119
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Boosting immune responses in lung tumor immune microenvironment: A comprehensive review of strategies and adjuvants

, , , &
Received 05 Nov 2023, Accepted 15 Mar 2024, Published online: 25 Mar 2024

References

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022;72(1):7–33. doi:10.3322/caac.21708.
  • Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. Nat Rev Dis Primers 2021;7(1):3. doi:10.1038/s41572-020-00235-0.
  • Thandra KC, Barsouk A, Saginala K, et al. Epidemiology of lung cancer. Contemp Oncol 2021;25(1):45–52. doi:10.5114/wo.2021.103829.
  • Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin. 2020;13(1):17–33. doi:10.1016/j.path.2019.11.002.
  • Shang S, Liu J, Verma V, et al. Combined treatment of non-small cell lung cancer using radiotherapy and immunotherapy: challenges and updates. Cancer Commun 2021;41(11):1086–1099. doi:10.1002/cac2.12226.
  • Spigel DR, Faivre-Finn C, Gray JE, et al. Five-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. J Clin Oncol 2022;40(12):1301–1311. doi:10.1200/JCO.21.01308.
  • Topalian SL, Hodi FS, Brahmer JR, et al. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non–small cell lung cancer treated with nivolumab. JAMA Oncol 2019;5(10):1411–1420. doi:10.1001/jamaoncol.2019.2187.
  • Glatzer M, Leskow P, Caparrotti F, et al. Stage III N2 non-small cell lung cancer treatment: decision-making among surgeons and radiation oncologists. Transl Lung Cancer Res 2021;10(4):1960–1968. doi:10.21037/tlcr-20-1210.
  • Moloudi K, Khani A, Najafi M, et al. Critical parameters to translate gold nanoparticles as radiosensitizing agents into the clinic. Wiley Interdiscip Rev Nanomed Nanobiotechnol 15:e1886.
  • Hoy H, Lynch T, Beck M. Surgical treatment of lung cancer. Crit Care Nurs Clin North Am 2019;31(3):303–313. doi:10.1016/j.cnc.2019.05.002.
  • Yang S, Zhang Z, Wang Q. Emerging therapies for small cell lung cancer. J Hematol Oncol 2019;12(1):47. doi:10.1186/s13045-019-0736-3.
  • Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 2018;834:188–196. doi:10.1016/j.ejphar.2018.07.034.
  • Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 2021;20(9):689–709. doi:10.1038/s41573-021-00233-1.
  • Lai X, Najafi M. Redox interactions in chemo/radiation therapy-induced lung toxicity; mechanisms and therapy perspectives. Curr Drug Targets 2022;23(13):1261–1276. doi:10.2174/1389450123666220705123315.
  • Fu X, Tang J, Wen P, Huang Z, Najafi M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch Biochem Biophys 2021;708:108952. doi:10.1016/j.abb.2021.108952.
  • Xu C, Shang Z, Najafi M. Lung pneumonitis and fibrosis in cancer therapy: a review on cellular and molecular mechanisms. Curr Drug Targets 2022;23(16):1505–1525. doi:10.2174/1389450123666220907144131.
  • Karachaliou N, Cao MG, Teixidó C, et al. Understanding the function and dysfunction of the immune system in lung cancer: the role of immune checkpoints. Cancer Biol Med 2015;12(2):79–86. doi:10.7497/j.issn.2095-3941.2015.0029.
  • Lafta HA, AbdulHussein AH, Al-Shalah SAJ, et al. Tumor-associated macrophages (TAMs) in cancer resistance; modulation by natural products. Curr Top Med Chem 2023;23(12):1104–1122. doi:10.2174/1568026623666230201145909.
  • Fridman WH, Zitvogel L, Sautès–Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017;14(12):717–734. doi:10.1038/nrclinonc.2017.101.
  • Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018;32(19–20):1267–1284. doi:10.1101/gad.314617.118.
  • Lalani AR, Fakhari F, Radgoudarzi S, et al. Immunoregulation by resveratrol; implications for normal tissue protection and tumour suppression. Clin Exp Pharmacol Physiol 2023;50(5):353–368. doi:10.1111/1440-1681.13760.
  • Qin L, Wu J. Targeting anticancer immunity in oral cancer: drugs, products, and nanoparticles. Environ Res 2023;239(Pt 1):116751. doi:10.1016/j.envres.2023.116751.
  • Steven A, Fisher SA, Robinson BW. Immunotherapy for lung cancer. Respirology 2016;21(5):821–833. doi:10.1111/resp.12789.
  • Leprieur EG, Dumenil C, Julie C, et al. Immunotherapy revolutionises non-small-cell lung cancer therapy: results, perspectives and new challenges. Eur J Cancer 2017;78:16–23. doi:10.1016/j.ejca.2016.12.041.
  • Jiang W, He Y, He W, et al. Exhausted CD8+ T cells in the tumor immune microenvironment: new pathways to therapy. Front Immunol 2020;11:622509. doi:10.3389/fimmu.2020.622509.
  • Chakraborty S, Ye J, Wang H, et al. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Front Immunol 2023;14:1227833. doi:10.3389/fimmu.2023.1227833.
  • Kaur A, Baldwin J, Brar D, et al. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr Opin Chem Biol 2022;70:102172. doi:10.1016/j.cbpa.2022.102172.
  • Keshavarz A, Pourbagheri-Sigaroodi A, Zafari P, et al. Toll-like receptors (TLRs) in cancer; with an extensive focus on TLR agonists and antagonists. IUBMB Life 2021;73(1):10–25. doi:10.1002/iub.2412.
  • Zom GG, Khan S, Filippov DV, Ossendorp F. TLR ligand–peptide conjugate vaccines: toward clinical application. Adv Immunol 2012;114:177–201. doi:10.1016/B978-0-12-396548-6.00007-X.
  • Yoneda K, Imanishi N, Ichiki Y, Tanaka F. Immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC). J Uoeh 2018;40(2):173–189. doi:10.7888/juoeh.40.173.
  • Wang M, Cao J-X, Pan J-H, et al. Adoptive immunotherapy of cytokine-induced killer cell therapy in the treatment of non-small cell lung cancer. PLOS One 2014;9(11):e112662. doi:10.1371/journal.pone.0112662.
  • Ben-Avi R, Farhi R, Ben-Nun A, et al. Establishment of adoptive cell therapy with tumor infiltrating lymphocytes for non-small cell lung cancer patients. Cancer Immunol Immunother 2018;67(8):1221–1230. doi:10.1007/s00262-018-2174-4.
  • Du S, Yan J, Xue Y, et al., editors. Adoptive cell therapy for cancer treatment. Exploration. Wiley Online Library; 2023;3(4):20210058.
  • Taube JM, Galon J, Sholl LM, et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 2018;31(2):214–234. doi:10.1038/modpathol.2017.156.
  • Taeb S, Ashrafizadeh M, Zarrabi A, et al. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr Cancer Drug Targets 2022;22(1):18–30. doi:10.2174/1568009622666211224154952.
  • Li J, Li X, Zhang C, et al. A signature of tumor immune microenvironment genes associated with the prognosis of non-small cell lung cancer. Oncol Rep 2020;43(3):795–806. doi:10.3892/or.2020.7464.
  • Reina-Campos M, Scharping NE, Goldrath AW. CD8+ T cell metabolism in infection and cancer. Nat Rev Immunol 2021;21(11):718–738. doi:10.1038/s41577-021-00537-8.
  • Ali OA, Lewin SA, Dranoff G, Mooney DJ. Vaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumor eradication. Cancer Immunol Res 2016;4(2):95–100. doi:10.1158/2326-6066.CIR-14-0126.
  • Oh DY, Fong L. Cytotoxic CD4+ T cells in cancer: expanding the immune effector toolbox. Immunity 2021;54(12):2701–2711. doi:10.1016/j.immuni.2021.11.015.
  • Almatroodi SA, McDonald CF, Darby IA, Pouniotis DS. Characterization of M1/M2 tumour-associated macrophages (TAMs) and Th1/Th2 cytokine profiles in patients with NSCLC. Cancer Microenviron 2016;9(1):1–11. doi:10.1007/s12307-015-0174-x.
  • Doulabi H, Rastin M, Shabahangh H, et al. Analysis of Th22, Th17 and CD4+ cells co-producing IL-17/IL-22 at different stages of human colon cancer. Biomed Pharmacother 2018;103:1101–1106. doi:10.1016/j.biopha.2018.04.147.
  • Kaewkangsadan V, Verma C, Eremin JM, et al. Crucial contributions by T lymphocytes (effector, regulatory, and checkpoint inhibitor) and cytokines (TH1, TH2, and TH17) to a pathological complete response induced by neoadjuvant chemotherapy in women with breast cancer. J Immunol Res 2016;2016:4757405–4757425. doi:10.1155/2016/4757405.
  • Dyck L, Mills KH. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol 2017;47(5):765–779. doi:10.1002/eji.201646875.
  • Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer 2016;16(1):7–19. doi:10.1038/nrc.2015.5.
  • Jin S, Deng Y, Hao J-W, et al. NK cell phenotypic modulation in lung cancer environment. PLOS One 2014;9(10):e109976. doi:10.1371/journal.pone.0109976.
  • Mu Q, Najafi M. Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int Immunopharmacol 2021;98:107895. doi:10.1016/j.intimp.2021.107895.
  • Liu X, Wu S, Yang Y, Zhao M, Zhu G, Hou Z. The prognostic landscape of tumor-infiltrating immune cell and immunomodulators in lung cancer. Biomed Pharmacother 2017;95:55–61. doi:10.1016/j.biopha.2017.08.003.
  • Sarkar T, Dhar S, Chakraborty D, et al. FOXP3/HAT1 axis controls treg infiltration in the tumor microenvironment by inducing CCR4 expression in breast cancer. Front Immunol 2022;13:740588. doi:10.3389/fimmu.2022.740588.
  • Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target? Cancer Sci 2019;110(7):2080–2089. doi:10.1111/cas.14069.
  • Kachler K, Holzinger C, Trufa DI, et al. The role of Foxp3 and Tbet co-expressing Treg cells in lung carcinoma. Oncoimmunology 2018;7(8):e1456612. doi:10.1080/2162402X.2018.1456612.
  • Mei J, Xiao Z, Guo C, et al. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: A systemic review and meta-analysis. Oncotarget 2016;7(23):34217–34228. doi:10.18632/oncotarget.9079.
  • Yuan A, Hsiao Y-J, Chen H-Y, et al. Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci Rep 2015;5(1):14273. doi:10.1038/srep14273.
  • Conway EM, Pikor LA, Kung SH, et al. Macrophages, inflammation, and lung cancer. Am J Respir Crit Care Med 2016;193(2):116–130. doi:10.1164/rccm.201508-1545CI.
  • Li B-H, Garstka MA, Li Z-F. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol 2020;117:201–215. doi:10.1016/j.molimm.2019.11.014.
  • Li R, Mukherjee MB, Lin J. Coordinated regulation of myeloid-derived suppressor cells by cytokines and chemokines. Cancers 2022;14(5):1236. doi:10.3390/cancers14051236.
  • Groth C, Hu X, Weber R, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer 2019;120(1):16–25. doi:10.1038/s41416-018-0333-1.
  • Choi H, Sheng J, Gao D, et al. Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model. Cell Rep 2015;10(7):1187–1201. doi:10.1016/j.celrep.2015.01.040.
  • Suzuki J, Tsuboi M, Ishii G. Cancer-associated fibroblasts and the tumor microenvironment in non-small cell lung cancer. Expert Rev Anticancer Ther 2022;22(2):169–182. doi:10.1080/14737140.2022.2019018.
  • Moriwaki K, Wada M, Kuwabara H, et al. BDNF/TRKB axis provokes EMT progression to induce cell aggressiveness via crosstalk with cancer-associated fibroblasts in human parotid gland cancer. Sci Rep 2022;12(1):17553. doi:10.1038/s41598-022-22377-9.
  • Cho H, Seo Y, Loke KM, et al. Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM activation via IL6 and GM-CSF secretion. Clin Cancer Res 2018;24(21):5407–5421. doi:10.1158/1078-0432.CCR-18-0125.
  • Walker C, Mojares E, del Río Hernández A. Role of extracellular matrix in development and cancer progression. Int J Mol Sci 2018;19(10):3028. doi:10.3390/ijms19103028.
  • Huang J, Zhang L, Wan D, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021;6(1):153. doi:10.1038/s41392-021-00544-0.
  • Williams JP, Calvi L, Chakkalakal JV, et al. Addressing the symptoms or fixing the problem? Developing countermeasures against normal tissue radiation injury. Radiat Res 2016;186(1):1–16. doi:10.1667/rr14473.1.
  • O'Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 2019;16(3):151–167. doi:10.1038/s41571-018-0142-8.
  • Mu Q, Najafi M. Modulation of the tumor microenvironment (TME) by melatonin. Eur J Pharmacol 2021;907:174365. doi:10.1016/j.ejphar.2021.174365.
  • Fu X, He Y, Li M, et al. Targeting of the tumor microenvironment by curcumin. Biofactors 2021;47(6):914–932. doi:10.1002/biof.1776.
  • Tallerico R, Todaro M, Di Franco S, et al. Human NK cells selective targeting of colon cancer–initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules. J Immunol 2013;190(5):2381–2390. doi:10.4049/jimmunol.1201542.
  • Mortezaee K, Majidpoor J. NK and cells with NK-like activities in cancer immunotherapy-clinical perspectives. Med Oncol 2022;39(9):131. doi:10.1007/s12032-022-01735-7.
  • Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov 2020;19(3):200–218. doi:10.1038/s41573-019-0052-1.
  • Quatrini L, Della Chiesa M, Sivori S, et al. Human NK cells, their receptors and function. Eur J Immunol. 2021;51(7):1566–1579. doi:10.1002/eji.202049028.
  • Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer 2021;124(2):359–367. doi:10.1038/s41416-020-01048-4.
  • Elmusrati A, Wang J, Wang C-Y. Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma. Int J Oral Sci 2021;13(1):24. doi:10.1038/s41368-021-00131-7.
  • Sari G, Rock KL. Tumor immune evasion through loss of MHC class-I antigen presentation. Curr Opin Immunol 2023;83:102329. doi:10.1016/j.coi.2023.102329.
  • Schnell A, Bod L, Madi A, Kuchroo VK. The yin and yang of co-inhibitory receptors: toward anti-tumor immunity without autoimmunity. Cell Res 2020;30(4):285–299. doi:10.1038/s41422-020-0277-x.
  • Zhu L, Wu J, Gao H, et al. Tumor immune microenvironment-modulated nanostrategy for the treatment of lung cancer metastasis. Chin Med J. 2023;105:10–1097.
  • Yu D-L, Lou Z-P, Ma F-Y, Najafi M. The interactions of paclitaxel with tumour microenvironment. Int Immunopharmacol 2022;105:108555. doi:10.1016/j.intimp.2022.108555.
  • Shiravand Y, Khodadadi F, Kashani SMA, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol 2022;29(5):3044–3060. doi:10.3390/curroncol29050247.
  • Zhou F, Qiao M, Zhou C. The cutting-edge progress of immune-checkpoint blockade in lung cancer. Cell Mol Immunol 2021;18(2):279–293. doi:10.1038/s41423-020-00577-5.
  • Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res 2019;38(1):1–12. doi:10.1186/s13046-019-1259-z.
  • Ge Z, Peppelenbosch MP, Sprengers D, Kwekkeboom J. TIGIT, the next step towards successful combination immune checkpoint therapy in cancer. Front Immunol 2021;12:699895. doi:10.3389/fimmu.2021.699895.
  • Antonangeli F, Natalini A, Garassino MC, et al. Regulation of PD-L1 Expression by NF-κB in cancer. Front Immunol 2020;11:584626. doi:10.3389/fimmu.2020.584626.
  • Hasan GM, Hassan MI, Sohal SS, et al. Therapeutic targeting of regulated signaling pathways of non-small cell lung carcinoma. ACS Omega 2023;8(30):26685–26698. doi:10.1021/acsomega.3c02424.
  • Zhang H, Dai Z, Wu W, et al. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res 2021;40(1):1–22. doi:10.1186/s13046-021-01987-7.
  • Yu W, Hua Y, Qiu H, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis 2020;11(7):506. doi:10.1038/s41419-020-2701-z.
  • Hinterleitner C, Strähle J, Malenke E, et al. Platelet PD-L1 reflects collective intratumoral PD-L1 expression and predicts immunotherapy response in non-small cell lung cancer. Nat Commun 2021;12(1):7005. doi:10.1038/s41467-021-27303-7.
  • Shimada Y, Matsubayashi J, Kudo Y, et al. Serum-derived exosomal PD-L1 expression to predict anti-PD-1 response and in patients with non-small cell lung cancer. Sci Rep 2021;11(1):7830. doi:10.1038/s41598-021-87575-3.
  • Xu Y, Wan B, Chen X, et al. The association of PD-L1 expression with the efficacy of anti-PD-1/PD-L1 immunotherapy and survival of non-small cell lung cancer patients: a meta-analysis of randomized controlled trials. Transl Lung Cancer Res 2019;8(4):413–428. doi:10.21037/tlcr.2019.08.09.
  • Aguilar EJ, Ricciuti B, Gainor JF, et al. Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann Oncol 2019;30(10):1653–1659. doi:10.1093/annonc/mdz288.
  • Liu S-Y, Dong Z-Y, Wu S-P, et al. Clinical relevance of PD-L1 expression and CD8+ T cells infiltration in patients with EGFR-mutated and ALK-rearranged lung cancer. Lung Cancer 2018;125:86–92. doi:10.1016/j.lungcan.2018.09.010.
  • Munari E, Marconi M, Querzoli G, et al. Impact of PD-L1 and PD-1 expression on the prognostic significance of CD8+ tumor-infiltrating lymphocytes in non-small cell lung cancer. Front Immunol. 2021;12:680973. doi:10.3389/fimmu.2021.680973.
  • Jiang Z-B, Huang J-M, Xie Y-J, et al. Evodiamine suppresses non-small cell lung cancer by elevating CD8+ T cells and downregulating the MUC1-C/PD-L1 axis. J Exp Clin Cancer Res. 2020;39(1):249. doi:10.1186/s13046-020-01741-5.
  • Ricciuti B, Wang X, Alessi JV, et al. Association of high tumor mutation burden in non-small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels. JAMA Oncol 2022;8(8):1160–1168. doi:10.1001/jamaoncol.2022.1981.
  • Reck M, Rodríguez-Abreu D, Robinson AG, et al. Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥50. J Clin Oncol 2021;39(21):2339–2349. doi:10.1200/jco.21.00174.
  • Sezer A, Kilickap S, Gümüş M, et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021;397(10274):592–604. doi:10.1016/S0140-6736(21)00228-2.
  • Borghaei H, Langer CJ, Paz-Ares L, et al. Pembrolizumab plus chemotherapy versus chemotherapy alone in patients with advanced non–small cell lung cancer without tumor PD-L1 expression: a pooled analysis of 3 randomized controlled trials. Cancer 2020;126(22):4867–4877. doi:10.1002/cncr.33142.
  • Fournel L, Wu Z, Stadler N, et al. Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett 2019;464:5–14. doi:10.1016/j.canlet.2019.08.005.
  • Liu SV, Reck M, Mansfield AS, et al. Updated overall survival and PD-L1 subgroup analysis of patients with extensive-stage small-cell lung cancer treated with atezolizumab, carboplatin, and etoposide (IMpower133). J Clin Oncol 2021;39(6):619–630. doi:10.1200/jco.20.01055.
  • Liu C, Zheng S, Jin R, et al. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett 2020;470:95–105. doi:10.1016/j.canlet.2019.10.027.
  • Fucikova J, Kepp O, Kasikova L, et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 2020;11(11):1013. doi:10.1038/s41419-020-03221-2.
  • Yu C, Yang B, Najafi M. Targeting of cancer cell death mechanisms by curcumin: implications to cancer therapy. Basic Clin Pharmacol Toxicol 2021;129(6):397–415. doi:10.1111/bcpt.13648.
  • Duewell P, Steger A, Lohr H, et al. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells. Cell Death Differ 2014;21(12):1825–1837. doi:10.1038/cdd.2014.96.
  • Zhou C, Yang Z-F, Sun B-Y, et al. Lenvatinib induces immunogenic cell death and triggers toll-like receptor-3/4 ligands in hepatocellular carcinoma. J Hepatocell Carcinoma 2023;10:697–712. doi:10.2147/JHC.S401639.
  • Xi Y, Chen L, Tang J, et al. Amplifying “eat me signal” by immunogenic cell death for potentiating cancer immunotherapy. Immunol Rev 2023;321(1):94–114. doi:10.1111/imr.13251.
  • Zhao S, Tang Y, Wang R, Najafi M. Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis 2022;27(9–10):647–667. doi:10.1007/s10495-022-01750-z.
  • Liu P, Zhao L, Pol J, et al. Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat Commun 2019;10(1):1486. doi:10.1038/s41467-019-09415-3.
  • Flieswasser T, Van Loenhout J, Freire Boullosa L, et al. Clinically relevant chemotherapeutics have the ability to induce immunogenic cell death in non-small cell lung cancer. Cells 2020;9(6):1474. doi:10.3390/cells9061474.
  • Galluzzi L, Kepp O, Kroemer G. Immunogenic cell death in radiation therapy. Taylor & Francis; 2013. pp. e26536.
  • Xiong X, Wang Y, Zou T. Towards understanding the molecular mechanisms of immunogenic cell death. Chembiochem 2023;24(6):e202200621. doi:10.1002/cbic.202200621.
  • Solari JIG, Filippi-Chiela E, Pilar ES, et al. Damage-associated molecular patterns (DAMPs) related to immunogenic cell death are differentially triggered by clinically relevant chemotherapeutics in lung adenocarcinoma cells. BMC Cancer 2020;20(1):474. doi:10.1186/s12885-020-06964-5.
  • Kepp O, Zitvogel L, Kroemer G. Clinical evidence that immunogenic cell death sensitizes to PD-1/PD-L1 blockade. Oncoimmunology. 2019 Jul 22;8(10):e1637188. doi:10.1080/2162402X.2019.1637188.
  • Sun F, Cui L, Li T, et al. Oxaliplatin induces immunogenic cells death and enhances therapeutic efficacy of checkpoint inhibitor in a model of murine lung carcinoma. J Recept Signal Transduct Res 2019;39(3):208–214. doi:10.1080/10799893.2019.1655050.
  • Wan J, Wang J, Zhou M, et al. A cell membrane vehicle co-delivering sorafenib and doxorubicin remodel the tumor microenvironment and enhance immunotherapy by inducing immunogenic cell death in lung cancer cells. J Mater Chem B 2020;8(34):7755–7765. doi:10.1039/d0tb01052a.
  • Käsmann L, Eze C, Manapov F. Stereotactic body radiation therapy (SBRT) combined with immune check-point inhibition (ICI) in advanced lung cancer: which metastatic site should be irradiated to induce immunogenic cell death? Int J Radiat Oncol Biol Phys 2020;108(1):225–226. doi:10.1016/j.ijrobp.2020.04.002.
  • Valančiūtė A, Mathieson L, O'Connor RA, et al. Phototherapeutic induction of immunogenic cell death and CD8+ T cell-granzyme B mediated cytolysis in human lung cancer cells and organoids. Cancers 2022;14(17):4119. doi:10.3390/cancers14174119.
  • Jin F, Qi J, Zhu M, et al. NIR-triggered sequentially responsive nanocarriers amplified cascade synergistic effect of chemo-photodynamic therapy with inspired antitumor immunity. ACS Appl Mater Interfaces 2020;12(29):32372–32387. doi:10.1021/acsami.0c07503.
  • Wu Z, Zhang C, Najafi M. Targeting of the tumor immune microenvironment by metformin. J Cell Commun Signal 2022;16(3):333–348. doi:10.1007/s12079-021-00648-w.
  • Kratky W, Reis e Sousa C, Oxenius A, Spörri R. Direct activation of antigen-presenting cells is required for CD8+ T-cell priming and tumor vaccination. Proc Natl Acad Sci USA 2011;108(42):17414–17419. doi:10.1073/pnas.1108945108.
  • Wang C, Huang X, Wu Y, et al. Tumor cell-associated exosomes robustly elicit anti-tumor immune responses through modulating dendritic cell vaccines in lung tumor. Int J Biol Sci 2020;16(4):633–643. doi:10.7150/ijbs.38414.
  • Wang R-F, Wang HY. Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cells. Nat Biotechnol 2002;20(2):149–154. doi:10.1038/nbt0202-149.
  • Um S-J, Choi YJ, Shin H-J, et al. Phase I study of autologous dendritic cell tumor vaccine in patients with non-small cell lung cancer. Lung Cancer 2010;70(2):188–194. doi:10.1016/j.lungcan.2010.02.006.
  • Shurin GV, Tourkova IL, Kaneno R, Shurin MR. Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J Immunol 2009;183(1):137–144. doi:10.4049/jimmunol.0900734.
  • Yue T, Zheng X, Dou Y, et al. Interleukin 12 shows a better curative effect on lung cancer than paclitaxel and cisplatin doublet chemotherapy. BMC Cancer 2016;16(1):665. doi:10.1186/s12885-016-2701-7.
  • D’Amico L, Ruffini E, Ferracini R, Roato I. Low dose of IL-12 stimulates T cell response in cultures of PBMCs derived from non small cell lung cancer patients. JCT 2012;03(04):337–342. doi:10.4236/jct.2012.324044.
  • Broderick L, Yokota SJ, Reineke J, et al. Human CD4+ effector memory T cells persisting in the microenvironment of lung cancer xenografts are activated by local delivery of IL-12 to proliferate, produce IFN-γ, and eradicate tumor cells. J Immunol. 2005;174(2):898–906. doi:10.4049/jimmunol.174.2.898.
  • Vijay K. Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol 2018;59:391–412. doi:10.1016/j.intimp.2018.03.002.
  • De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine 2015;74(2):181–189. doi:10.1016/j.cyto.2015.02.025.
  • Luchner M, Reinke S, Milicic A. TLR agonists as vaccine adjuvants targeting cancer and infectious diseases. Pharmaceutics 2021;13(2):142. doi:10.3390/pharmaceutics13020142.
  • Auderset F, Belnoue E, Mastelic-Gavillet B, et al. A TLR7/8 agonist-including DOEPC-based cationic liposome formulation mediates its adjuvanticity through the sustained recruitment of highly activated monocytes in a type I IFN-independent but NF-κB-Dependent manner. Front Immunol 2020;11:580974. doi:10.3389/fimmu.2020.580974.
  • Chen L, Dai M, Zuo W, et al. NF-κB p65 and SETDB1 expedite lipopolysaccharide-induced intestinal inflammation in mice by inducing IRF7/NLR-dependent macrophage M1 polarization. Int Immunopharmacol 2023;115:109554. doi:10.1016/j.intimp.2022.109554.
  • Mancini F, Rossi O, Necchi F, Micoli F. OMV vaccines and the role of TLR agonists in immune response. Int J Mol Sci 2020;21(12):4416. doi:10.3390/ijms21124416.
  • Vacchelli E, Galluzzi L, Eggermont A, et al. Trial watch: FDA-approved toll-like receptor agonists for cancer therapy. Oncoimmunology 2012;1(6):894–907. doi:10.4161/onci.20931.
  • Zhou J, Xu Y, Wang G, et al. The TLR7/8 agonist R848 optimizes host and tumor immunity to improve therapeutic efficacy in murine lung cancer. Int J Oncol 2022;61(1):81. doi:10.3892/ijo.2022.5371.
  • Qian J, Meng H, Lv B, et al. TLR9 expression is associated with PD-L1 expression and indicates a poor prognosis in patients with peripheral T-cell lymphomas. Pathol Res Pract 2020;216(3):152703. doi:10.1016/j.prp.2019.152703.
  • Kell SA, Kachura MA, Renn A, et al. Preclinical development of the TLR9 agonist DV281 as an inhaled aerosolized immunotherapeutic for lung cancer: pharmacological profile in mice, non-human primates, and human primary cells. Int Immunopharmacol. 2019;66:296–308. doi:10.1016/j.intimp.2018.11.019.
  • Yao Y, Li J, Qu K, et al. Immunotherapy for lung cancer combining the oligodeoxynucleotides of TLR9 agonist and TGF-β2 inhibitor. Cancer Immunol Immunother 2023;72(5):1103–1120. doi:10.1007/s00262-022-03315-0.
  • Belani CP, Chakraborty BC, Modi RI, Khamar BM. A randomized trial of TLR-2 agonist CADI-05 targeting desmocollin-3 for advanced non-small-cell lung cancer. ††This study was previously presented as: an oral presentation at the annual meeting of the American Society of Clinical Oncology (ASCO), June 3–6, 2011, Chicago, IL, USA, and at the 14th World conference on Lung Cancer, July 3–7, 2011, Amsterdam, Netherlands. Ann Oncol 2017;28(2):298–304. doi:10.1093/annonc/mdw608.
  • Smith DA, Conkling P, Richards DA, et al. Antitumor activity and safety of combination therapy with the Toll-like receptor 9 agonist IMO-2055, erlotinib, and bevacizumab in advanced or metastatic non-small cell lung cancer patients who have progressed following chemotherapy. Cancer Immunol Immunother 2014;63(8):787–796. doi:10.1007/s00262-014-1547-6.
  • Otsuka T, Nishida S, Shibahara T, et al. CpG ODN (K3)—toll-like receptor 9 agonist—induces Th1-type immune response and enhances cytotoxic activity in advanced lung cancer patients: a phase I study. BMC Cancer 2022;22(1):744. doi:10.1186/s12885-022-09818-4.
  • Manegold C, Gravenor D, Woytowitz D, et al. Randomized phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non–small-cell lung cancer. J Clin Oncol 2008;26(24):3979–3986. doi:10.1200/JCO.2007.12.5807.
  • Manegold C, van Zandwijk N, Szczesna A, et al. A phase III randomized study of gemcitabine and cisplatin with or without PF-3512676 (TLR9 agonist) as first-line treatment of advanced non-small-cell lung cancer. Ann Oncol 2012;23(1):72–77. doi:10.1093/annonc/mdr030.
  • Langer CJ, Hirsh V, Okamoto I, et al. Randomized phase III trial of paclitaxel/carboplatin with or without PF-3512676 (toll-like receptor 9 agonist) as first-line treatment for advanced non-small-cell lung cancer. Br J Cancer 2011;113(1):20–29. doi:10.1200/jco.2010.32.8971.
  • Avagliano A, Granato G, Ruocco MR, et al. Metabolic reprogramming of cancer associated fibroblasts: the slavery of stromal fibroblasts. Biomed Res Int 2018;2018:6075403–6075412. doi:10.1155/2018/6075403.
  • Fiaschi T, Marini A, Giannoni E, et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res 2012;72(19):5130–5140. doi:10.1158/0008-5472.CAN-12-1949.
  • Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 2019;95(7):912–919. doi:10.1080/09553002.2019.1589653.
  • Menendez JA, Joven J, Cufí S, et al. The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells. Cell Cycle 2013;12(8):1166–1179. doi:10.4161/cc.24479.
  • Schiliro C, Firestein BL. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021;10(5):1056. doi:10.3390/cells10051056.
  • Porta C, Sica A, Riboldi E. Tumor-associated myeloid cells: new understandings on their metabolic regulation and their influence in cancer immunotherapy. Febs J 2018;285(4):717–733. doi:10.1111/febs.14288.
  • Li J, Bolyard C, Xin G, Li Z. Targeting metabolic pathways of myeloid cells improves cancer immunotherapy. Front Cell Dev Biol 2021;9:747863. doi:10.3389/fcell.2021.747863.
  • Lakshmanachetty S, Cruz-Cruz J, Hoffmeyer E, et al. New insights into the multifaceted role of myeloid-derived suppressor cells (MDSCs) in high-grade ­gliomas: from metabolic reprograming, immunosuppression, and therapeutic resistance to current strategies for targeting MDSCs. Cells 2021;10(4):893. doi:10.3390/cells10040893.
  • Palmer CS, Ostrowski M, Balderson B, et al. Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol. 2015;6:1. doi:10.3389/fimmu.2015.00001.
  • Moslehi M, Rezaei S, Talebzadeh P, et al. Apigenin in cancer therapy: prevention of genomic instability and anticancer mechanisms. Clin Exp Pharmacol Physiol 2023;50(1):3–18. doi:10.1111/1440-1681.13725.
  • Amini P, Moazamiyanfar R, Dakkali MS, et al. Resveratrol in cancer therapy: from stimulation of genomic stability to adjuvant cancer therapy: a comprehensive review. Curr Top Med Chem 2023;23(8):629–648. doi:10.2174/1568026623666221014152759.
  • Allison KE, Coomber BL, Bridle BW. Metabolic reprogramming in the tumour microenvironment: a hallmark shared by cancer cells and T lymphocytes. Immunology 2017;152(2):175–184. doi:10.1111/imm.12777.
  • Schafer CC, Wang Y, Hough KP, et al. Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment. Oncotarget 2016;7(46):75407–75424. doi:10.18632/oncotarget.12249.
  • Rao E, Zhang Y, Zhu G, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget 2015;6(10):7944–7958. doi:10.18632/oncotarget.3501.
  • Schulte ML, Fu A, Zhao P, et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat Med 2018;24(2):194–202. doi:10.1038/nm.4464.
  • Jin J, Byun J-K, Choi Y-K, Park K-G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp Mol Med 2023;55(4):706–715. doi:10.1038/s12276-023-00971-9.
  • Huang M, Xiong D, Pan J, et al. Targeting glutamine metabolism to enhance immunoprevention of egfr-driven lung cancer. Adv Sci 2022;9(26):2105885. doi:10.1002/advs.202105885.
  • Best SA, Gubser PM, Sethumadhavan S, et al. Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer. Cell Metab 2022;34(6):874–887. e6. doi:10.1016/j.cmet.2022.04.003.
  • Cohen JE, Merims S, Frank S, et al. Adoptive cell therapy: past, present and future. Immunotherapy 2017;9(2):183–196. doi:10.2217/imt-2016-0112.
  • June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish line. Sci Transl Med 2015;7(280):280ps7. doi:10.1126/scitranslmed.aaa3643.
  • Rezvani K. Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transplant 2019;54(Suppl 2):785–788. doi:10.1038/s41409-019-0601-6.
  • Wang X, Rivière I. Manufacture of tumor-and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Ther 2015;22(2):85–94. doi:10.1038/cgt.2014.81.
  • Yee C. Adoptive T cell therapy: points to consider. Curr Opin Immunol 2018;51:197–203. doi:10.1016/j.coi.2018.04.007.
  • Lauss M, Donia M, Harbst K, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat Commun 2017;8(1):1738. doi:10.1038/s41467-017-01460-0.
  • Quintarelli C, Sivori S, Caruso S, et al. Efficacy of third-party chimeric antigen receptor modified peripheral blood natural killer cells for adoptive cell therapy of B-cell precursor acute lymphoblastic leukemia. Leukemia. 2020;34(4):1102–1115. doi:10.1038/s41375-019-0613-7.
  • Wang Z, Cao YJ. Adoptive cell therapy targeting neoantigens: a frontier for cancer research. Front Immunol. 2020;11:176. doi:10.3389/fimmu.2020.00176.
  • Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 2021;11(4):69. doi:10.1038/s41408-021-00459-7.
  • Fesnak A, Lin C, Siegel DL, Maus MV. CAR-T cell therapies from the transfusion medicine perspective. Transfus Med Rev 2016;30(3):139–145. doi:10.1016/j.tmrv.2016.03.001.
  • Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolyt 2016;3:16011.
  • Kachala SS, Bograd AJ, Villena-Vargas J, et al. Mesothelin overexpression is a marker of tumor aggressiveness and is associated with reduced recurrence-free and overall survival in early-stage lung adenocarcinoma. Clin Cancer Res 2014;20(4):1020–1028. doi:10.1158/1078-0432.Ccr-13-1862.
  • Carpenito C, Milone MC, Hassan R, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009;106(9):3360–3365. doi:10.1073/pnas.0813101106.
  • Hassan R, Bullock S, Premkumar A, et al. Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res 2007;13(17):5144–5149. doi:10.1158/1078-0432.Ccr-07-0869.
  • Hassan R, Cohen SJ, Phillips M, et al. Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clin Cancer Res 2010;16(24):6132–6138. doi:10.1158/1078-0432.Ccr-10-2275.
  • Huang X, Guo J, Li T, et al. c-Met-targeted chimeric antigen receptor T cells inhibit hepatocellular carcinoma cells in vitro and in vivo. J Biomed Res 2022;36(1):10–21. doi:10.7555/JBR.35.20200207.
  • Peng Y, Zhang W, Chen Y, et al. Engineering c-Met-CAR NK-92 cells as a promising therapeutic candidate for lung adenocarcinoma. Pharmacol Res 2023;188:106656. doi:10.1016/j.phrs.2023.106656.
  • Min J, Long C, Zhang L, et al. c-Met specific CAR-T cells as a targeted therapy for non-small cell lung cancer cell A549. Bioengineered 2022;13(4):9216–9232. doi:10.1080/21655979.2022.2058149.
  • Zhang Z, Jiang J, Wu X, et al. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy. Front Med 2019;13(1):57–68. doi:10.1007/s11684-019-0683-y.
  • Aparicio C, Belver M, Enríquez L, et al. Cell therapy for colorectal cancer: the promise of chimeric antigen receptor (CAR)-T cells. Int J Mol Sci 2021;22(21):11781. doi:10.3390/ijms222111781.
  • Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, et al. CAR-T cells hit the tumor microenvironment: strategies to overcome tumor escape. Front Immunol 2020;11:1109. doi:10.3389/fimmu.2020.01109.
  • Yoon DH, Osborn MJ, Tolar J, Kim CJ. Incorporation of immune checkpoint blockade into chimeric antigen receptor T cells (CAR-Ts): combination or built-in CAR-T. Int J Mol Sci 2018;19(2):340. doi:10.3390/ijms19020340.
  • Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med 2016;94(5):509–522. doi:10.1007/s00109-015-1376-x.
  • Komohara Y, Niino D, Ohnishi K, et al. Role of tumor-associated macrophages in hematological malignancies. Pathol Int 2015;65(4):170–176. doi:10.1111/pin.12259.
  • Wang H, Tian T, Zhang J. Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): from mechanism to therapy and prognosis. Int J Mol Sci 2021;22(16):8470. doi:10.3390/ijms22168470.
  • Li M, He L, Zhu J, Zhang P, Liang S. Targeting tumor-associated macrophages for cancer treatment. Cell Biosci 2022;12(1):85. doi:10.1186/s13578-022-00823-5.
  • Qin R, Ren W, Ya G, et al. Role of chemokines in the crosstalk between tumor and tumor-associated macrophages. Clin Exp Med 2023;23(5):1359–1373. doi:10.1007/s10238-022-00888-z.
  • Quatromoni JG, Eruslanov E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res 2012;4(4):376–389.
  • La Fleur L, Botling J, He F, et al. Targeting MARCO and IL37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function. Cancer Res 2021;81(4):956–967. doi:10.1158/0008-5472.CAN-20-1885.
  • Tariq M, Zhang J-q, Liang G-k, He Q-j, Ding L, Yang B. Gefitinib inhibits M2-like polarization of tumor-associated macrophages in Lewis lung cancer by targeting the STAT6 signaling pathway. Acta Pharmacol Sin. 2017;38(11):1501–1511. doi:10.1038/aps.2017.124.
  • Tie Y, Zheng H, He Z, et al. Targeting folate receptor β positive tumor-associated macrophages in lung cancer with a folate-modified liposomal complex. Signal Transduct Target Ther 2020;5(1):6. doi:10.1038/s41392-020-0115-0.
  • Wang Y-C, Wu Y-S, Hung C-Y, et al. USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nat Commun 2018;9(1):3996. doi:10.1038/s41467-018-06178-1.
  • Dai X, Lu L, Deng S, et al. USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer. Theranostics 2020;10(20):9332–9347. doi:10.7150/thno.47137.
  • Sarode P, Zheng X, Giotopoulou GA, et al. Reprogramming of tumor-associated macrophages by targeting β-catenin/FOSL2/ARID5A signaling: a potential treatment of lung cancer. Sci Adv 2020;6(23):eaaz6105. doi:10.1126/sciadv.aaz6105.
  • Liu M, Sun X, Shi S. MORC2 enhances tumor growth by promoting angiogenesis and tumor-associated macrophage recruitment via Wnt/β-Catenin in lung cancer. Cell Physiol Biochem 2018;51(4):1679–1694. doi:10.1159/000495673.
  • Salcher S, Sturm G, Horvath L, et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung ­cancer. Cancer Cell 2022;40(12):1503–1520. e8. doi:10.1016/j.ccell.2022.10.008.
  • Saha S, Biswas SK. Tumor-associated neutrophils show phenotypic and functional divergence in human lung cancer. Cancer Cell 2016;30(1):11–13. doi:10.1016/j.ccell.2016.06.016.
  • Singhal S, Bhojnagarwala PS, O'Brien S, et al. Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 2016;30(1):120–135. doi:10.1016/j.ccell.2016.06.001.
  • Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, et al. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest 2014;124(12):5466–5480. doi:10.1172/JCI77053.
  • Zhou J, Liu H, Jiang S, Wang W. Role of tumor-associated neutrophils in lung cancer. Oncol Lett 2023;25(1):2. doi:10.3892/ol.2022.13588.
  • Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer 2013;13(10):739–752. doi:10.1038/nrc3581.
  • Lee C-R, Lee W, Cho SK, Park S-G. Characterization of multiple cytokine combinations and TGF-β on differentiation and functions of myeloid-derived suppressor cells. Int J Mol Sci 2018;19(3):869. doi:10.3390/ijms19030869.
  • Cheng R, Billet S, Liu C, et al. Periodontal inflammation recruits distant metastatic breast cancer cells by increasing myeloid-derived suppressor cells. Oncogene 2020;39(7):1543–1556. doi:10.1038/s41388-019-1084-z.
  • Sinha P, Clements VK, Bunt SK, et al. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 2007;179(2):977–983. doi:10.4049/jimmunol.179.2.977.
  • Chen Z, Yuan R, Hu S, Yuan W, Sun Z. Roles of the exosomes derived from myeloid-derived suppressor cells in tumor immunity and cancer progression. Front Immunol 2022;13:817942. doi:10.3389/fimmu.2022.817942.
  • Srivastava MK, Zhu L, Harris-White M, et al. Myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLOS One 2012;7(7):e40677. doi:10.1371/journal.pone.0040677.
  • Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b + myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005;11(18):6713–6721. doi:10.1158/1078-0432.CCR-05-0883.
  • Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X. Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol 2009;182(6):3801–3808. doi:10.4049/jimmunol.0801548.
  • Blidner AG, Salatino M, Mascanfroni ID, et al. Differential response of myeloid-derived suppressor cells to the nonsteroidal anti-inflammatory agent indomethacin in tumor-associated and tumor-free microenvironments. J Immunol 2015;194(7):3452–3462. doi:10.4049/jimmunol.1401144.
  • Kamimura A, Kamachi M, Nishihira J, et al. Intracellular distribution of macrophage migration inhibitory factor predicts the prognosis of patients with adenocarcinoma of the lung. Cancer 2000;89(2):334–341. doi:10.1002/1097-0142(20000715)89:2<334::AID-CNCR18>3.0.CO;2-N.
  • Simpson KD, Templeton DJ, Cross JV. Macrophage migration inhibitory factor promotes tumor growth and metastasis by inducing myeloid-derived suppressor cells in the tumor microenvironment. J Immunol 2012;189(12):5533–5540. doi:10.4049/jimmunol.1201161.
  • Wang H, Chan Y-L, Li T-L, et al. Reduction of splenic immunosuppressive cells and enhancement of anti-tumor immunity by synergy of fish oil and selenium yeast. PLOS One 2013;8(1):e52912. doi:10.1371/journal.pone.0052912.
  • Xie M, Wei J, Xu J. Inducers, attractors and modulators of CD4+ Treg cells in non-small-cell lung cancer. Front Immunol 2020;11:676. doi:10.3389/fimmu.2020.00676.
  • Zhao S, Jiang T, Zhang L, et al. Clinicopathological and prognostic significance of regulatory T cells in patients with non-small cell lung cancer: a systematic review with meta-analysis. Oncotarget 2016;7(24):36065–36073. doi:10.18632/oncotarget.9130.
  • Chen C, Chen D, Zhang Y, et al. Changes of CD4+ CD25+ FOXP3+ and CD8+ CD28− regulatory T cells in non-small cell lung cancer patients undergoing surgery. Int Immunopharmacol 2014;18(2):255–261. doi:10.1016/j.intimp.2013.12.004.
  • Wu S-P, Liao R-Q, Tu H-Y, et al. Stromal PD-L1–positive regulatory T cells and PD-1–positive CD8-positive t cells define the response of different subsets of non–small cell lung cancer to PD-1/PD-L1 blockade immunotherapy. J Thorac Oncol 2018;13(4):521–532. doi:10.1016/j.jtho.2017.11.132.
  • Liu W, Wei X, Li L, et al. CCR4 mediated chemotaxis of regulatory T cells suppress the activation of T cells and NK cells via TGF-β pathway in human non-small cell lung cancer. Biochem Biophys Res Commun 2017;488(1):196–203. doi:10.1016/j.bbrc.2017.05.034.
  • Wing JB, Sakaguchi S. Multiple treg suppressive modules and their adaptability. Front Immunol 2012;3:178. doi:10.3389/fimmu.2012.00178.
  • Duan M-C, Zhong X-N, Liu G-N, Wei J-R. The Treg/Th17 paradigm in lung cancer. J Immunol Res 2014;2014:730380–730389. doi:10.1155/2014/730380.
  • Ni XY, Sui HX, Liu Y, et al. TGF-β of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep 2012;28(2):615–621. doi:10.3892/or.2012.1822.
  • Baratelli F, Lee JM, Hazra S, et al. PGE(2) contributes to TGF-beta induced T regulatory cell function in human non-small cell lung cancer. Am J Transl Res 2010;2(4):356–367.
  • Islas-Vazquez L, Prado-Garcia H, Aguilar-Cazares D, et al. LAP TGF-beta subset of CD4 + CD25 + CD127 − Treg cells is increased and overexpresses LAP TGF-beta in lung adenocarcinoma patients. Biomed Res Int 2015;2015:430943–430911. doi:10.1155/2015/430943.
  • Oh E, Hong J, Yun C-O. Regulatory T cells induce metastasis by increasing Tgf-β and enhancing the epithelial–mesenchymal transition. Cells 2019;8(11):1387. doi:10.3390/cells8111387.
  • Koh J, Hur JY, Lee KY, et al. Regulatory (FoxP3+) T cells and TGF-β predict the response to anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci Rep 2020;10(1):18994. doi:10.1038/s41598-020-76130-1.
  • Sharma S, Stolina M, Lin Y, et al. T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J Immunol 1999;163(9):5020–5028. doi:10.4049/jimmunol.163.9.5020.
  • Hatanaka H, Abe Y, Kamiya T, et al. Clinical implications of interleukin (IL)-10 induced by non-small-cell lung cancer. Ann Oncol 2000;11(7):815–819. doi:10.1023/a:1008375208574.
  • Urry Z, Xystrakis E, Richards DF, et al. Ligation of TLR9 induced on human IL-10-secreting Tregs by 1alpha,25-dihydroxyvitamin D3 abrogates regulatory function. J Clin Invest 2009;119(2):387–398. doi:10.1172/jci32354.
  • Stewart CA, Metheny H, Iida N, et al. Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J Clin Invest 2013;123(11):4859–4874. doi:10.1172/jci65180.
  • Sawant DV, Yano H, Chikina M, et al. Adaptive plasticity of IL-10(+) and IL-35(+) T(reg) cells cooperatively promotes tumor T cell exhaustion. Nat Immunol 2019;20(6):724–735. doi:10.1038/s41590-019-0346-9.
  • Wang K, Shan S, Yang Z, et al. IL-33 blockade suppresses tumor growth of human lung cancer through direct and indirect pathways in a preclinical model. Oncotarget 2017;8(40):68571–68582. doi:10.18632/oncotarget.19786.
  • Poggi A, Musso A, Dapino I, Zocchi MR. Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells. Immunol Lett 2014;159(1–2):55–72. doi:10.1016/j.imlet.2014.03.001.
  • Abulaiti A, Shintani Y, Funaki S, et al. Interaction between non-small-cell lung cancer cells and fibroblasts via enhancement of TGF-β signaling by IL-6. Lung Cancer 2013;82(2):204–213. doi:10.1016/j.lungcan.2013.08.008.
  • Fu H, Yang H, Zhang X, Xu W. The emerging roles of exosomes in tumor–stroma interaction. J Cancer Res Clin Oncol 2016;142(9):1897–1907. doi:10.1007/s00432-016-2145-0.
  • Kilvaer TK, Rakaee M, Hellevik T, et al. Tissue analyses reveal a potential immune-adjuvant function of FAP-1 positive fibroblasts in non-small cell lung cancer. PLOS One 2018;13(2):e0192157. doi:10.1371/journal.pone.0192157.
  • Song L, Smith MA, Doshi P, et al. Antitumor efficacy of the anti-interleukin-6 (IL-6) antibody siltuximab in mouse xenograft models of lung cancer. J Thorac Oncol 2014;9(7):974–982. doi:10.1097/jto.0000000000000193.
  • Song L, Rawal B, Nemeth JA, Haura EB. JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol Cancer Ther 2011;10(3):481–494. doi:10.1158/1535-7163.Mct-10-0502.
  • Chen R-Y, Yen C-J, Liu Y-W, et al. CPAP promotes angiogenesis and metastasis by enhancing STAT3 activity. Cell Death Differ 2020;27(4):1259–1273. doi:10.1038/s41418-019-0413-7.
  • Li J, Lan T, Zhang C, et al. Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells. Oncotarget 2015;6(2):1031–1048. doi:10.18632/oncotarget.2671.
  • Keegan A, Ricciuti B, Garden P, et al. Plasma IL-6 changes correlate to PD-1 inhibitor responses in NSCLC. J Immunother Cancer. 2020;8(2):e000678. doi:10.1136/jitc-2020-000678.
  • Zhang N, Zeng Y, Du W, et al. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol 2016;49(4):1360–1368. doi:10.3892/ijo.2016.3632.
  • Ke W, Zhang L, Dai Y. The role of IL-6 in immunotherapy of non-small cell lung cancer (NSCLC) with immune-related adverse events (irAEs). Thorac Cancer 2020;11(4):835–839. doi:10.1111/1759-7714.13341.
  • Shintani Y, Kimura T, Funaki S, Ose N, Kanou T, Fukui E. Therapeutic targeting of cancer-associated fibroblasts in the non-small cell lung cancer tumor microenvironment. Cancers 2023;15(2):335. doi:10.3390/cancers15020335.
  • Xu Y-L, Yuan L-W, Jiang X-M, et al. Glutathione peroxidase 8 expression on cancer cells and cancer-associated fibroblasts facilitates lung cancer metastasis. MedComm. 2022;3(3):e152. doi:10.1002/mco2.152.
  • Götte M, Kovalszky I. Extracellular matrix functions in lung cancer. Matrix Biol. 2018;73:105–121. doi:10.1016/j.matbio.2018.02.018.
  • Parker AL, Cox TR. The role of the ECM in lung cancer dormancy and outgrowth. Front Oncol 2020;10:1766. doi:10.3389/fonc.2020.01766.
  • Wang C, Yang J. Mechanical forces: the missing link between idiopathic pulmonary fibrosis and lung cancer. Eur J Cell Biol 2022;101(3):151234. doi:10.1016/j.ejcb.2022.151234.
  • Zhang W, Zhang Y, Tu T, et al. Dual inhibition of HDAC and tyrosine kinase signaling pathways with CUDC-907 attenuates TGFβ1 induced lung and tumor fibrosis. Cell Death Dis 2020;11(9):765. doi:10.1038/s41419-020-02916-w.
  • Richeldi L, Du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014;370(22):2071–2082. doi:10.1056/NEJMoa1402584.
  • Capdevila J, Carrato A, Tabernero J, Grande E. What could Nintedanib (BIBF 1120), a triple inhibitor of VEGFR, PDGFR, and FGFR, add to the current treatment options for patients with metastatic colorectal cancer? Crit Rev Oncol Hematol 2014;92(2):83–106. doi:10.1016/j.critrevonc.2014.05.004.
  • Kato R, Haratani K, Hayashi H, et al. Nintedanib promotes antitumour immunity and shows antitumour activity in combination with PD-1 blockade in mice: potential role of cancer-associated fibroblasts. Br J Cancer 2021;124(5):914–924. doi:10.1038/s41416-020-01201-z.
  • Reck M, Kaiser R, Mellemgaard A, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol 2014;15(2):143–155. doi:10.1016/S1470-2045(13)70586-2.
  • Chouaib S, Umansky V, Kieda C. The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment. Contemp Oncol 2018;22(1A):7–13. doi:10.5114/wo.2018.73874.
  • Hu M, Li Y, Lu Y, et al. The regulation of immune checkpoints by the hypoxic tumor microenvironment. PeerJ 2021;9:e11306. doi:10.7717/peerj.11306.
  • Krzywinska E, Stockmann C. Hypoxia, metabolism and immune cell function. Biomedicines 2018;6(2):56. doi:10.3390/biomedicines6020056.
  • Fu Z, Mowday AM, Smaill JB, Hermans IF, Patterson AV. Tumour hypoxia-mediated immunosuppression: mechanisms and therapeutic approaches to improve cancer immunotherapy. Cells 2021;10(5):1006. doi:10.3390/cells10051006.
  • Chang WH, Lai AG. The hypoxic tumour microenvironment: a safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Lett 2020;487:34–44. doi:10.1016/j.canlet.2020.05.011.
  • Zhang J, Cao J, Ma S, et al. Tumor hypoxia enhances non-small cell lung cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling. Oncotarget 2014;5(20):9664–9677. doi:10.18632/oncotarget.1856.
  • Jacoby JJ, Erez B, Korshunova MV, et al. Treatment with HIF-1α antagonist PX-478 inhibits progression and spread of orthotopic human small cell lung cancer and lung adenocarcinoma in mice. J Thorac Oncol 2010;5(7):940–949. doi:10.1097/JTO.0b013e3181dc211f.
  • Jin Q, Zheng J, Chen M, Jiang N, Xu X, Huang F. HIF-1 inhibitor YC-1 reverses the acquired resistance of EGFR-mutant HCC827 cell line with MET amplification to gefitinib. Oxid Med Cell Longev 2021;2021:6633867–6633869. doi:10.1155/2021/6633867.
  • Hsieh K-Y, Wei C-K, Wu C-C. YC-1 prevents tumor-associated tissue factor expression and procoagulant activity in hypoxic conditions by inhibiting p38/NF-κB signaling pathway. Int J Mol Sci 2019;20(2):244. doi:10.3390/ijms20020244.
  • Betzler AC, Theodoraki M-N, Schuler PJ, et al. NF-κB and its role in checkpoint control. Int J Mol Sci 2020;21(11):3949. doi:10.3390/ijms21113949.
  • Cong Y, Cui Y, Zhu S, et al. Tim-3 promotes cell aggressiveness and paclitaxel resistance through NF-κB/STAT3 signalling pathway in breast cancer cells. Chin J Cancer Res 2020;32(5):564–579. doi:10.21147/j.issn.1000-9604.2020.05.02.
  • Cui Z, Ruan Z, Li M, et al. Intermittent hypoxia inhibits anti-tumor immune response via regulating PD-L1 expression in lung cancer cells and tumor-associated macrophages. Int Immunopharmacol 2023;122:110652. doi:10.1016/j.intimp.2023.110652.
  • Luo F, Lu F-T, Cao J-X, et al. HIF-1α inhibition promotes the efficacy of immune checkpoint blockade in the treatment of non-small cell lung cancer. Cancer Lett 2022;531:39–56. doi:10.1016/j.canlet.2022.01.027.
  • Cheng Z-h, Shi Y-x, Yuan M, Xiong D, Zheng J-h, Zhang Z-y Chemokines and their receptors in lung cancer progression and metastasis. J Zhejiang Univ Sci B 2016;17(5):342–351. doi:10.1631/jzus.B1500258.
  • Otsuka S, Bebb G. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer. J Thorac Oncol 2008;3(12):1379–1383. doi:10.1097/JTO.0b013e31818dda9d.
  • de Chaisemartin L, Goc J, Damotte D, et al. Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 2011;71(20):6391–6399. doi:10.1158/0008-5472.CAN-11-0952.
  • Zhou L, Jiang Y, Liu X, et al. Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene 2019;38(29):5792–5804. doi:10.1038/s41388-019-0840-4.
  • Lu J, Zhong H, Chu T, et al. Role of anlotinib-induced CCL2 decrease in anti-angiogenesis and response prediction for nonsmall cell lung cancer therapy. Eur Respir J 2019;53(3):1801562. doi:10.1183/13993003.01562-2018.
  • Fridlender ZG, Kapoor V, Buchlis G, et al. Monocyte chemoattractant protein–1 blockade inhibits lung cancer tumor growth by altering macrophage phenotype and activating CD8+ cells. Am J Respir Cell Mol Biol 2011;44(2):230–237. doi:10.1165/rcmb.2010-0080OC.
  • Fridlender ZG, Buchlis G, Kapoor V, et al. CCL2 blockade augments cancer immunotherapy. Cancer Res 2010;70(1):109–118. doi:10.1158/0008-5472.Can-09-2326.
  • Wang Y, Zhang X, Yang L, Xue J, Hu G. Blockade of CCL2 enhances immunotherapeutic effect of anti-PD1 in lung cancer. J Bone Oncol 2018;11:27–32. doi:10.1016/j.jbo.2018.01.002.
  • Tu MM, Abdel-Hafiz HA, Jones RT, et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Commun Biol 2020;3(1):720. doi:10.1038/s42003-020-01441-y.
  • Mortezaee K. CXCL12/CXCR4 axis in the microenvironment of solid tumors: a critical mediator of metastasis. Life Sci 2020;249:117534. doi:10.1016/j.lfs.2020.117534.
  • Portella L, Bello AM, Scala S. CXCL12 signaling in the tumor microenvironment. Tumor Microenvironment Tumor Microenvironment. Cham, Switzerland: Publisher Springer; 2021. pp. 51–70. doi:10.1007/978-3-030-62658-7.
  • Wald O. CXCR4 based therapeutics for non-small cell lung cancer (NSCLC). J Clin Med 2018;7(10):303. doi:10.3390/jcm7100303.
  • Cavallaro S. CXCR4/CXCL12 in non-small-cell lung cancer metastasis to the brain. Int J Mol Sci 2013;14(1):1713–1727. doi:10.3390/ijms14011713.
  • Tsai M-F, Chang T-H, Wu S-G, et al. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway. Sci Rep 2015;5(1):13574. doi:10.1038/srep13574.
  • Wu J, Liu X, Wu J, et al. CXCL12 derived from CD248-expressing cancer-associated fibroblasts mediates M2-polarized macrophages to promote nonsmall cell lung cancer progression. Biochim Biophys Acta Mol Basis Dis 2022;1868(11):166521. doi:10.1016/j.bbadis.2022.166521.
  • Zboralski D, Hoehlig K, Eulberg D, Frömming A, Vater A. Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol Res 2017;5(11):950–956. doi:10.1158/2326-6066.CIR-16-0303.
  • Aldinucci D, Borghese C, Casagrande N. The CCL5/CCR5 axis in cancer progression. Cancers 2020;12(7):1765. doi:10.3390/cancers12071765.
  • Wang X, Yang X, Tsai Y, et al. IL-6 mediates macrophage infiltration after irradiation via up-regulation of CCL2/CCL5 in non-small cell lung cancer. Radiat Res 2017;187(1):50–59. doi:10.1667/rr14503.1.
  • Melese ES, Franks E, Cederberg RA, et al. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncoimmunology 2022;11(1):2010905. doi:10.1080/2162402X.2021.2010905.
  • Ma X, Holt D, Kundu N, et al. A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE(2)-mediated immunosuppression and inhibits breast cancer metastasis. Oncoimmunology 2013;2(1):e22647. doi:10.4161/onci.22647.
  • Kim JI, Lakshmikanthan V, Frilot N, Daaka Y. Prostaglandin E2 promotes lung cancer cell migration via EP4-betaArrestin1-c-Src signalsome. Mol Cancer Res 2010;8(4):569–577. doi:10.1158/1541-7786.Mcr-09-0511.
  • Albu DI, Wang Z, Huang K-C, et al. EP4 Antagonism by E7046 diminishes myeloid immunosuppression and synergizes with Treg-reducing IL-2-diphtheria toxin fusion protein in restoring anti-tumor immunity. Oncoimmunology 2017;6(8):e1338239. doi:10.1080/2162402x.2017.1338239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.