emerging approaches in HIV/AIDS vaccine development. Expert Opin Emerg Drugs 2007; 12: 23–48
  • Spearman P. HIV vaccine development: Lessons from the past and promise for the future. Curr HIV Res 2003; 1: 101–120
  • Amara R. R., Villinger F., Altman J. D., Lydy S. L., O'Neil S. P., Staprans S. I., et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 2001; 292: 69–74
  • Bertley F. M., Kozlowski P. A., Wang S. W., Chappelle J., Patel J., Sonuyi O., et al. Control of simian/human immunodeficiency virus viremia and disease progression after IL-2-augmented DNA-modified vaccinia virus Ankara nasal vaccination in nonhuman primates. J Immunol 2004; 172: 3745–3757
  • Crotty S., Miller C. J., Lohman B. L., Neagu M. R., Compton L., Lu D., et al. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. J Virol 2001; 75: 7435–7452
  • Doria-Rose N. A., Ohlen C., Polacino P., Pierce C. C., Hensel M. T., Kuller L., et al. Multigene DNA priming-boosting vaccines protect macaques from acute CD4+-T-cell depletion after simian-human immunodeficiency virus SHIV89.6P mucosal challenge. J Virol 2003; 77: 11563–11577
  • Malkevitch N., Patterson L. J., Aldrich K., Richardson E., Alvord W. G., Robert-Guroff M. A replication competent adenovirus 5 host range mutant-simian immunodeficiency virus (SIV) recombinant priming/subunit protein boosting vaccine regimen induces broad, persistent SIV-specific cellular immunity to dominant and subdominant epitopes in Mamu-A*01 rhesus macaques. J. Immunol 2003; 170: 4281–4289
  • Mossman S. P., Pierce C. C., Watson A. J., Robertson M. N., Montefiori D. C., Kuller L., et al. Protective immunity to SIV challenge elicited by vaccination of macaques with multigenic DNA vaccines producing virus-like particles. AIDS Res Hum Retroviruses 2004; 20: 425–434
  • Negri D. R., Buffa V., Leone P., Bona R., Borghi M., Carlini F., et al. Use of retroviral vectors for the analysis of SIV/HIV-specific CD8 T cell responses. J Immunol Methods 2004; 291: 153–163
  • Zhao J., Lou Y., Pinczewski J., Malkevitch N., Aldrich K., Kalyanaraman V. S., et al. Boosting of SIV-specific immune responses in rhesus macaques by repeated administration of Ad5hr-SIVenv/rev and Ad5hr-SIVgag recombinants. Vaccine 2003; 21: 4022–4035
  • Billich A. AIDSVAX VaxGen. Curr Opin Investig Drugs 2004; 5: 214–221
  • Letvin N. L. Progress and obstacles in the development of an AIDS vaccine. Nat Rev Immunol 2006; 6: 930–939
  • Robinson H. L. HIV/AIDS vaccines: 2007. Clin Pharmacol Ther 2007; 82: 686–693
  • Zolla-Pazner S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol 2004; 4: 199–210
  • Kwong P. D., Doyle M. L., Casper D. J., Cicala C., Leavitt S. A., Majeed S., et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 2002; 420: 678–682
  • Wyatt R., Sodroski J. The HIV-1 envelope glycoproteins: Fusogens, antigens, and immunogens. Science 1998; 280: 1884–1888
  • Reitter J. N., Means R. E., Desrosiers R. C. A role for carbohydrates in immune evasion in AIDS. Nat Med 1998; 4: 679–684
  • Scarlatti G., Tresoldi E., Bjorndal A., Fredriksson R., Colognesi C., Deng H. K., et al. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat Med 1997; 3: 1259–1265
  • Burton D. R., Desrosiers R. C., Doms R. W., Koff W. C., Kwong P. D., Moore J. P., et al. HIV vaccine design and the neutralizing antibody problem. Nat Immunol 2004; 5: 233–236
  • McMichael A. J., Hanke T. HIV vaccines 1983–2003. Nat Med 2003; 9: 874–880
  • Rambaut A., Posada D., Crandall K. A., Holmes E. C. The causes and consequences of HIV evolution. Nat Rev Genet 2004; 5: 52–61
  • Allen T. M., Altfeld M. HIV-1 superinfection. J Allergy Clin Immunol 2003; 112: 829–835
  • Altfeld M., Allen T. M., Yu X. G., Johnston M. N., Agrawal D., Korber B. T., et al. HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature 2002; 420: 434–439
  • Butler I. F., Pandrea I., Marx P. A., Apetrei C. HIV genetic diversity: Biological and public health consequences. Curr HIV Res 2007; 5: 23–45
  • Tebit D. M., Nankya I., Arts E. J., Gao Y. HIV diversity, recombination and disease progression: How does fitness “fit” into the puzzle?. AIDS Rev 2007; 9: 75–87
  • Lubeck M. D., Natuk R., Myagkikh M., Kalyan N., Aldrich K., Sinangil F., et al. Long-term protection of chimpanzees against high-dose HIV-1 challenge induced by immunization. Nat Med 1997; 3: 651–658
  • Peng B., Wang L. R., Gomez-Roman V. R., vis-Warren A., Montefiori D. C., Kalyanaraman V. S., et al. Replicating rather than nonreplicating adenovirus-human immunodeficiency virus recombinant vaccines are better at eliciting potent cellular immunity and priming high-titer antibodies. J Virol 2005; 79: 10200–10209
  • Robert-Guroff M., Kaur H., Patterson L. J., Leno M., Conley A. J., McKenna P. M., et al. Vaccine protection against a heterologous, non-syncytium-inducing, primary human immunodeficiency virus. J Virol 1998; 72: 10275–10280
  • Sernicola L., Corrias F., Koanga-Mogtomo M. L., Baroncelli S., Di F. S., Maggiorella M. T., et al. Long-lasting protection by live attenuated simian immunodeficiency virus in cynomolgus monkeys: No detection of reactivation after stimulation with a recall antigen. Virology 1999; 256: 291–302
  • Zolla-Pazner S., Lubeck M., Xu S., Burda S., Natuk R. J., Sinangil F., et al. Induction of neutralizing antibodies to T-cell line-adapted and primary human immunodeficiency virus type 1 isolates with a prime-boost vaccine regimen in chimpanzees. J Virol 1998; 72: 1052–1059
  • Buge S. L., Ma H. L., Amara R. R., Wyatt L. S., Earl P. L., Villinger F., et al. Gp120-alum boosting of a Gag-Pol-Env DNA/MVA AIDS vaccine: Poorer control of a pathogenic viral challenge. AIDS Res Hum Retroviruses 2003; 19: 891–900
  • Beattie T., Rowland-Jones S., Kaul R. HIV-1 and AIDS: What are protective immune responses?. J HIV Ther 2002; 7: 35–39
  • Douek D. C. Disrupting T-cell homeostasis: How HIV-1 infection causes disease. AIDS Rev 2003; 5: 172–177
  • Douek D. C., Picker L. J., Koup R. A. T cell dynamics in HIV-1 infection. Annu Rev Immunol 2003; 21: 265–304
  • Ferrantelli F., Rasmussen R. A., Buckley K. A., Li P. L., Wang T., Montefiori D. C., et al. Complete protection of neonatal rhesus macaques against oral exposure to pathogenic simian-human immunodeficiency virus by human anti-HIV monoclonal antibodies. J Infect Dis 2004; 189: 2167–2173
  • Ferrantelli F., Ruprecht R. M. Neutralizing antibodies against HIV—Back in the major leagues?. Curr Opin Immunol 2002; 14: 495–502
  • John G. C., Kreiss J. Mother-to-child transmission of human immunodeficiency virus type 1. Epidemiol Rev 1996; 18: 149–157
  • Kourtis A. P., Butera S., Ibegbu C., Beled L., Duerr A. Breast milk and HIV-1: Vector of transmission or vehicle of protection?. Lancet Infect Dis 2003; 3: 786–793
  • Kulkarni P. S., Butera S. T., Duerr A. C. Resistance to HIV-1 infection: Lessons learned from studies of highly exposed persistently seronegative (HEPS) individuals. AIDS Rev 2003; 5: 87–103
  • Levy J. A. The search for the CD8+ cell anti-HIV factor (CAF). Trends Immunol 2003; 24: 628–632
  • Levy J. A., Scott I., Mackewicz C. Protection from HIV/AIDS: The importance of innate immunity. Clin Immunol 2003; 108: 167–174
  • Ruprecht R. M., Ferrantelli F., Kitabwalla M., Xu W., McClure H. M. Antibody protection: Passive immunization of neonates against oral AIDS virus challenge. Vaccine 2003; 21: 3370–3373
  • Stiegler G., Katinger H. Therapeutic potential of neutralizing antibodies in the treatment of HIV-1 infection. J Antimicrob Chemother 2003; 51: 757–759
  • Richardson T. M., Jr., Stryjewski B. L., Broder C. C., Hoxie J. A., Mascola J. R., Earl P. L., Doms R. W. Humoral response to oligomeric human immunodeficiency virus type 1 envelope protein. J Virol 1996; 70: 753–762
  • Yang X., Wyatt R., Sodroski J. Improved elicitation of neutralizing antibodies against primary human immunodeficiency viruses by soluble stabilized envelope glycoprotein trimers. J Virol 2001; 75: 1165–1171
  • Buckner C., Gines L. G., Saunders C. J., Vojtech L., Srivastava I., Gettie A., et al. Priming B cell-mediated anti-HIV envelope responses by vaccination allows for the long-term control of infection in macaques exposed to a R5-tropic SHIV. Virology 2004; 320: 167–180
  • Cherpelis S., Shrivastava I., Gettie A., Jin X., Ho D. D., Barnett S. W., Stamatatos L. DNA vaccination with the human immunodeficiency virus type 1 SF162DeltaV2 envelope elicits immune responses that offer partial protection from simian/human immunodeficiency virus infection to CD8(+) T-cell-depleted rhesus macaques. J Virol 2001; 75: 1547–1550
  • Burton D. R., Stanfield R. L., Wilson I. A. Antibody vs. HIV in a clash of evolutionary titans. Proc Natl Acad Sci U S A 2005; 102: 14943–14948
  • Zolla-Pazner S. Improving on nature: Focusing the immune response on the V3 loop. Hum Antibodies 2005; 14: 69–72
  • Barnett S. W., Lu S., Srivastava I., Cherpelis S., Gettie A., Blanchard J., et al. The ability of an oligomeric human immunodeficiency virus type 1 (HIV-1) envelope antigen to elicit neutralizing antibodies against primary HIV-1 isolates is improved following partial deletion of the second hypervariable region. J Virol 2001; 75: 5526–5540
  • Barnett S. W., Srivastava I. K., Kan E., Zhou F., Goodsell A., Cristillo A. D., et al. Protection of macaques against vaginal SHIV challenge by systemic or mucosal and systemic vaccinations with HIV-envelope. AIDS 2008; 22: 339–348
  • Barnett S. W., Srivastava I. K., Ulmer J. B., Donnelly J. J., Rappuoli R. Development of V2-deleted trimeric envelope vaccine candidates from human immunodeficiency virus type 1 (HIV-1) subtypes B and C. Microbes Infect 2005; 7: 1386–1391
  • Bogers W. M., Davis D., Baak I., Kan E., Hofman S., Sun Y., et al. Systemic neutralizing antibodies induced by long interval mucosally primed systemically boosted immunization correlate with protection from mucosal SHIV challenge. Virology 2008; 382: 217–225
  • Srivastava I. K., Kan E., Sun Y., Sharma V. A., Cisto J., Burke B., et al. Comparative evaluation of trimeric envelope glycoproteins derived from subtype C and B HIV-1 R5 isolates. Virology 2008; 372: 273–290
  • Srivastava I. K., Stamatatos L., Kan E., Vajdy M., Lian Y., Hilt S., et al. Purification, characterization, and immunogenicity of a soluble trimeric envelope protein containing a partial deletion of the V2 loop derived from SF162, an R5-tropic human immunodeficiency virus type 1 isolate. J Virol 2003; 77: 11244–11259
  • Srivastava I. K., VanDorsten K., Vojtech L., Barnett S. W., Stamatatos L. Changes in the immunogenic properties of soluble gp140 human immunodeficiency virus envelope constructs upon partial deletion of the second hypervariable region. J Virol 2003; 77: 2310–2320
  • Srivastava I., Goodsell A., Zhou F., Sun Y., Burke B., Barnett S., Vajdy M. Dynamics of acute and memory mucosal and systemic immune responses against HIV-1 envelope following immunizations through single or combinations of mucosal and systemic routes. Vaccine 2008; 26: 2796–2806
  • Amara R. R., Sharma S., Patel M., Smith J. M., Chennareddi L., Herndon J. G., Robinson H. L. Studies on the cross-clade and cross-species conservation of HIV-1 Gag-specific CD8 and CD4 T cell responses elicited by a clade B DNA/MVA vaccine in macaques. Virology 2005; 334: 124–133
  • Geels M. J., Dubey S. A., Anderson K., Baan E., Bakker M., Pollakis G., et al. Broad cross-clade T-cell responses to gag in individuals infected with human immunodeficiency virus type 1 non-B clades (A to G): Importance of HLA anchor residue conservation. J Virol 2005; 79: 11247–11258
  • Caputo A., Gavioli R., Ensoli B. Recent advances in the development of HIV-1 Tat-based vaccines. Curr HIV Res 2004; 2: 357–376
  • Ensoli B. Criteria for selection of HIV vaccine candidates—General principles. Microbes Infect 2005; 7: 1433–1435
  • Ensoli B. Rational vaccine strategies against AIDS: Background and rationale. Microbes Infect 2005; 7: 1445–1452
  • Ensoli B., Cafaro A., Caputo A., Fiorelli V., Ensoli F., Gavioli R., et al. Vaccines based on the native HIV Tat protein and on the combination of Tat and the structural HIV protein variant DeltaV2 Env. Microbes Infect 2005; 7: 1392–1399
  • Ferrantelli F., Cafaro A., Ensoli B. Nonstructural HIV proteins as targets for prophylactic or therapeutic vaccines. Curr Opin Biotechnol 2004; 15: 543–556
  • Benito J. M., Lopez M., Soriano V. The role of CD8+ T-cell response in HIV infection. AIDS Rev 2004; 6: 79–88
  • Brown S. A., Hurwitz J. L., Zhan X., Doherty P. C., Slobod K. S. CD8+ T-cells: Are they sufficient to prevent, contain or eradicate HIV-1 infection?. Curr Drug Targets Infect Disord 2005; 5: 113–119
  • Genesca M., McChesney M. B., Miller C. J. Antiviral CD8+ T cells in the genital tract control viral replication and delay progression to AIDS after vaginal SIV challenge in rhesus macaques immunized with virulence attenuated SHIV 89.6. J Intern Med 2009; 265: 67–77
  • Kawada M., Tsukamoto T., Yamamoto H., Iwamoto N., Kurihara K., Takeda A., et al. Gag-specific cytotoxic T-lymphocyte-based control of primary simian immunodeficiency virus replication in a vaccine trial. J Virol 2008; 82: 10199–10206
  • Liu J., O'Brien K. L., Lynch D. M., Simmons N. L., La P. A., Riggs A. M., et al. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature 2009; 457: 87–91
  • Reynolds M. R., Weiler A. M., Weisgrau K. L., Piaskowski S. M., Furlott J. R., Weinfurter J. T., et al. Macaques vaccinated with live-attenuated SIV control replication of heterologous virus. J Exp Med 2008; 205: 2537–2550
  • Saksena N. K., Wu J. Q., Potter S. J., Wilkinson J., Wang B. Human immunodeficiency virus interactions with CD8+ T lymphocytes. Curr HIV Res 2008; 6: 1–9
  • Watkins D. I. The hope for an HIV vaccine based on induction of CD8+ T lymphocytes—A review. Mem Inst Oswaldo Cruz 2008; 103: 119–129
  • Althaus C. L., De Boer R. J. Dynamics of immune escape during HIV/SIV infection. PLoS Comput Biol 2008; 4: 1–9
  • Loh L., Petravic J., Batten C. J., Davenport M. P., Kent S. J. Vaccination and timing influence SIV immune escape viral dynamics in vivo. PLoS Pathog 2008; 4: 27–37
  • Buchbinder S. P., Mehrotra D. V., Duerr A., Fitzgerald D. W., Mogg R., Li D., et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): A double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008; 372: 1881–1893
  • McElrath M. J., De Rosa S. C., Moodie Z., Dubey S., Kierstead L., Janes H., et al. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: A case-cohort analysis. Lancet 2008; 372: 1894–1905
  • Robb M. L. Failure of the Merck HIV vaccine: An uncertain step forward. Lancet 2008; 372: 1857–1858
  • Shiver J. W., Fu T. M., Chen L., Casimiro D. R., Davies M. E., Evans R. K., et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002; 415: 331–335
  • Valentine L. E., Watkins D. I. Relevance of studying T cell responses in SIV-infected rhesus macaques. Trends Microbiol 2008; 16: 605–611
  • Watkins D. I., Burton D. R., Kallas E. G., Moore J. P., Koff W. C. Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat Med 2008; 14: 617–621
  • Ensoli B., Fiorelli V., Ensoli F., Cafaro A., Titti F. S. Buttò, et al., Candidate HIV-1 Tat vaccine development: From basic science to clinical trials. AIDS 2006; 20: 2245–2261
  • Ensoli B., Fiorelli V., Ensoli F., Lazzarin A., Visintini R., Narciso P., et al. The therapeutic phase I trial of the recombinant native HIV-1 Tat protein. AIDS 2008; 22: 2207–2209
  • Appay V., Douek D. C., Price D. A. CD8+ T cell efficacy in vaccination and disease. Nat Med 2008; 14: 623–628
  • Letvin N. L. Correlates of immune protection and the development of a human immunodeficiency virus vaccine. Immunity 2007; 27: 366–369
  • Pantaleo G., Koup R. A. Correlates of immune protection in HIV-1 infection: What we know, what we don't know, what we should know. Nat Med 2004; 10: 806–810
  • Piacentini L., Fenizia C., Naddeo V., Clerici M. Not just sheer luck! Immune correlates of protection against HIV-1 infection. Vaccine 2008; 26: 3002–3007
  • Polonis V. R., Brown B. K., Rosa B. A., Zolla-Pazner S., Dimitrov D. S., Zhang M. Y., et al. Recent advances in the characterization of HIV-1 neutralization assays for standardized evaluation of the antibody response to infection and vaccination. Virology 2008; 375: 315–320
  • Ferrantelli F., Buttò S., Cafaro A., Wahren B., Ensoli B. Building collaborative networks for HIV/AIDS vaccine development: The AVIP experience. Springer Semin Immunopathol 2006; 28: 289–301
  • Rodriguez-Chavez I. R., Allen M., Hill E. L., Sheets R. L., Pensiero M., Bradac J. A., D'Souza M. P. Current advances and challenges in HIV-1 vaccines. Curr HIV/AIDS Rep 2006; 3: 39–47
  • Rollman E., Brave A., Boberg A., Gudmundsdotter L., Engstrom G., Isaguliants M., et al. The rationale behind a vaccine based on multiple HIV antigens. Microbes Infect 2005; 7: 1414–1423
  • Wahren B., Ljungberg K., Rollman E., Levi M., Zuber B., Kjerrstrom Z. A., et al. HIV subtypes and recombination strains—Strategies for induction of immune responses in man. Vaccine 2002; 20: 1988–1993
  • Fanales-Belasio E., Moretti S., Fiorelli V., Tripiciano A., Pavone Cossut M. R., Scoglio A., et al. HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection. J Immunol 2009; 182: 2888–2897
  • Fanales-Belasio E., Moretti S., Nappi F., Barillari G., Micheletti F., Cafaro A., Ensoli B. Native HIV-1 Tat protein targets monocyte-derived dendritic cells and enhances their maturation, function, and antigen-specific T cell responses. J Immunol 2002; 168: 197–206
  • Gavioli R., Cellini S., Castaldello A., Voltan R., Gallerani E., Gagliardoni F., et al. The Tat protein broadens T cell responses directed to the HIV-1 antigens Gag and Env: Implications for the design of new vaccination strategies against AIDS. Vaccine 2008; 26: 727–737
  • Gavioli R., Gallerani E., Fortini C., Fabris M., Bottoni A., Canella A., et al. HIV-1 tat protein modulates the generation of cytotoxic T cell epitopes by modifying proteasome composition and enzymatic activity. J Immunol 2004; 173: 3838–3843
  • Kittiworakarn J., Lecoq A., Moine G., Thai R., Lajeunesse E., Drevet P., et al. HIV-1 Tat raises an adjuvant-free humoral immune response controlled by its core region and its ability to form cysteine-mediated oligomers. J Biol Chem 2006; 281: 3105–3115
  • Barillari G., Ensoli B. Angiogenic effects of extracellular human immunodeficiency virus type 1 Tat protein and its role in the pathogenesis of AIDS-associated Kaposi's sarcoma. Clin Microbiol Rev 2002; 15: 310–326
  • Levy J. A. HIV pathogenesis: Knowledge gained after two decades of research. Adv Dent Res 2006; 19: 10–16
  • Nunnari G., Smith J. A., Daniel R. HIV-1 Tat and AIDS-associated cancer: Targeting the cellular anti-cancer barrier?. J Exp Clin Cancer Res 2008; 27: 3–11
  • King J. E., Eugenin E. A., Buckner C. M., Berman J. W. HIV tat and neurotoxicity. Microbes Infect 2006; 8: 1347–1357
  • Barillari G., Gendelman R., Gallo R. C., Ensoli B. The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci U S A 1993; 90: 7941–7945
  • Brake D. A., Goudsmit J., Krone W. J., Schammel P., Appleby N., Meloen R. H., Debouck C. Characterization of murine monoclonal antibodies to the tat protein from human immunodeficiency virus type 1. J Virol 1990; 64: 962–965
  • Ensoli B., Gendelman R., Markham P., Fiorelli V., Colombini S., Raffeld M., et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature 1994; 371: 674–680
  • Bartz S. R., Emerman M. Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J Virol 1999; 73: 1956–1963
  • Blazquez M. V., Macho A., Ortiz C., Lucena C., Lopez-Cabrera M., Sanchez-Madrid F., Munoz E. Extracellular HIV type 1 Tat protein induces CD69 expression through NF-kappaB activation: Possible correlation with cell surface Tat-binding proteins. AIDS Res Hum Retroviruses 1999; 15: 1209–1218
  • Kameoka M., Rong L., Gotte M., Liang C., Russell R. S., Wainberg M. A. Role for human immunodeficiency virus type 1 Tat protein in suppression of viral reverse transcriptase activity during late stages of viral replication. J Virol 2001; 75: 2675–2683
  • Kolson D. L., Buchhalter J., Collman R., Hellmig B., Farrell C. F., Debouck C., Gonzalez-Scarano F. HIV-1 Tat alters normal organization of neurons and astrocytes in primary rodent brain cell cultures: RGD sequence dependence. AIDS Res Hum Retroviruses 1993; 9: 677–685
  • Ma M., Nath A. Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J Virol 1997; 71: 2495–2499
  • Mahlknecht U., Dichamp I., Varin A., Van L. C., Herbein G. NF-kappaB-dependent control of HIV-1 transcription by the second coding exon of Tat in T cells. J Leukoc Biol 2008; 83: 718–727
  • Neuveut C., Scoggins R. M., Camerini D., Markham R. B., Jeang K. T. Requirement for the second coding exon of Tat in the optimal replication of macrophage-tropic HIV-1. J Biomed Sci 2003; 10: 651–660
  • Ott M., Emiliani S., Van L. C., Herbein G., Lovett J., Chirmule N., et al. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science 1997; 275: 1481–1485
  • Smith S. M., Pentlicky S., Klase Z., Singh M., Neuveut C., Lu C. Y., et al. An in vivo replication-important function in the second coding exon of Tat is constrained against mutation despite cytotoxic T lymphocyte selection. J Biol Chem 2003; 278: 44816–44825
  • Tong-Starksen S. E., Baur A., Lu X. B., Peck E., Peterlin B. M. Second exon of Tat of HIV-2 is required for optimal trans-activation of HIV-1 and HIV-2 LTRs. Virology 1993; 195: 826–830
  • Verhoef K., Bauer M., Meyerhans A., Berkhout B. On the role of the second coding exon of the HIV-1 Tat protein in virus replication and MHC class I downregulation. AIDS Res Hum Retroviruses 1998; 14: 1553–1559
  • Verhoef K., Klein A., Berkhout B. Paracrine activation of the HIV-1 LTR promoter by the viral Tat protein is mechanistically similar to trans-activation within a cell. Virology 1996; 225: 316–327
  • Campbell G. R., Senkaali D., Watkins J., Esquieu D., Opi S., Yirrell D. L., et al. Tat mutations in an African cohort that do not prevent transactivation but change its immunogenic properties. Vaccine 2007; 25: 8441–8447
  • Buttò S., Fiorelli V., Tripiciano A., Ruiz-Alvarez M. J., Scoglio A., Ensoli F., et al. Sequence conservation and antibody cross-recognition of clade B human immunodeficiency virus (HIV) type 1 Tat protein in HIV-1-infected Italians, Ugandans, and South Africans. J Infect Dis 2003; 188: 1171–1180
  • Demirhan I., Chandra A., Mueller F., Mueller H., Biberfeld P., Hasselmayer O., Chandra P. Antibody spectrum against the viral transactivator protein in patients with human immunodeficiency virus type 1 infection and Kaposi's sarcoma. J Hum Virol 2000; 3: 137–143
  • Krone W. J., Debouck C., Epstein L. G., Heutink P., Meloen R., Goudsmit J. Natural antibodies to HIV-tat epitopes and expression of HIV-1 genes in vivo. J Med Virol 1988; 26: 261–270
  • Opi S., Peloponese J. M., Jr., Esquieu D., Watkins J., Campbell G., De M. J., et al. Full-length HIV-1 Tat protein necessary for a vaccine. Vaccine 2004; 22: 3105–3111
  • Re M. C., Furlini G., Vignoli M., Ramazzotti E., Roderigo G., De R., et al. Effect of antibody to HIV-1 Tat protein on viral replication in vitro and progression of HIV-1 disease in vivo. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 10: 408–416
  • Re M. C., Furlini G., Vignoli M., Ramazzotti E., Zauli G., La P. M. Antibody against human immunodeficiency virus type 1 (HIV-1) Tat protein may have influenced the progression of AIDS in HIV-1-infected hemophiliac patients. Clin Diagn Lab Immunol 1996; 3: 230–232
  • Re M. C., Vignoli M., Furlini G., Gibellini D., Colangeli V., Vitone F., La P. M. Antibodies against full-length Tat protein and some low-molecular-weight Tat-peptides correlate with low or undetectable viral load in HIV-1 seropositive patients. J Clin Virol 2001; 21: 81–89
  • Rezza G., Fiorelli V., Dorrucci M., Ciccozzi M., Tripiciano A., Scoglio A., et al. The presence of anti-Tat antibodies is predictive of long-term nonprogression to AIDS or severe immunodeficiency: Findings in a cohort of HIV-1 seroconverters. J Infect Dis 2005; 191: 1321–1324
  • Steinaa L., Sorensen A. M., Nielsen J. O., Hansen J. E. Antibody to HIV-1 Tat protein inhibits the replication of virus in culture. Arch Virol 1994; 139: 263–271
  • Tahtinen M., Strengell M., Collings A., Pitkanen J., Kjerrstrom A., Hakkarainen K., et al. DNA vaccination in mice using HIV-1 nef, rev and tat genes in self-replicating pBN-vector. Vaccine 2001; 19: 2039–2047
  • Valvatne H., Szilvay A. M., Helland D. E. A monoclonal antibody defines a novel HIV type 1 Tat domain involved in trans-cellular trans-activation. AIDS Res Hum Retroviruses 1996; 12: 611–619
  • Rodman T. C., Lutton J. D., Jiang S., Al-Kouatly H. B., Winston R. Circulating natural IgM antibodies and their corresponding human cord blood cell-derived Mabs specifically combat the Tat protein of HIV. Exp Hematol 2001; 29: 1004–1009
  • Rodman T. C., To S. E., Hashish H., Manchester K. Epitopes for natural antibodies of human immunodeficiency virus (HIV)-negative (normal) and HIV-positive sera are coincident with two key functional sequences of HIV Tat protein. Proc Natl Acad Sci U S A 1993; 90: 7719–7723
  • Belliard G., Hurtrel B., Moreau E., Lafont B. A., Monceaux V., Roques B., et al. Tat-neutralizing versus Tat-protecting antibodies in rhesus macaques vaccinated with Tat peptides. Vaccine 2005; 23: 1399–1407
  • Devadas K., Boykins R. A., Hewlett I. K., Wood O. L., Clouse K. A., Yamada K. M., Dhawan S. Antibodies against a multiple-peptide conjugate comprising chemically modified human immunodeficiency virus type-1 functional Tat peptides inhibit infection. Peptides 2007; 28: 496–504
  • Lecoq A., Moine G., Bellanger L., Drevet P., Thai R., Lajeunesse E., et al. Increasing the humoral immunogenic properties of the HIV-1 Tat protein using a ligand-stabilizing strategy. Vaccine 2008; 26: 2615–2626
  • Mascarell L., Bauche C., Fayolle C., Diop O. M., Dupuy M., Nougarede N., et al. Delivery of the HIV-1 Tat protein to dendritic cells by the CyaA vector induces specific Th1 responses and high affinity neutralizing antibodies in non human primates. Vaccine 2006; 24: 3490–3499
  • Mayol K., Munier S., Beck A., Verrier B., Guillon C. Design and characterization of an HIV-1 Tat mutant: Inactivation of viral and cellular functions but not antigenicity. Vaccine 2007; 25: 6047–6060
  • Moreau E., Belliard G., Partidos C. D., Pradezinsky F., Le B. H., Muller S., Desgranges C. Important B-cell epitopes for neutralization of human immunodeficiency virus type 1 Tat in serum samples of humans and different animal species immunized with Tat protein or peptides. J Gen Virol 2004; 85: 2893–2901
  • Partidos C. D., Hoebeke J., Moreau E., Chaloin O., Tunis M., Belliard G., et al. The binding affinity of double-stranded RNA motifs to HIV-1 Tat protein affects transactivation and the neutralizing capacity of anti-Tat antibodies elicited after intranasal immunization. Eur J Immunol 2005; 35: 1521–1529
  • Partidos C. D., Moreau E., Chaloin O., Tunis M., Briand J. P., Desgranges C., Muller S. A synthetic HIV-1 Tat protein breaches the skin barrier and elicits Tat-neutralizing antibodies and cellular immunity. Eur J Immunol 2004; 34: 3723–3731
  • Ramirez Y. J., Tasciotti E., Gutierrez-Ortega A., Donayre Torres A. J., Olivera Flores M. T., Giacca M., Gomez Lim M. A. Fruit-specific expression of the human immunodeficiency virus type 1 tat gene in tomato plants and its immunogenic potential in mice. Clin Vaccine Immunol 2007; 14: 685–692
  • Tikhonov I., Ruckwardt T. J., Hatfield G. S., Pauza C. D. Tat-neutralizing antibodies in vaccinated macaques. J Virol 2003; 77: 3157–3166
  • Watkins J. D., Lancelot S., Campbell G. R., Esquieu D., De M. J., Opi S., et al. Reservoir cells no longer detectable after a heterologous SHIV challenge with the synthetic HIV-1 Tat Oyi vaccine. Retrovirology, 3: 8–2006
  • Goldstein G., Tribbick G., Manson K. Two B cell epitopes of HIV-1 Tat protein have limited antigenic polymorphism in geographically diverse HIV-1 strains. Vaccine 2001; 19: 1738–1746
  • Addo M. M., Altfeld M., Rosenberg E. S., Eldridge R. L., Philips M. N., Habeeb K., et al. The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals. Proc Natl Acad Sci U S A 2001; 98: 1781–1786
  • Castaldello A., Brocca-Cofano E., Voltan R., Triulzi C., Altavilla G., Laus M., et al. DNA prime and protein boost immunization with innovative polymeric cationic core-shell nanoparticles elicits broad immune responses and strongly enhance cellular responses of HIV-1 tat DNA vaccination. Vaccine 2006; 24: 5655–5669
  • Castelli F. A., Houitte D., Munier G., Szely N., Lecoq A., Briand J. P., et al. Immunoprevalence of the CD4+ T-cell response to HIV Tat and Vpr proteins is provided by clustered and disperse epitopes, respectively. Eur J Immunol 2008; 38: 2821–2831
  • Marinaro M., Riccomi A., Rappuoli R., Pizza M., Fiorelli V., Tripiciano A., et al. Mucosal delivery of the human immunodeficiency virus-1 Tat protein in mice elicits systemic neutralizing antibodies, cytotoxic T lymphocytes and mucosal IgA. Vaccine 2003; 21: 3972–3981
  • Morris C. B., Thanawastien A., Sullivan D. E., Clements J. D. Identification of a peptide capable of inducing an HIV-1 Tat-specific CTL response. Vaccine 2001; 20: 12–15
  • Novitsky V., Cao H., Rybak N., Gilbert P., McLane M. F., Gaolekwe S., et al. Magnitude and frequency of cytotoxic T-lymphocyte responses: Identification of immunodominant regions of human immunodeficiency virus type 1 subtype C. J Virol 2002; 76: 10155–10168
  • Ramakrishna L., Anand K. K., Mohankumar K. M., Ranga U. Codon optimization of the tat antigen of human immunodeficiency virus type 1 generates strong immune responses in mice following genetic immunization. J Virol 2004; 78: 9174–9189
  • Opi S., Peloponese J. M., Jr., Esquieu D., Campbell G., De M. J., Walburger A., et al. Tat HIV-1 primary and tertiary structures critical to immune response against non-homologous variants. J Biol Chem 2002; 277: 35915–35919
  • Pilkington G. R., Duan L., Zhu M., Keil W., Pomerantz R. J. Recombinant human Fab antibody fragments to HIV-1 Rev and Tat regulatory proteins: Direct selection from a combinatorial phage display library. Mol Immunol 1996; 33: 439–450
  • Gregoire C., Peloponese J. M., Jr., Esquieu D., Opi S., Campbell G., Solomiac M., et al. Homonuclear (1)H-NMR assignment and structural characterization of human immunodeficiency virus type 1 Tat Mal protein. Biopolymers 2001; 62: 324–335
  • Blazevic V., Ranki A., Mattinen S., Valle S. L., Koskimies S., Jung G., Krohn K. J. Helper T-cell recognition of HIV-1 Tat synthetic peptides. J Acquir Immune Defic Syndr 1993; 6: 881–890
  • Cao J., McNevin J., Holte S., Fink L., Corey L., McElrath M. J. Comprehensive analysis of human immunodeficiency virus type 1 (HIV-1)-specific gamma interferon-secreting CD8+ T cells in primary HIV-1 infection. J Virol 2003; 77: 6867–6878
  • Jia M. M., Hong K. X., Chen J. P., Liu H. W., Liu S., Zhang X. Q., et al. CTL responses to regulatory proteins Tat and Rev in HIV-1 B'/C virus-infected individuals. Biomed Environ Sci 2008; 21: 314–318
  • Novitsky V., Rybak N., McLane M. F., Gilbert P., Chigwedere P., Klein I., et al. Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev-, and Nef-specific elispot-based cytotoxic T-lymphocyte responses for AIDS vaccine design. J Virol 2001; 75: 9210–9228
  • van Baalen C. A., Pontesilli O., Huisman R. C., Geretti A. M., Klein M. R., de Wolf F., et al. Human immunodeficiency virus type 1 Rev- and Tat-specific cytotoxic T lymphocyte frequencies inversely correlate with rapid progression to AIDS. J Gen Virol 1997; 78: 1913–1918
  • Jones N. A., Wei X., Flower D. R., Wong M., Michor F., Saag M. S., et al. Determinants of human immunodeficiency virus type 1 escape from the primary CD8+ cytotoxic T lymphocyte response. J Exp Med 2004; 200: 1243–1256
  • Allen T. M., O'Connor D. H., Jing P., Dzuris J. L., Mothe B. R., Vogel T. U., et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 2000; 407: 386–390
  • O'Connor D. H., Allen T. M., Watkins D. I. Cytotoxic T-lymphocyte escape monitoring in simian immunodeficiency virus vaccine challenge studies. DNA Cell Biol 2002; 21: 659–664
  • Bayer P., Kraft M., Ejchart A., Westendorp M., Frank R., Rosch P. Structural studies of HIV-1 Tat protein. J Mol Biol 1995; 247: 529–535
  • Arya S. K., Guo C., Josephs S. F., Wong-Staal F. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science 1985; 229: 69–73
  • Geretti A. M. HIV-1 subtypes: Epidemiology and significance for HIV management. Curr Opin Infect Dis 2006; 19: 1–7
  • Belliard G., Romieu A., Zagury J. F., Dali H., Chaloin O., Le G. R., et al. Specificity and effect on apoptosis of Tat antibodies from vaccinated and SHIV-infected rhesus macaques and HIV-infected individuals. Vaccine 2003; 21: 3186–3199
  • Richardson M. W., Mirchandani J., Duong J., Grimaldo S., Kocieda V., Hendel H., et al. Antibodies to Tat and Vpr in the GRIV cohort: Differential association with maintenance of long-term non-progression status in HIV-1 infection. Biomed Pharmacother 2003; 57: 4–14
  • Borsetti A., Baroncelli S., Maggiorella M. T., Moretti S., Fanales-Belasio E., Sernicola L., et al. Containment of infection in Tat vaccinated monkeys after rechallenge with a higher dose of SHIV89.6Pcy243. Viral Immunol 2009; 22: 117–124
  • Cafaro A., Caputo A., Fracasso C., Maggiorella M. T., Goletti D., Baroncelli S., et al. Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine. Nat Med 1999; 5: 643–650
  • Cafaro A., Caputo A., Maggiorella M. T., Baroncelli S., Fracasso C., Pace M., et al. SHIV89.6P pathogenicity in cynomolgus monkeys and control of viral replication and disease onset by human immunodeficiency virus type 1 Tat vaccine. J Med Primatol 2000; 29: 193–208
  • Cafaro A., Titti F., Fracasso C., Maggiorella M. T., Baroncelli S., Caputo A., et al. Vaccination with DNA containing tat coding sequences and unmethylated CpG motifs protects cynomolgus monkeys upon infection with simian/human immunodeficiency virus (SHIV89.6P). Vaccine 2001; 19: 2862–2877
  • Maggiorella M. T., Baroncelli S., Michelini Z., Fanales-Belasio E., Moretti S., Sernicola L., et al. Long-term protection against SHIV89.6P replication in HIV-1 Tat vaccinated cynomolgus monkeys. Vaccine 2004; 22: 3258–3269
  • Huet T., Dazza M. C., Brun-Vezinet F., Roelants G. E., Wain-Hobson S. A highly defective HIV-1 strain isolated from a healthy Gabonese individual presenting an atypical western blot. AIDS 1989; 3: 707–715
  • Gregoire C. J., Loret E. P. Conformational heterogeneity in two regions of TAT results in structural variations of this protein as a function of HIV-1 isolates. J Biol Chem 1996; 271: 22641–22646
  • Peloponese J. M., Jr., Collette Y., Gregoire C., Bailly C., Campese D., Meurs E. F., et al. Full peptide synthesis, purification, and characterization of six Tat variants. Differences observed between HIV-1 isolates from Africa and other continents. J Biol Chem 1999; 274: 11473–11478
  • Goldstein G., Manson K., Tribbick G., Smith R. Minimization of chronic plasma viremia in rhesus macaques immunized with synthetic HIV-1 Tat peptides and infected with a chimeric simian/human immunodeficiency virus (SHIV33). Vaccine 2000; 18: 2789–2795
  • Pauza C. D., Trivedi P., Wallace M., Ruckwardt T. J., Le B. H., Lu W., et al. Vaccination with tat toxoid attenuates disease in simian/HIV-challenged macaques. Proc Natl Acad Sci U S A 2000; 97: 3515–3519
  • Allen T. M., Mortara L., Mothe B. R., Liebl M., Jing P., Calore B., et al. Tat-vaccinated macaques do not control simian immunodeficiency virus SIVmac239 replication. J Virol 2002; 76: 4108–4112
  • Silvera P., Richardson M. W., Greenhouse J., Yalley-Ogunro J., Shaw N., Mirchandani J., et al. Outcome of simian-human immunodeficiency virus strain 89.6p challenge following vaccination of rhesus macaques with human immunodeficiency virus Tat protein. J Virol 2002; 76: 3800–3809
  • Liang X., Casimiro D. R., Schleif W. A., Wang F., Davies M. E., Zhang Z. Q., et al. Vectored Gag and Env but not Tat show efficacy against simian-human immunodeficiency virus 89.6P challenge in Mamu-A*01-negative rhesus monkeys. J Virol 2005; 79: 12321–12331
  • Demberg T., Florese R. H., Heath M. J., Larsen K., Kalisz I., Kalyanaraman V. S., et al. A replication-competent adenovirus-human immunodeficiency virus (Ad-HIV) tat and Ad-HIV env priming/Tat and envelope protein boosting regimen elicits enhanced protective efficacy against simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J Virol 2007; 81: 3414–3427
  • Florese R. H., Wiseman R. W., Venzon D., Karl J. A., Demberg T., Larsen K., et al. Comparative study of Tat vaccine regimens in Mauritian cynomolgus and Indian rhesus macaques: Influence of Mauritian MHC haplotypes on susceptibility/resistance to SHIV(89.6P) infection. Vaccine 2008; 26: 3312–3321
  • Borsutzky S., Ebensen T., Link C., Becker P. D., Fiorelli V., Cafaro A., et al. Efficient systemic and mucosal responses against the HIV-1 Tat protein by prime/boost vaccination using the lipopeptide MALP-2 as adjuvant. Vaccine 2006; 24: 2049–2056
  • Borsutzky S., Fiorelli V., Ebensen T., Tripiciano A., Rharbaoui F., Scoglio A., et al. Efficient mucosal delivery of the HIV-1 Tat protein using the synthetic lipopeptide MALP-2 as adjuvant. Eur J Immunol 2003; 33: 1548–1556
  • Horn M. E., Pappu K. M., Bailey M. R., Clough R. C., Barker M., Jilka J. M., et al. Advantageous features of plant-based systems for the development of HIV vaccines. J Drug Target 2003; 11: 539–545
  • Webster D. E., Thomas M. C., Pickering R., Whyte A., Dry I. B., Gorry P. R., Wesselingh S. L. Is there a role for plant-made vaccines in the prevention of HIV/AIDS?. Immunol Cell Biol 2005; 83: 239–247
  • Kim T. G., Langridge W. H. Synthesis of an HIV-1 Tat transduction domain-rotavirus enterotoxin fusion protein in transgenic potato. Plant Cell Rep 2004; 22: 382–387
  • Karasev A. V., Foulke S., Wellens C., Rich A., Shon K. J., Zwierzynski I., et al. Plant based HIV-1 vaccine candidate: Tat protein produced in spinach. Vaccine 2005; 23: 1875–1880
  • Hinkula J. Clarification of how HIV-1 DNA and protein immunizations may be better used to obtain HIV-1-specific mucosal and systemic immunity. Expert Rev Vaccines 2007; 6: 203–212
  • Lundholm P., Leandersson A. C., Christensson B., Bratt G., Sandstrom E., Wahren B. DNA mucosal HIV vaccine in humans. Virus Res 2002; 82: 141–145
  • Ensoli B., Buonaguro L., Barillari G., Fiorelli V., Gendelman R., Morgan R. A., et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 1993; 67: 277–287
  • Sparnacci K., Laus M., Tondelli L., Bernardi C., Magnani L., Corticelli F., et al. Core-shell microspheres by dispersion polymerization as promising delivery systems for proteins. J Biomater Sci Polym Ed 2005; 16: 1557–1574
  • Caputo A., Brocca-Cofano E., Castaldello A., De Michele R., Altavilla G., Marchisio M., et al. Novel biocompatible anionic polymeric microspheres for the delivery of the HIV-1 Tat protein for vaccine application. Vaccine 2004; 22: 2910–2924
  • Caputo A., Sparnacci K., Ensoli B., Tondelli L. Functional polymeric nano/microparticles for surface adsorption and delivery of protein and DNA vaccines. Curr Drug Deliv 2008; 5: 230–242
  • Voltan R., Castaldello A., Brocca-Cofano E., Altavilla G., Caputo A., Laus M., et al. Preparation and characterization of innovative protein-coated poly(methylmethacrylate) core-shell nanoparticles for vaccine purposes. Pharm Res 2007; 24: 1870–1882
  • Cui Z., Patel J., Tuzova M., Ray P., Phillips R., Woodward J. G., et al. Strong T cell type-1 immune responses to HIV-1 Tat (1–72) protein-coated nanoparticles. Vaccine 2004; 22: 2631–2640
  • Patel J., Galey D., Jones J., Ray P., Woodward J. G., Nath A., Mumper R. J. HIV-1 Tat-coated nanoparticles result in enhanced humoral immune responses and neutralizing antibodies compared to alum adjuvant. Vaccine 2006; 24: 3564–3573
  • Guillon C., Mayol K., Terrat C., Compagnon C., Primard C., Charles M. H., et al. Formulation of HIV-1 Tat and p24 antigens by PLA nanoparticles or MF59 impacts the breadth, but not the magnitude, of serum and faecal antibody responses in rabbits. Vaccine 2007; 25: 7491–7501
  • Caputo A., Betti M., Altavilla G., Bonaccorsi A., Boarini C., Marchisio M., et al. Micellar-type complexes of tailor-made synthetic block copolymers containing the HIV-1 tat DNA for vaccine application. Vaccine 2002; 20: 2303–2317
  • Caputo A., Gavioli R., Altavilla G., Brocca-Cofano E., Boarini C., Betti M., et al. Immunization with low doses of HIV-1 tat DNA delivered by novel cationic block copolymers induces CTL responses against Tat. Vaccine 2003; 21: 1103–1111
  • Derossi D., Chassaing G., Prochiantz A. Trojan peptides: The penetratin system for intracellular delivery. Trends Cell Biol 1998; 8: 84–87
  • Leifert J. A., Holler P. D., Harkins S., Kranz D. M., Whitton J. L. The cationic region from HIV tat enhances the cell-surface expression of epitope/MHC class I complexes. Gene Ther 2003; 10: 2067–2073
  • Fawell S., Seery J., Daikh Y., Moore C., Chen L. L., Pepinsky B., Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 1994; 91: 664–668
  • Schwarze S. R., Hruska K. A., Dowdy S. F. Protein transduction: Unrestricted delivery into all cells?. Trends Cell Biol 2000; 10: 290–295
  • Cho H. I., Kim E. K., Park S. Y., Lee S. K., Hong Y. K., Kim T. G. Enhanced induction of anti-tumor immunity in human and mouse by dendritic cells pulsed with recombinant TAT fused human survivin protein. Cancer Lett 2007; 258: 189–198
  • Giannouli C., Brulet J. M., Gesche F., Rappaport J., Burny A., Leo O., Hallez S. Fusion of a tumour-associated antigen to HIV-1 Tat improves protein-based immunotherapy of cancer. Anticancer Res 2003; 23: 3523–3531
  • Kim D. T., Mitchell D. J., Brockstedt D. G., Fong L., Nolan G. P., Fathman C. G., et al. Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J Immunol 1997; 159: 1666–1668
  • Shibagaki N., Udey M. C. Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity. J Immunol 2002; 168: 2393–2401
  • Shibagaki N., Udey M. C. Dendritic cells transduced with TAT protein transduction domain-containing tyrosinase-related protein 2 vaccinate against murine melanoma. Eur J Immunol 2003; 33: 850–860
  • Tanaka Y., Dowdy S. F., Linehan D. C., Eberlein T. J., Goedegebuure P. S. Induction of antigen-specific CTL by recombinant HIV trans-activating fusion protein-pulsed human monocyte-derived dendritic cells. J Immunol 2003; 170: 1291–1298
  • Mattner F., Fleitmann J. K., Lingnau K., Schmidt W., Egyed A., Fritz J., et al. Vaccination with poly-L-arginine as immunostimulant for peptide vaccines: Induction of potent and long-lasting T-cell responses against cancer antigens. Cancer Res 2002; 62: 1477–1480
  • Remoli A. L., Marsili G., Perrotti E., Gallerani E., Ilari R., Nappi F., et al. Intracellular HIV-1 Tat protein represses constitutive LMP2 transcription increasing proteasome activity by interfering with the binding of IRF-1 to STAT1. Biochem J 2006; 396: 371–380
  • Areste C., Blackbourn D. J. HIV Tat-mediated transcriptional regulation of proteasome protein cleavage specificity. Biochem J 2006; 396: e13–e15
  • Cellini S., Fortini C., Gallerani E., Destro F., Cofano E. B., Caputo A., Gavioli R. Identification of new HIV-1 Gag-specific cytotoxic T lymphocyte responses in BALB/c mice. Virol J 2008; 5: 81
  • Gupta S., Boppana R., Mishra G. C., Saha B., Mitra D. HIV-1 Tat suppresses gp120-specific T cell response in IL-10-dependent manner. J Immunol 2008; 180: 79–88
  • Agwale S. M., Shata M. T., Reitz M. S., Jr., Kalyanaraman V. S., Gallo R. C., Popovic M., Hone D. M. A Tat subunit vaccine confers protective immunity against the immune-modulating activity of the human immunodeficiency virus type-1 Tat protein in mice. Proc Natl Acad Sci U S A 2002; 99: 10037–10041
  • Caputo A., Brocca-Cofano E., Castaldello A., Voltan R., Gavioli R., Srivastava I. K., et al. Characterization of immune responses elicited in mice by intranasal co-immunization with HIV-1 Tat, gp140 DeltaV2Env and/or SIV Gag proteins and the nontoxicogenic heat-labile Escherichia coli enterotoxin. Vaccine 2008; 26: 1214–1227
  • Zhao J., Voltan R., Peng B., vis-Warren A., Kalyanaraman V. S., Alvord W. G., et al. Enhanced cellular immunity to SIV Gag following co-administration of adenoviruses encoding wild-type or mutant HIV Tat and SIV Gag. Virology 2005; 342: 1–12
  • Brave A., Hinkula J., Cafaro A., Eriksson L. E., Srivastava I. K., Magnani M., et al. Candidate HIV-1 gp140DeltaV2, Gag and Tat vaccines protect against experimental HIV-1/MuLV challenge. Vaccine 2007; 25: 6882–6890
  • Mooij P., Nieuwenhuis I. G., Knoop C. J., Doms R. W., Bogers W. M., Ten Haaft P. J., et al. Qualitative T-helper responses to multiple viral antigens correlate with vaccine-induced immunity to simian/human immunodeficiency virus infection. J Virol 2004; 78: 3333–3342
  • Fuller D. H., Rajakumar P. A., Wu M. S., McMahon C. W., Shipley T., Fuller J. T., et al. DNA immunization in combination with effective antiretroviral drug therapy controls viral rebound and prevents simian AIDS after treatment is discontinued. Virology 2006; 348: 200–215
  • Pal R., Venzon D., Santra S., Kalyanaraman V. S., Montefiori D. C., Hocker L., et al. Systemic immunization with an ALVAC-HIV-1/protein boost vaccine strategy protects rhesus macaques from CD4+ T-cell loss and reduces both systemic and mucosal simian-human immunodeficiency virus SHIVKU2 RNA levels. J Virol 2006; 80: 3732–3742
  • Hinkula J., Svanholm C., Schwartz S., Lundholm P., Brytting M., Engstrom G., et al. Recognition of prominent viral epitopes induced by immunization with human immunodeficiency virus type 1 regulatory genes. J Virol 1997; 71: 5528–5539
  • Kjerrstrom A., Hinkula J., Engstrom G., Ovod V., Krohn K., Benthin R., Wahren B. Interactions of single and combined human immunodeficiency virus type 1 (HIV-1) DNA vaccines. Virology 2001; 284: 46–61
  • Calarota S., Bratt G., Nordlund S., Hinkula J., Leandersson A. C., Sandstrom E., Wahren B. Cellular cytotoxic response induced by DNA vaccination in HIV-1-infected patients. Lancet 1998; 351: 1320–1325
  • Calarota S. A., Leandersson A. C., Bratt G., Hinkula J., Klinman D. M., Weinhold K. J., et al. Immune responses in asymptomatic HIV-1-infected patients after HIV-DNA immunization followed by highly active antiretroviral treatment. J Immunol 1999; 163: 2330–2338
  • Scriba T. J., zur Megede J., Glashoff R. H., Treurnicht F. K., Barnett S. W., van Rensburg E. J. Functionally-inactive and immunogenic Tat, Rev and Nef DNA vaccines derived from sub-Saharan subtype C human immunodeficiency virus type 1 consensus sequences. Vaccine 2005; 23: 1158–1169
  • Uberla K., Rosenwirth B., ten H. P., Heeney J., Sutter G., Erfle V. Therapeutic immunization with Modified Vaccinia Virus Ankara (MVA) vaccines in SIV-infected rhesus monkeys undergoing antiretroviral therapy. J Med Primatol 2007; 36: 2–9
  • Osterhaus A. D., van Baalen C. A., Gruters R. A., Schutten M., Siebelink C. H., Hulskotte E. G., et al. Vaccination with Rev and Tat against AIDS. Vaccine 1999; 17: 2713–2714
  • Gruters R. A., van Baalen C. A., Osterhaus A. D. The advantage of early recognition of HIV-infected cells by cytotoxic T-lymphocytes. Vaccine 2002; 20: 2011–2015
  • Stittelaar K. J., Gruters R. A., Schutten M., van Baalen C. A., van A. G., Cranage M., et al. Comparison of the efficacy of early versus late viral proteins in vaccination against SIV. Vaccine 2002; 20: 2921–2927
  • Verrier B., Le G. R., Taman-Onal Y., Terrat C., Guillon C., Durand P. Y., et al. Evaluation in rhesus macaques of Tat and rev-targeted immunization as a preventive vaccine against mucosal challenge with SHIV-BX08. DNA Cell Biol 2002; 21: 653–658
  • Amara R. R., Villinger F., Altman J. D., Lydy S. L., O'Neil S. P., Staprans S. I., et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Vaccine 2002; 20: 1949–1955
  • Amara R. R., Villinger F., Staprans S. I., Altman J. D., Montefiori D. C., Kozyr N. L., et al. Different patterns of immune responses but similar control of a simian-human immunodeficiency virus 89.6P mucosal challenge by modified vaccinia virus Ankara (MVA) and DNA/MVA vaccines. J Virol 2002; 76: 7625–7631
  • Brave A., Johansen K., Palma P., Benthin R., Hinkula J. Maternal immune status influences HIV-specific immune responses in pups after DNA prime protein boost using mucosal adjuvant. Vaccine 2008; 26: 5957–5966
  • Burgers W. A., Chege G. K., Muller T. L., van Harmelen J. H., Khoury G., Shephard E. G., et al. Broad, high-magnitude and multifunctional CD4+ and CD8+ T-cell responses elicited by a DNA and modified vaccinia Ankara vaccine containing human immunodeficiency virus type 1 subtype C genes in baboons. J Gen Virol 2009; 90: 468–480
  • Burgers W. A., van Harmelen J. H., Shephard E., Adams C., Mgwebi T., Bourn W., et al. Design and preclinical evaluation of a multigene human immunodeficiency virus type 1 subtype C DNA vaccine for clinical trial. J Gen Virol 2006; 87: 399–410
  • De Rose R., Chea S., Dale C. J., Reece J., Fernandez C. S., Wilson K. M., et al. Subtype AE HIV-1 DNA and recombinant Fowlpoxvirus vaccines encoding five shared HIV-1 genes: Safety and T cell immunogenicity in macaques. Vaccine 2005; 23: 1949–1956
  • De Rose R., Batten C. J., Smith M. Z., Fernandez C. S., Peut V., Thomson S., et al. Comparative efficacy of subtype AE simian-human immunodeficiency virus priming and boosting vaccines in pigtail macaques. J Virol 2007; 81: 292–300
  • Egan M. A., Megati S., Roopchand V., Garcia-Hand D., Luckay A., Chong S. Y., et al. Rational design of a plasmid DNA vaccine capable of eliciting cell-mediated immune responses to multiple HIV antigens in mice. Vaccine 2006; 24: 4510–4523
  • Halsey R. J., Tanzer F. L., Meyers A., Pillay S., Lynch A., Shephard E., et al. Chimaeric HIV-1 subtype C Gag molecules with large in-frame C-terminal polypeptide fusions form virus-like particles. Virus Res 2008; 133: 259–268
  • Hel Z., Tsai W. P., Tryniszewska E., Nacsa J., Markham P. D., Lewis M. G., et al. Improved vaccine protection from simian AIDS by the addition of nonstructural simian immunodeficiency virus genes. J Immunol 2006; 176: 85–96
  • Huang Y., Chen Z., Zhang W., Gurner D., Song Y., Gardiner D. F., Ho D. D. Design, construction, and characterization of a dual-promoter multigenic DNA vaccine directed against an HIV-1 subtype C/B' recombinant. J Acquir Immune Defic Syndr 2008; 47: 403–411
  • Im E. J., Nkolola J. P., di Gleria K., McMichael A. J., Hanke T. Induction of long-lasting multi-specific CD8+ T cells by a four-component DNA-MVA/HIVA-RENTA candidate HIV-1 vaccine in rhesus macaques. Eur J Immunol 2006; 36: 2574–2584
  • Krohn K., Stanescu I., Blazevic V., Vesikari T., Ranki A., Ustav M. A DNA HIV-1 vaccine based on a fusion gene expressing non-structural and structural genes of consensus sequence of the A-C subtypes and the ancestor sequence of the F-H subtypes. Preclinical and clinical studies. Microbes Infect 2005; 7: 1405–1413
  • Maggiorella M. T., Sernicola L., Crostarosa F., Belli R., Pavone-Cossut M. R., Macchia I., et al. Multiprotein genetic vaccine in the SIV-Macaca animal model: A promising approach to generate sterilizing immunity to HIV infection. J Med Primatol 2007; 36: 180–194
  • Makitalo B., Lundholm P., Hinkula J., Nilsson C., Karlen K., Morner A., et al. Enhanced cellular immunity and systemic control of SHIV infection by combined parenteral and mucosal administration of a DNA prime MVA boost vaccine regimen. J Gen Virol 2004; 85: 2407–2419
  • Malm M., Sikut R., Krohn K., Blazevic V. GTU-MultiHIV DNA vaccine results in protection in a novel P815 tumor challenge model. Vaccine 2007; 25: 3293–3301
  • Martinon F., Brochard P., Ripaux M., Delache B., Auregan G., Vaslin B., Le G. R. Improved protection against simian immunodeficiency virus mucosal challenge in macaques primed with a DNA vaccine and boosted with the recombinant modified vaccinia virus Ankara and recombinant Semliki Forest virus. Vaccine 2008; 26: 532–545
  • Putkonen P., Quesada-Rolander M., Leandersson A. C., Schwartz S., Thorstensson R., Okuda K., et al. Immune responses but no protection against SHIV by gene-gun delivery of HIV-1 DNA followed by recombinant subunit protein boosts. Virology 1998; 250: 293–301
  • Rollman E., Mathy N., Brave A., Boberg A., Kjerrstrom A., van Wely C., et al. Evaluation of immunogenicity and efficacy of combined DNA and adjuvanted protein vaccination in a human immunodeficiency virus type 1/murine leukemia virus pseudotype challenge model. Vaccine 2007; 25: 2145–2154
  • Tryniszewska E., Nacsa J., Lewis M. G., Silvera P., Montefiori D., Venzon D., Hel Z., et al. Vaccination of macaques with long-standing SIVmac251 infection lowers the viral set point after cessation of antiretroviral therapy. J Immunol 2002; 169: 5347–5357
  • Vogel T. U., Reynolds M. R., Fuller D. H., Vielhuber K., Shipley T., Fuller J. T., et al. Multispecific vaccine-induced mucosal cytotoxic T lymphocytes reduce acute-phase viral replication but fail in long-term control of simian immunodeficiency virus SIVmac239. J Virol 2003; 77: 13348–13360
  • Voss G., Manson K., Montefiori D., Watkins D. I., Heeney J., Wyand M., et al. Prevention of disease induced by a partially heterologous AIDS virus in rhesus monkeys by using an adjuvanted multicomponent protein vaccine. J Virol 2003; 77: 1049–1058
  • Xu R., Megati S., Roopchand V., Luckay A., Masood A., Garcia-Hand D., et al. Comparative ability of various plasmid-based cytokines and chemokines to adjuvant the activity of HIV plasmid DNA vaccines. Vaccine 2008; 26: 4819–4829
  • Goepfert P. A., Tomaras G. D., Horton H., Montefiori D., Ferrari G., Deers M., et al. Durable HIV-1 antibody and T-cell responses elicited by an adjuvanted multi-protein recombinant vaccine in uninfected human volunteers. Vaccine 2007; 25: 510–518
  • Dale C. J., De R. R., Stratov I., Chea S., Montefiori D. C., Thomson S., et al. Efficacy of DNA and fowlpox virus priming/boosting vaccines for simian/human immunodeficiency virus. J Virol 2004; 78: 13819–13828
  • Dale C. J., De Rose R., Wilson K. M., Croom H. A., Thomson S., Coupar B. E., et al. Evaluation in macaques of HIV-1 DNA vaccines containing primate CpG motifs and fowlpoxvirus vaccines co-expressing IFNgamma or IL-12. Vaccine 2004; 23: 188–197
  • Ramsay A. J., Kent S. J., Strugnell R. A., Suhrbier A., Thomson S. A., Ramshaw I. A. Genetic vaccination strategies for enhanced cellular, humoral and mucosal immunity. Immunol Rev 1999; 171: 27–44
  • Kelleher A. D., Puls R. L., Bebbington M., Boyle D., French R., Kent S. J., et al. A randomized, placebo-controlled phase I trial of DNA prime, recombinant fowlpox virus boost prophylactic vaccine for HIV-1. AIDS 2006; 20: 294–297
  • Cohen J. AIDS vaccines. The first shot in a highly targeted strategy. Science 2004; 306: 1276–1277
  • Sandstrom E., Nilsson C., Hejdeman B., Brave A., Bratt G., Robb M., et al. Broad immunogenicity of a multigene, multiclade HIV-1 DNA vaccine boosted with heterologous HIV-1 recombinant modified vaccinia virus Ankara. J Infect Dis 2008; 198: 1482–1490
  • Hinkula J., Lundholm P., Wahren B. Nucleic acid vaccination with HIV regulatory genes: A combination of HIV-1 genes in separate plasmids induces strong immune responses. Vaccine 1997; 15: 874–878
  • Asakura Y., Hinkula J., Leandersson A. C., Fukushima J., Okuda K., Wahren B. Induction of HIV-1 specific mucosal immune responses by DNA vaccination. Scand J Immunol 1997; 46: 326–330
  • Caselli E., Betti M., Grossi M. P., Balboni P. G., Rossi C., Boarini C., et al. DNA immunization with HIV-1 tat mutated in the trans activation domain induces humoral and cellular immune responses against wild-type Tat. J Immunol 1999; 162: 5631–5638
  • Dominici S., Laguardia M. E., Serafini G., Chiarantini L., Fortini C., Tripiciano A., et al. Red blood cell-mediated delivery of recombinant HIV-1 Tat protein in mice induces anti-Tat neutralizing antibodies and CTL. Vaccine 2003; 21: 2073–2081
  • Mascarell L., Fayolle C., Bauche C., Ladant D., Leclerc C. Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human immunodeficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis. J Virol 2005; 79: 9872–9884
  • Bozac A., Berto E., Vasquez F., Grandi P., Caputo A., Manservigi R., et al. Expression of human immunodeficiency virus type 1 tat from a replication-deficient herpes simplex type 1 vector induces antigen-specific T cell responses. Vaccine 2006; 24: 7148–7158
  • Rolland M., Jensen M. A., Nickle D. C., Yan J., Learn G. H., Heath L., et al. Reconstruction and function of ancestral center-of-tree human immunodeficiency virus type 1 proteins. J Virol 2007; 81: 8507–8514

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.