1,078
Views
11
CrossRef citations to date
0
Altmetric
Review

Regulatory T cells as therapeutic targets and mediators

ORCID Icon & ORCID Icon
Pages 183-203 | Received 04 Feb 2019, Accepted 15 May 2019, Published online: 02 Jun 2019

References

  • Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001;27(1):20–21. doi: 10.1038/83713.
  • Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 2007;8(2):191–197. doi: 10.1038/ni1428.
  • Kekalainen E, Tuovinen H, Joensuu J, et al. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Immunol 2007;178(2):1208–1215. doi: 10.4049/jimmunol.178.2.1208.
  • Lee DC, Harker JA, Tregoning JS, et al. CD25+ natural regulatory T cells are critical in limiting innate and adaptive immunity and resolving disease following respiratory syncytial virus infection. J Virol 2010;84(17):8790–8798. doi: 10.1128/JVI.00796-10.
  • Li B, Zheng SG. How regulatory T cells sense and adapt to inflammation. Cell Mol Immunol 2015;12(5):519–520. doi: 10.1038/cmi.2015.65.
  • Li Z, Li D, Tsun A, Li B. FOXP3+ regulatory T cells and their functional regulation. Cell Mol Immunol 2015;12(5):558–565. doi: 10.1038/cmi.2015.10.
  • Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970;18(5):723–737.
  • Nishizuka Y, Sakakura T. Ovarian dysgenesis induced by neonatal thymectomy in the mouse. Endocrinology 1971;89(3):886–893. doi: 10.1210/endo-89-3-886.
  • Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 1985;161(1):72–87. doi: 10.1084/jem.161.1.72.
  • Fowell D, Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med 1993;177(3):627–636. doi: 10.1084/jem.177.3.627.
  • Powrie F, Leach MW, Mauze S, et al. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 1993;5(11):1461–1471. doi: 10.1093/intimm/5.11.1461.
  • Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155(3):1151–1164.
  • Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 1996;184(2):387–396. doi: 10.1084/jem.184.2.387.
  • Godfrey VL, Wilkinson JE, Rinchik EM, Russell LB. Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc Natl Acad Sci USA 1991;88(13):5528–5532. doi: 10.1073/pnas.88.13.5528.
  • Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001;27(1):68–73. doi: 10.1038/83784.
  • Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001;27(1):18–20. doi: 10.1038/83707.
  • Powell BR, Buist NR, Stenzel P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 1982;100(5):731–737.
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 2003;4(4):330–336. doi: 10.1038/ni904.
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299(5609):1057–1061. doi: 10.1126/science.1079490.
  • Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4 + CD25+ T regulatory cells. Nat Immunol 2003;4(4):337–342. doi: 10.1038/ni909.
  • Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005;6(11):1142–1151. doi: 10.1038/ni1263.
  • Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005;22(3):329–341. doi: 10.1016/j.immuni.2005.01.016.
  • Josefowicz SZ, Rudensky A. Control of regulatory T cell lineage commitment and maintenance. Immunity 2009;30(5):616–625. doi: 10.1016/j.immuni.2009.04.009.
  • Rudra D, deRoos P, Chaudhry A, et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 2012;13(10):1010–1019. doi: 10.1038/ni.2402.
  • Grossman WJ, Verbsky JW, Tollefsen BL, et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 2004;104(9):2840–2848. doi: 10.1182/blood-2004-03-0859.
  • Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008;8(7):523–532. doi: 10.1038/nri2343.
  • Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000;192(2):295–302. doi: 10.1084/jem.192.2.295.
  • Asano T, Kishi Y, Meguri Y, et al. PD-1 Signaling has a critical role in maintaining regulatory T cell homeostasis; implication for Treg depletion therapy by PD-1 blockade. Blood 2015;126(23):848.
  • Gautron AS, Dominguez-Villar M, de Marcken M, Hafler DA. Enhanced suppressor function of TIM-3(+)FoxP3(+) regulatory T cells. Eur J Immunol 2014;44(9):2703–2711. doi: 10.1002/eji.201344392.
  • Chinen T, Kannan AK, Levine AG, et al. An essential role for the IL-2 receptor in Treg cell function. Nat Immunol 2016;17(11):1322–1333.
  • Akkaya B, Oya Y, Akkaya M, et al. Regulatory T cells mediate specific suppression by depleting peptide-MHC class II from dendritic cells. Nat Immunol 2019;20(2):218–231. doi: 10.1038/s41590-018-0280-2.
  • Sharma A, Rudra D. Emerging functions of regulatory T cells in tissue homeostasis. Front Immunol 2018;9:883. doi: 10.3389/fimmu.2018.00883.
  • Miyara M, Gorochov G, Ehrenstein M, et al. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun Rev 2011;10(12):744–755. doi: 10.1016/j.autrev.2011.05.004.
  • Hanash AM, Levy RB. Donor CD4 + CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood 2005;105(4):1828–1836. doi: 10.1182/blood-2004-08-3213.
  • Joffre O, Santolaria T, Calise D, et al. Prevention of acute and chronic allograft rejection with CD4(+)CD25(+)Foxp3(+) regulatory T lymphocytes. Nat Med 2008;14(1):88–92. doi: 10.1038/nm1688.
  • Kendal AR, Chen Y, Regateiro FS, et al. Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J Exp Med 2011;208(10):2043–2053. doi: 10.1084/jem.20110767.
  • Li Y, Koshiba T, Yoshizawa A, et al. Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric living donor liver transplantation. Am J Transplant 2004;4(12):2118–2125. doi: 10.1111/j.1600-6143.2004.00611.x.
  • Demirkiran A, Kok A, Kwekkeboom J, et al. Low circulating regulatory T-cell levels after acute rejection in liver transplantation. Liver Transpl 2006;12(2):277–284. doi: 10.1002/lt.20612.
  • Bestard O, Cruzado JM, Mestre M, et al. Achieving donor-specific hyporesponsiveness is associated with FOXP3+ regulatory T cell recruitment in human renal allograft infiltrates. J Immunol 2007;179(7):4901–4909. doi: 10.4049/jimmunol.179.7.4901.
  • Trzonkowski P, Bieniaszewska M, Juścińska J, et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4 + CD25 + CD127- T regulatory cells. Clin Immunol 2009;133(1):22–26. doi: 10.1016/j.clim.2009.06.001.
  • Liu WH, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4(+) T reg cells. J Exp Med 2006;203(7):1701–1711. doi: 10.1084/jem.20060772.
  • Tang QZ, Lee K. Regulatory T-cell therapy for transplantation: how many cells do we need? Curr Opin Organ Transplant 2012;17(4):349–354. doi: 10.1097/MOT.0b013e328355a992.
  • Putnam AL, Brusko TM, Lee MR, et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 2009;58(3):652–662. doi: 10.2337/db08-1168.
  • Bushell A, van der Net J, Game D, et al. The UK ONE study: safety and feasibility of regulatory T cell therapy in renal transplantation. Am J Transplant 2016;16.
  • Safinia N, Grageda N, Scotta C, et al. Cell therapy in organ transplantation: our experience on the clinical translation of regulatory T cells. Front Immunol 2018;9:354.
  • Whitehouse G, Safinia N, Thirkell S, et al. Applicability and safety of a regulatory T cell therapy in adult liver transplantation: the “ThRIL” phase I first-in-human trial. Am J Transplant 2017;17 (suppl 3).
  • Eisenbarth GS, Flier JS, Cahill G. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;314(21):1360–1368. doi: 10.1056/NEJM198605223142106.
  • Green EA, Gorelik L, McGregor CM, et al. CD4(+)CD25(+) T regulatory cells control anti-islet CD8(+) T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc Natl Acad Sci USA 2003;100(19):10878–10883. doi: 10.1073/pnas.1834400100.
  • You S, Slehoffer G, Barriot S, et al. Unique role of CD(4+)CD62L(+) regulatory T cells in the control of autoimmune diabetes in T cell receptor transgenic mice. Proc Natl Acad Sci USA 2004;101(Suppl 2):14580–14585. doi: 10.1073/pnas.0404870101.
  • Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, et al. Administration of CD4 + CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 2012;35(9):1817–1820. doi: 10.2337/dc12-0038.
  • Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, et al. Therapy of type 1 diabetes with CD4(+)CD25(high) CD127-regulatory T cells prolongs survival of pancreatic islets - Results of one year follow-up. Clin Immunol 2014;153(1):23–30. doi: 10.1016/j.clim.2014.03.016.
  • Bluestone JA, Buckner JH, Fitch M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med 2015;7(315):315ra189. doi: 10.1126/scitranslmed.aad4134.
  • Bluestone JA, Trotta E, Xu D. The therapeutic potential of regulatory T cells for the treatment of autoimmune disease. Expert Opin Ther Targets 2015;19(8):1091–1103. doi: 10.1517/14728222.2015.1037282.
  • Brunstein CG, Miller JS, McKenna DH, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood 2016;127(8):1044–1051. doi: 10.1182/blood-2015-06-653667.
  • Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441(7090):235–238. doi: 10.1038/nature04753.
  • Ghosh S, Roy-Chowdhuri S, Kang K, et al. The transcription factor Foxp1 preserves integrity of an active Foxp3 locus in extrathymic Treg cells. Nat Commun 2018;9(1):4473.
  • Hwang SM, Sharma G, Verma R, et al. Inflammation-induced Id2 promotes plasticity in regulatory T cells. Nat Commun 2018;9(1):4736.
  • Polansky JK, Kretschmer K, Freyer J, et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol 2008;38(6):1654–1663. doi: 10.1002/eji.200838105.
  • Morikawa H, Ohkura N, Vandenbon A, et al. Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation. Proc Natl Acad Sci USA 2014;111(14):5289–5294. doi: 10.1073/pnas.1312717110.
  • Putnam AL, Safinia N, Medvec A, et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am J Transplant 2013;13(11):3010–3020. doi: 10.1111/ajt.12433.
  • Lee K, Nguyen V, Lee KM, et al. Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy. Am J Transplant 2014;14(1):27–38. doi: 10.1111/ajt.12509.
  • Tang QZ, Vincenti F. Transplant trials with Tregs: perils and promises. J Clin Invest 2017;127(7):2505–2512. doi: 10.1172/JCI90598.
  • Elinav E, Waks T, Eshhar Z. Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology 2008;134(7):2014–2024. doi: 10.1053/j.gastro.2008.02.060.
  • Blat D, Zigmond E, Alteber Z, et al. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther 2014;22(5):1018–1028. doi: 10.1038/mt.2014.41.
  • MacDonald KG, Hoeppli RE, Huang Q, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest 2016;126(4):1413–1424. doi: 10.1172/JCI82771.
  • Yoon J, Schmidt A, Zhang A-H, et al. FVIII-specific human chimeric antigen receptor T-regulatory cells suppress T- and B-cell responses to FVIII. Blood 2017;129(2):238–245. doi: 10.1182/blood-2016-07-727834.
  • Smith J, Valton J. A universal suicide switch for chimeric antigen receptor T cell adoptive therapies. JCO 2016;34(15_suppl):7039. doi: 10.1200/JCO.2016.34.15_suppl.7039.
  • Diaconu I, Ballard B, Zhang M, et al. Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol Ther 2017;25(3):580–592. doi: 10.1016/j.ymthe.2017.01.011.
  • Sangamo poised for CAR-Treg race. Nat Biotechnol 2018;36(9):783.
  • Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. New Engl J Med 1985;313(23):1485–1492.
  • Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol 2014;192(12):5451–5458. doi: 10.4049/jimmunol.1490019.
  • Suzuki H, Kundig TM, Furlonger C, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 1995;268(5216):1472–1476.
  • Malek TR. The biology of interleukin-2. Annu Rev Immunol 2008;26:453–479. doi: 10.1146/annurev.immunol.26.021607.090357.
  • Zhang H, Chua KS, Guimond M, et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4 + CD25+ regulatory T cells. Nat Med 2005;11(11):1238–1243. doi: 10.1038/nm1312.
  • Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 2006;107(6):2409–2414. doi: 10.1182/blood-2005-06-2399.
  • Grinberg-Bleyer Y, Baeyens A, You S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 2010;207(9):1871–1878. doi: 10.1084/jem.20100209.
  • Saadoun D, Rosenzwajg M, Joly F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 2011;365(22):2067–2077. doi: 10.1056/NEJMoa1105143.
  • Koreth J, Matsuoka K, Kim HT, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med 2011;365(22):2055–2066. doi: 10.1056/NEJMoa1108188.
  • He J, Zhang X, Yu D, Li Z-G. AB0525 safety and efficiency of low-dose interleukin-2 treatment in systemic lupus erythematosus. Ann Rheum Dis 2015;74(Suppl 2):1075–1076.
  • Boyman O, Kovar M, Rubinstein MP, et al. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006;311(5769):1924–1927. doi: 10.1126/science.1122927.
  • Spangler JB, Tomala J, Luca VC, et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 2015;42(5):815–825. doi: 10.1016/j.immuni.2015.04.015.
  • Yan J-J, Lee J-G, Jang JY, et al. IL-2/anti-IL-2 complexes ameliorate lupus nephritis by expansion of CD4 + CD25 + Foxp3+ regulatory T cells. Kidney Int 2017;91(3):603–615. doi: 10.1016/j.kint.2016.09.022.
  • Yokoyama Y, Iwasaki T, Kitano S, et al. IL-2–anti–IL-2 monoclonal antibody immune complexes inhibit collagen-induced arthritis by augmenting regulatory T cell functions. J Immunol 2018;201(7):1899–1906.
  • Heiler S, Lötscher J, Kreuzaler M, et al. Prophylactic and therapeutic effects of interleukin-2 (il-2)/anti-il-2 complexes in systemic lupus erythematosus-like chronic graft-versus-host disease. Front Immunol 2018;9:656.
  • Yamada Y, Impellizzieri D, Jang J, et al. Regulatory T cells induce persistent acceptance by IL-2 complexes after mouse lung transplantation. J Heart Lung Transplant 2018;37(4):S124–S125. doi: 10.1016/j.healun.2018.01.297.
  • Trotta E, Bessette PH, Silveria SL, et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med 2018;24(7):1005–1014. doi: 10.1038/s41591-018-0070-2.
  • Silva DA, Yu S, Ulge UY, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 2019;565(7738):186+. doi: 10.1038/s41586-018-0830-7.
  • Henkler F, Baumann B, Fotin-Mleczek M, et al. Caspase-mediated cleavage converts the tumor necrosis factor (TNF) receptor-associated factor (TRAF)-1 from a selective modulator of TNF receptor signaling to a general inhibitor of NF-kappaB activation. J Biol Chem 2003;278(31):29216–29230. doi: 10.1074/jbc.M211090200.
  • Naude PJW, den Boer JA, Luiten PGM, Eisel U. Tumor necrosis factor receptor cross-talk. FEBS J 2011;278(6):888–898. doi: 10.1111/j.1742-4658.2011.08017.x.
  • Smith CA, Davis T, Anderson D, et al. A Receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 1990;248(4958):1019–1023.
  • Grell M, Douni E, Wajant H, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995;83(5):793–802.
  • Rauert H, Wicovsky A, Muller N, et al. Membrane Tumor Necrosis Factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem 2010;285(10):7394–7404. doi: 10.1074/jbc.M109.037341.
  • Zanin-Zhorov A, Ding Y, Kumari S, et al. Protein kinase C-theta mediates negative feedback on regulatory T cell function. Science 2010;328(5976):372–376. doi: 10.1126/science.1186068.
  • Nie H, Zheng YX, Li RS, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat Med 2013;19(3):322–328. doi: 10.1038/nm.3085.
  • Chen X, Baumel M, Mannel DN, et al. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4 + CD25+ T regulatory cells. J Immunol 2007;179(1):154–161. doi: 10.4049/jimmunol.179.1.154.
  • Chen X, Subleski JJ, Kopf H, et al. Expression of TNFR2 defines a maximally suppressive subset of mouse CD4(+)CD25(+)FoxP3(+) T regulatory cells: Applicability to tumor-infiltrating T regulatory cells. J Immunol 2008;180(10):6467–6471. doi: 10.4049/jimmunol.180.10.6467.
  • Housley, W. J., et al. Natural but Not Inducible Regulatory T Cells Require TNF-alpha Signaling for In Vivo Function. J Immunol 2011;186(12): 6779–6787.
  • Tsakiri N, Papadopoulos D, Denis MC, et al. TNFR2 on non-haematopoietic cells is required for Foxp3+ Treg-cell function and disease suppression in EAE . Eur J Immunol 2012;42(2):403–412. doi: 10.1002/eji.201141659.
  • Chopra M, Biehl M, Steinfatt T, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med 2016;213(9):1881–1900. doi: 10.1084/jem.20151563.
  • Leclerc M, Naserian S, Pilon C, et al. Control of GVHD by regulatory T cells depends on TNF produced by T cells and TNFR2 expressed by regulatory T cells. Blood 2016;128(12):1651–1659. doi: 10.1182/blood-2016-02-700849.
  • Nguyen DX, Ehrenstein MR. Anti-TNF drives regulatory T cell expansion by paradoxically promoting membrane TNF-TNF-RII binding in rheumatoid arthritis. J Exp Med 2016;213(7):1241–1253. doi: 10.1084/jem.20151255.
  • Nelson A, Cunha C, Nishimura MI, Iwashima M. Activated human Foxp3+ regulatory T cells produce membrane-bound TNF. Cytokine 2018;111:454–459. doi: 10.1016/j.cyto.2018.05.036.
  • He XH, Landman S, Bauland SCG, et al. A TNFR2-agonist facilitates high purity expansion of human low purity Treg cells. PLoS One 2016;11(5):e0156311.
  • Ban L, Kuhtreiber W, Butterworth J, et al. Strategic internal covalent cross-linking of TNF produces a stable TNF trimer with improved TNFR2 signaling. Mol Cell Ther 2015;3:7.
  • Zou H, Li R, Hu H, et al. Modulation of regulatory T cell activity by TNF receptor type II-targeting pharmacological agents. Front Immunol 2018;9:594.
  • Round JL, Mazmanian S. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 2010;107(27):12204–12209. doi: 10.1073/pnas.0909122107.
  • Telesford KM, Yan W, Ochoa-Reparaz J, et al. A commensal symbiotic factor derived from bacteroides fragilis promotes human CD39+ Foxp3+ T cells and Treg function. Gut Microbes 2015;6(4):234–242. doi: 10.1080/19490976.2015.1056973.
  • Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011;331(6015):337–341. doi: 10.1126/science.1198469.
  • Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013;504(7480):451–455. doi: 10.1038/nature12726.
  • Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013;504(7480):446–450. doi: 10.1038/nature12721.
  • Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341(6145):569–573. doi: 10.1126/science.1241165.
  • Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013;500(7461):232–236. doi: 10.1038/nature12331.
  • Fu L, Peng J, Zhao S, et al. Lactic acid bacteria-specific induction of CD4+ Foxp3+ T cells ameliorates shrimp tropomyosin-induced allergic response in mice via suppression of mTOR signaling. Sci Rep 2017;7(1):1987.
  • Bermudez-Brito M, Borghuis T, Daniel C, et al. L. plantarum WCFS1 enhances Treg frequencies by activating DCs even in absence of sampling of bacteria in the Peyer Patches. Sci Rep 2018;8(1):1785. doi: 10.1038/s41598-018-20243-1.
  • Verma R, Lee C, Jeun E-J, et al. Cell surface polysaccharides of Bifidobacterium bifidum Induce the generation of Foxp3+ regulatory T cells. Sci Immunol 2018;3(28):eaat6975. doi: 10.1126/sciimmunol.aat6975.
  • Akimova T, Zhang T, Negorev D, et al. Human lung tumor FOXP3+ Tregs upregulate four "Treg-locking" transcription factors. JCI Insight 2017;2(16):e94075.
  • Loyher PL, Rochefort J, Baudesson de Chanville C, et al. CCR2 influences T regulatory cell migration to tumors and serves as a biomarker of cyclophosphamide sensitivity. Cancer Res 2016;76(22):6483–6494. doi: 10.1158/0008-5472.CAN-16-0984.
  • You Y, Li Y, Li M, et al. Ovarian cancer stem cells promote tumour immune privilege and invasion via CCL5 and regulatory T cells. Clin Exp Immunol 2018;191(1):60–73. doi: 10.1111/cei.13044.
  • Zheng C, Zheng L, Yoo JK, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 2017;169(7):1342–1356.e16. doi: 10.1016/j.cell.2017.05.035.
  • Overacre-Delgoffe AE, Chikina M, Dadey RE, et al. Interferon-γ drives Treg fragility to promote anti-tumor immunity . Cell 2017;169(6):1130–1141.e11. doi: 10.1016/j.cell.2017.05.005.
  • Jones E, Dahm-Vicker M, Simon AK, et al. Depletion of CD25. + regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun 2002;2:1.
  • Elpek KG, Lacelle C, Singh NP, et al. CD4(+)CD25(+) T regulatory cells dominate multiple immune evasion mechanisms in early but not late phases of tumor development in a B cell lymphoma model. J Immunol 2007;178(11):6840–6848. doi: 10.4049/jimmunol.178.11.6840.
  • Quezada SA, Peggs KS, Curran MA, Allison JP. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 2006;116(7):1935–1945. doi: 10.1172/JCI27745.
  • Hodi FS, Butler M, Oble DA, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci USA 2008;105(8):3005–3010. doi: 10.1073/pnas.0712237105.
  • Zitvogel L, Apetoh L, Ghiringhelli F, et al. The anticancer immune response: indispensable for therapeutic success? J Clin Invest 2008;118(6):1991–2001. doi: 10.1172/JCI35180.
  • von Boehmer H, Daniel C. Therapeutic opportunities for manipulating T-Reg cells in autoimmunity and cancer. Nat Rev Drug Discov 2013;12(1):51–63. doi: 10.1038/nrd3683.
  • Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide regimen selectively depletes CD4(+) CD25(+) regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 2007;56(5):641–648. doi: 10.1007/s00262-006-0225-8.
  • Liu WM, Fowler DW, Smith P, Dalgleish AG. Pretreatment with chemotherapy can enhance the immunogenicity of tumors by promoting adaptive immune responses. Cancer Res 2010;70:5612.
  • Zhu Y, Liu N, Xiong SD, et al. CD4 + Foxp3+ regulatory T-cell impairment by paclitaxel is independent of toll-like receptor 4. Scand J Immunol 2011;73(4):301–308. doi: 10.1111/j.1365-3083.2011.02514.x.
  • Bos PD, Plitas G, Rudra D, et al. Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med 2013;210(11):2435–2446. doi: 10.1084/jem.20130762.
  • Teng MWL, Ngiow SF, von Scheidt B, et al. Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth. Cancer Res 2010;70(20):7800.
  • Hindley JP, Ferreira C, Jones E, et al. Analysis of the T-cell receptor repertoires of tumor-infiltrating conventional and regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors. Cancer Res 2011;71(3):736–746. doi: 10.1158/0008-5472.CAN-10-1797.
  • Sainz-Perez A, Lim A, Lemercier B, Leclerc C. The T-cell receptor repertoire of tumor-infiltrating regulatory T lymphocytes is skewed toward public sequences. Cancer Res 2012;72(14):3557–3569. doi: 10.1158/0008-5472.CAN-12-0277.
  • Malchow S, Leventhal DS, Nishi S, et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science 2013;339(6124):1219–1224. doi: 10.1126/science.1233913.
  • Ahmadzadeh M, Pasetto A, Jia L, et al. Tumor-infiltrating human CD4(+) regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci Immunol 2019;4:31.
  • Jacobs JF, Punt CJ, Lesterhuis WJ, et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res 2010;16(20):5067–5078. doi: 10.1158/1078-0432.CCR-10-1757.
  • Mitchell DA, Cui X, Schmittling RJ, et al. Monoclonal antibody blockade of IL-2 receptor α during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood 2011;118(11):3003–3012. doi: 10.1182/blood-2011-02-334565.
  • Arce Vargas F, Furness AJS, Solomon I, et al. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 2017;46(4):577–586. doi: 10.1016/j.immuni.2017.03.013.
  • Gritzapis AD, Voutsas IF, Baxevanis CN. Ontak reduces the immunosuppressive tumor environment and enhances successful therapeutic vaccination in HER-2/neu-tolerant mice. Cancer Immunol Immunother 2012;61(3):397–407. doi: 10.1007/s00262-011-1113-4.
  • Baur AS, Lutz MB, Schierer S, et al. Denileukin diftitox (ONTAK) induces a tolerogenic phenotype in dendritic cells and stimulates survival of resting Treg. Blood 2013;122(13):2185–2194. doi: 10.1182/blood-2012-09-456988.
  • Luke JJ, Zha Y, Matijevich K, Gajewski T. Single dose denileukin diftitox does not enhance vaccine-induced T cell responses or effectively deplete Tregs in advanced melanoma: immune monitoring and clinical results of a randomized phase II trial. J Immunother Cancer 2016;4(1):35.
  • Ohmachi K, Ando K, Ogura M, et al. E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma: a phase I study. Cancer Sci 2018;109(3):794–802. doi: 10.1111/cas.13513.
  • Kreitman RJ, Stetler-Stevenson M, Jaffe ES, et al. Complete remissions of adult T-cell leukemia with anti-CD25 recombinant immunotoxin LMB-2 and chemotherapy to block immunogenicity. Clin Cancer Res 2016;22(2):310–318. doi: 10.1158/1078-0432.CCR-15-1412.
  • Paterson AM, Lovitch SB, Sage PT, et al. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med 2015;212(10):1603–1621. doi: 10.1084/jem.20141030.
  • Simpson TR, Li FB, Montalvo-Ortiz W, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 2013;210(9):1695–1710. doi: 10.1084/jem.20130579.
  • Selby MJ, Engelhardt JJ, Quigley M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 2013;1(1):32–42. doi: 10.1158/2326-6066.CIR-13-0013.
  • Arce Vargas F, Furness AJS, Litchfield K, et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 2018;33(4):649–663.e4.
  • Sharma A, Subudhi SK, Blando J, et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3(+) regulatory T cells (Tregs) in human cancers. Clin Cancer Res 2019;25(4):1233–1238.
  • Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015;520(7547):373–377. doi: 10.1038/nature14292.
  • Hodi FS, Chesney J, Pavlick AC, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 2016;17(11):1558–1568. doi: 10.1016/S1470-2045(16)30366-7.
  • Curiel TJ, Coukos G, Zou LH, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10(9):942–949. doi: 10.1038/nm1093.
  • Faget J, Biota C, Bachelot T, et al. Early detection of tumor cells by innate immune cells leads to T-reg recruitment through CCL22 production by tumor cells. Cancer Res 2011;71(19):6143–6152. doi: 10.1158/0008-5472.CAN-11-0573.
  • Sugiyama D, Nishikawa H, Maeda Y, et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3(+)CD4(+) regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci USA 2013;110(44):17945–17950. doi: 10.1073/pnas.1316796110.
  • Ogura M, Ishida T, Hatake K, et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-CC chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. JCO 2014;32(11):1157. doi: 10.1200/JCO.2013.52.0924.
  • Kurose K, Ohue Y, Wada H, et al. Phase I a study of FoxP3+ CD4 Treg depletion by infusion of a humanized anti-CCR4 antibody, KW-0761, in cancer patients. Clin Cancer Res 2015;21(19):4327–4336. doi: 10.1158/1078-0432.CCR-15-0357.
  • Ishitsuka K, Yurimoto S, Kawamura K, et al. Safety and efficacy of mogamulizumab in patients with adult T-cell leukemia-lymphoma in Japan: interim results of postmarketing all-case surveillance. Int J Hematol 2017;106(4):522–532. doi: 10.1007/s12185-017-2270-9.
  • Plitas G, Konopacki C, Wu KM, et al. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 2016;45(5):1122–1134. doi: 10.1016/j.immuni.2016.10.032.
  • De Simone M, Arrigoni A, Rossetti G, et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 2016;45(5):1135–1147. doi: 10.1016/j.immuni.2016.10.021.
  • Villarreal DO, L'Huillier A, Armington S, et al. Targeting CCR8 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer. Cancer Res 2018;78(18):5340–5348. doi: 10.1158/0008-5472.CAN-18-1119.
  • Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25 + CD4 + regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002;3(2):135–142. doi: 10.1038/ni759.
  • Coe D, Begom S, Addey C, et al. Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy. Cancer Immunol Immunother 2010;59(9):1367–1377. doi: 10.1007/s00262-010-0866-5.
  • Cohen AD, Schaer DA, Liu CL, et al. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One 2010;5(5):e10436.
  • Schaer DA, Budhu S, Liu CL, et al. GITR pathway activation abrogates tumor immune suppression through loss of regulatory T-cell lineage stability. Cancer Immunol Res. 2013;1(5):320–331. doi: 10.1158/2326-6066.CIR-13-0086.
  • Sturgill ER, Redmond WL. TNFR agonists: a review of current biologics targeting OX40, 4-1BB, CD27, and GITR. AJHO 2017;13(11):4–15.
  • Platten M, von Knebel Doeberitz N, Oezen I, et al. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol 2015;5:673.
  • Holmgaard RB, Zamarin D, Li Y, et al. Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep 2015;13(2):412–424. doi: 10.1016/j.celrep.2015.08.077.
  • Wainwright DA, Chang AL, Dey M, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4 and PD-L1 in mice with brain tumors. Clin Cancer Res 2014;15(20):5290–5301.
  • Selvan SR, Dowling JP, Kelly WK, Lin J. Indoleamine 2,3-dioxygenase (IDO): biology and target in cancer immunotherapies. Curr Cancer Drug Targets 2016;16(9):755–764.
  • Long GV, Dummer R, Hamid O, et al. Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: Results of the phase 3 ECHO-301/KEYNOTE-252 study. JCO 2018;36(15_suppl):108. doi: 10.1200/JCO.2018.36.15_suppl.108.
  • Delgoffe GM, Woo SR, Turnis ME, et al. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 2013;501(7466):252–256. doi: 10.1038/nature12428.
  • Liu X, Mo W, Ye J, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun 2018;9(1):249.
  • Xia LY, Liu X, Sanders KL, et al. TLR8-mediated metabolic control of human Treg function: a mechanistic target for cancer immunotherapy. Cell Metab 2019;29(1):103. doi: 10.1016/j.cmet.2018.09.020.
  • Lee JB, Kang H, Fang L, et al. Developing allogeneic double-negative T cells as a novel off-the-shelf adoptive cellular therapy for cancer. Clin Cancer Res 2019;25(7):2241–2253. doi: 10.1158/1078-0432.CCR-18-2291.
  • Seay HR, Putnam AL, Cserny J, et al. Expansion of human Tregs from cryopreserved umbilical cord blood for GMP-compliant autologous adoptive cell transfer therapy. Mol Ther Methods Clin Dev 2017;4:178–191. doi: 10.1016/j.omtm.2016.12.003.
  • Gravano DM, Vignali DA. The battle against immunopathology: infectious tolerance mediated by regulatory T cells. Cell Mol Life Sci 2012;69(12):1997–2008. doi: 10.1007/s00018-011-0907-z.
  • D'Aloia MM, Zizzari IG, Sacchetti B, et al. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis 2018;9(3):282. doi: 10.1038/s41419-018-0278-6.
  • Goodson RJ, Katre NV. Site-directed pegylation of recombinant interleukin-2 at its glycosylation site. Biotechnology (NY) 1990;8(4):343–346.
  • Yu AX, Snowhite I, Vendrame F, et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 2015;64(6):2172–2183. doi: 10.2337/db14-1322.
  • Mullard A. IDO takes a blow. Nat Rev Drug Discov 2018;17(5):307. doi: 10.1038/nrd.2018.67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.