130
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Cerebral malaria pathogenesis: Dissecting the role of CD4+ and CD8+ T-cells as major effectors in disease pathology

, &
Received 25 Sep 2023, Accepted 24 Mar 2024, Published online: 15 Apr 2024

References

  • Kataria P, Surela N, Chaudhary A, Das J. MiRNA: biological regulator in host-parasite interaction during malaria infection. Int J Environ Res Public Health. 2022;19(4):2395. doi:10.3390/ijerph19042395.
  • Talapko J, Škrlec I, Alebić T, Jukić M, Včev A. Malaria: the past and the present. Microorganisms. 2019;7(6):179. doi:10.3390/microorganisms7060179.
  • van der Pluijm RW, Tripura R, Hoglund RM, Tracking Resistance to Artemisinin Collaboration., et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet. 2018;395(10233):1345–1360. doi:10.1016/S0140-6736(20)30552-3.
  • Phillips MA, Burrows JN, Manyando C, van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nat Rev Dis Primers. 2017;3(1):17050. doi:10.1038/nrdp.2017.50.
  • Organization WH. World Malaria Report 2023. Geneva: World Health Organization; 2023.
  • Nanfack CN, Bilong Y, Kagmeni G, Nathan NN, Bella LA. Malarial retinopathy in adult: a case report. Pan Afr Med J. 2017;27:224. doi:10.11604/pamj.2017.27.224.11026.
  • World Health Organization, Geneva, 2021.
  • Bruneel F. Human cerebral malaria: 2019 mini review. Rev Neurol (Paris). 2019;175(7–8):445–450. doi:10.1016/j.neurol.2019.07.008.
  • Luzolo AL, Ngoyi DM. Cerebral malaria. Brain Res Bull. 2019;145:53–58. doi:10.1016/j.brainresbull.2019.01.010.
  • John CC, Bangirana P, Byarugaba J, et al. Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics. 2008;122(1):e92–e99. doi:10.1542/peds.2007-3709.
  • Birbeck GL, Molyneux ME, Kaplan PW, et al. Blantyre Malaria Project Epilepsy Study (BMPES) of neurological outcomes in retinopathy-positive paediatric cerebral malaria survivors: a prospective cohort study. Lancet Neurol. 2010;9(12):1173–1181. doi:10.1016/S1474-4422(10)70270-2.
  • Olliaro P. Mortality associated with severe Plasmodium falciparum malaria increases with age. Clin Infect Dis. 2008;47(2):158–160. doi:10.1086/589288.
  • Prakash MA, Stein G. Malaria presenting as atypical depression. Br J Psychiatry. 1990;156(4):594–595. doi:10.1192/s000712500017905x.
  • Kochar, D K, Kumawat, B L, Thanvi, I, Joshi, A, Vyas, S P, Shubhakaran,. Ophthalmoscopic abnormalities in adults with falciparum malaria. QJM 1998;91(12):845–852. doi:10.1093/qjmed/91.12.845.
  • Sahu PK, Hoffmann A, Majhi M, et al. Brain magnetic resonance imaging reveals different courses of disease in pediatric and adult cerebral malaria. Clin Infect Dis. 2021;73(7):e2387–e2396. doi:10.1093/cid/ciaa1647.
  • Idro R, Otieno G, White S, et al. Decorticate, decerebrate and opisthotonic posturing and seizures in Kenyan children with cerebral malaria. Malar J. 2005;4(1):57. doi:10.1186/1475-2875-4-57.
  • Wassmer SC, Taylor TE, Rathod PK, et al. Investigating the pathogenesis of severe malaria: a multidisciplinary and cross-geographical approach. Am J Trop Med Hyg. 2015;93(3 Suppl):42–56. doi:10.4269/ajtmh.14-0841.
  • Genton B, Al-Yaman F, Alpers M, Mokela D. Indicators of fatal outcome in paediatric cerebral malaria: a study of 134 comatose Papua New Guinean children. Int J Epidemiol. 1997;26(3):670–676. doi:10.1093/ije/26.3.670.
  • Crawley J, Smith S, Muthinji P, Marsh K, Kirkham F. Electroencephalographic and clinical features of cerebral malaria. Arch Dis Child. 2001;84(3):247–253. doi:10.1136/adc.84.3.247.
  • Song X, Wei W, Cheng W, et al. Cerebral malaria induced by plasmodium falciparum: clinical features, pathogenesis, diagnosis, and treatment. Front Cell Infect Microbiol. 2022;12:939532. doi:10.3389/fcimb.2022.939532.
  • Brodeur KRN, Herculano A, Oliveira K. Clinical aspects of malarial retinopathy: a critical, 2022.
  • Idro R, Carter JA, Fegan G, Neville BG, Newton CR. Risk factors for persisting neurological and cognitive impairments following cerebral malaria. Arch Dis Child. 2006;91(2):142–148. doi:10.1136/adc.2005.077784.
  • Schiess N, Villabona-Rueda A, Cottier KE, Huether K, Chipeta J, Stins MF. Pathophysiology and neurologic sequelae of cerebral malaria. Malar J. 2020;19(1):266. doi:10.1186/s12936-020-03336-z.
  • Idro R, Marsh K, John CC, Newton CR. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res. 2010;68(4):267–274. doi:10.1203/PDR.0b013e3181eee738.
  • Opoka RO, Xia Z, Bangirana P, John CC. Inpatient mortality in children with clinically diagnosed malaria as compared with microscopically confirmed malaria. Pediatr Infect Dis J. 2008;27(4):319–324. doi:10.1097/INF.0b013e31815d74dd.
  • Mason DP, Kawamoto F, Lin K, Laoboonchai A, Wongsrichanalai C. A comparison of two rapid field immunochromatographic tests to expert microscopy in the diagnosis of malaria. Acta Trop. 2002;82(1):51–59. doi:10.1016/s0001-706x(02)00031-1.
  • Taylor BJ, Lanke K, Banman SL, et al. A direct from blood reverse transcriptase polymerase chain reaction assay for monitoring falciparum malaria parasite transmission in elimination settings. Am J Trop Med Hyg. 2017;97(2):533–543. doi:10.4269/ajtmh.17-0039.
  • Beare NA, Lewallen S, Taylor TE, Molyneux ME. Redefining cerebral malaria by including malaria retinopathy. Future Microbiol. 2011;6(3):349–355. doi:10.2217/fmb.11.3.
  • Varo R, Crowley VM, Sitoe A, et al. Adjunctive therapy for severe malaria: a review and critical appraisal. Malar J. 2018;17(1):47. doi:10.1186/s12936-018-2195-7.
  • Sahu PK, Mohanty S. Pathogenesis of cerebral malaria: new trends and insights for developing adjunctive therapies. Pathogens. 2023;12(4):522. doi:10.3390/pathogens12040522.
  • De Souza JB, Hafalla JC, Riley EM, Couper KN. Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease. Parasitology. 2010;137(5):755–772. doi:10.1017/S0031182009991715.
  • De Souza JB, Riley EM. Cerebral malaria: the contribution of studies in animal models to our understanding of immunopathogenesis. Microbes Infect. 2002;4(3):291–300. doi:10.1016/s1286-4579(02)01541-1.
  • Smith CD, Brown AE, Nakazawa S, Fujioka H, Aikawa M. Multi-organ erythrocyte sequestration and ligand expression in rhesus monkeys infected with Plasmodium coatneyi malaria. Am J Trop Med Hyg. 1996;55(4):379–383. doi:10.4269/ajtmh.1996.55.379.
  • Nakano Y, Fujioka H, Luc KD, et al. A correlation of the sequestration rate of Plasmodium coatneyi-infected erythrocytes in cerebral and subcutaneous tissues of a rhesus monkey. Am J Trop Med Hyg. 1996;55(3):311–314. doi:10.4269/ajtmh.1996.55.311.
  • Fujioka H, Millet P, Maeno Y, et al. A nonhuman primate model for human cerebral malaria: rhesus-monkeys experimentally infected with Plasmodium fragile. Exp Parasitol. 1994;78(4):371–376. doi:10.1006/expr.1994.1040.
  • Tongren JE, Yang C, Collins WE, Sullivan JS, Lal AA, Xiao L. Expression of proinflammatory cytokines in four regions of the brain in Macaque mulatta (rhesus) monkeys infected with Plasmodium coatneyi. Am J Trop Med Hyg. 2000;62(4):530–534. doi:10.4269/ajtmh.2000.62.530.
  • Robert C, Peyrol S, Pouvelle B, Gay-Andrieu F, Gysin J. Ultrastructural aspects of Plasmodium falciparum-infected erythrocyte adherence to endothelial cells of Saimiri brain microvasculature. Am J Trop Med Hyg. 1996;54(2):169–177. doi:10.4269/ajtmh.1996.54.169.
  • Engwerda C, Belnoue E, Grüner AC, Rénia L. Experimental models of cerebral malaria. Immunol Immunopath Malaria. 2005:103–143.
  • Thakur RS, Tiwari M, Chauhan R, et al. Mesenchymal stem cells reverse the pathophysiology of cerebral malaria induced by Plasmodium berghei ANKA, 2022.
  • Strangward P, Haley MJ, Shaw TN, et al. A quantitative brain map of experimental cerebral malaria pathology. PLoS Pathog. 2017;13(3):e1006267. doi:10.1371/journal.ppat.1006267.
  • Basir R, Rahiman SF, Hasballah K, et al. Plasmodium berghei ANKA infection in ICR mice as a model of cerebral malaria. Iran J Parasitol. 2012;7(4):62.
  • Dorovini-Zis K, Schmidt K, Huynh H, et al. The neuropathology of fatal cerebral malaria in Malawian children. Am J Pathol. 2011;178(5):2146–2158. doi:10.1016/j.ajpath.2011.01.016.
  • Conroy AL, Phiri H, Hawkes M, et al. Endothelium-based biomarkers are associated with cerebral malaria in Malawian children: a retrospective case-control study. PLoS One. 2010;5(12):e15291. doi:10.1371/journal.pone.0015291.
  • Albuquerque M. Cytoadherence capabilities of Plasmodium berghei ANKA and NK65 infected red blood cells in different malaria models, 2011.
  • Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: the role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol Rev. 2020;293(1):230–252. doi:10.1111/imr.12807.
  • Qidwai T, Qidwai T. Vascular cell adhesion molecule-1 (VCAM-1) Polymorphisms. Explorat Host Genet Fact Associat Malaria. 2021:159–172.
  • Ueno N, Lodoen MB. From the blood to the brain: avenues of eukaryotic pathogen dissemination to the central nervous system. Curr Opin Microbiol. 2015;26:53–59. doi:10.1016/j.mib.2015.05.006.
  • Ramachandran A, Sharma A. Dissecting the mechanisms of pathogenesis in cerebral malaria. PLoS Pathog. 2022;18(11):e1010919. doi:10.1371/journal.ppat.1010919.
  • Wittchen ES. Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front Biosci (Landmark Ed). 2009;14(7):2522–2545. doi:10.2741/3395.
  • Darling TK, Mimche PN, Bray C, et al. EphA2 contributes to disruption of the blood-brain barrier in cerebral malaria. PLoS Pathog. 2020;16(1):e1008261. doi:10.1371/journal.ppat.1008261.
  • Chaudhary A, Kataria P, Surela N, Das J. Pathophysiology of cerebral malaria: implications of MSCs as a regenerative medicinal tool. Bioengineering. 2022;9(6):263. doi:10.3390/bioengineering9060263.
  • Bernabeu M, Smith JD. EPCR and malaria severity: the center of a perfect storm. Trends Parasitol. 2017;33(4):295–308. doi:10.1016/j.pt.2016.11.004.
  • Petersen JE, Lavstsen T, Craig A. Breaking down brain barrier breaches in cerebral malaria. J Clin Invest. 2016;126(10):3725–3727. doi:10.1172/JCI90188.
  • Punsawad C, Maneerat Y, Chaisri U, Nantavisai K, Viriyavejakul P. Nuclear factor kappa B modulates apoptosis in the brain endothelial cells and intravascular leukocytes of fatal cerebral malaria. Malar J. 2013;12(1):260. doi:10.1186/1475-2875-12-260.
  • Lopez-Ramirez MA, Reijerkerk A, De Vries HE, Romero IA. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. Faseb J. 2016;30(8):2662–2672. doi:10.1096/fj.201600435RR.
  • Barker KR, Lu Z, Kim H, et al. miR-155 modifies inflammation, endothelial activation and blood-brain barrier dysfunction in cerebral malaria. Mol Med. 2017;23(1):24–33. doi:10.2119/molmed.2016.00139.
  • Riggle BA, Manglani M, Maric D, et al. CD8+ T cells target cerebrovasculature in children with cerebral malaria. J Clin Invest. 2020;130(3):1128–1138. doi:10.1172/JCI133474.
  • Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV. Potential role of MCP-1 in endothelial cell tight junctionopening’: signaling via Rho and Rho kinase. J Cell Sci. 2003;116(Pt 22):4615–4628. doi:10.1242/jcs.00755.
  • Barrera V, MacCormick IJC, Czanner G, et al. Neurovascular sequestration in paediatric P. falciparum malaria is visible clinically in the retina. Elife. 2018;7:e32208. doi:10.7554/eLife.32208.
  • Miu J, Mitchell AJ, Müller M, et al. Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. J Immunol. 2008;180(2):1217–1230. doi:10.4049/jimmunol.180.2.1217.
  • Shrivastava SK, Dalko E, Delcroix-Genete D, Herbert F, Cazenave PA, Pied S. Uptake of parasite-derived vesicles by astrocytes and microglial phagocytosis of infected erythrocytes may drive neuroinflammation in cerebral malaria. Glia. 2017;65(1):75–92. doi:10.1002/glia.23075.
  • Armah H, Wired EK, Dodoo AK, Adjei AA, Tettey Y, Gyasi R. Cytokines and adhesion molecules expression in the brain in human cerebral malaria. Int J Environ Res Public Health. 2005;2(1):123–131. doi:10.3390/ijerph2005010123.
  • Fairhurst RM, Bess CD, Krause MA. Abnormal PfEMP1/knob display on Plasmodium falciparum-infected erythrocytes containing hemoglobin variants: fresh insights into malaria pathogenesis and protection. Microbes Infect. 2012;14(10):851–862. doi:10.1016/j.micinf.2012.05.006.
  • David PH, Handunnetti SM, Leech JH, Gamage P, Mendis KN. Rosetting: a new cytoadherence property of malaria-infected erythrocytes. Am J Trop Med Hyg. 1988;38(2):289–297. doi:10.4269/ajtmh.1988.38.289.
  • Handunnetti SM, David PH, Perera K, Mendis KN. Uninfected erythrocytes form” rosettes” around Plasmodium falciparum infected erythrocytes. Am J Trop Med Hyg. 1989;40(2):115–118. doi:10.4269/ajtmh.1989.40.115.
  • Mackinnon MJ, Walker PR, Rowe JA. Plasmodium chabaudi: rosetting in a rodent malaria model. Exp Parasitol. 2002;101(2-3):121–128. doi:10.1016/S0014-4894(03)00023-7.
  • Storm J, Jespersen JS, Seydel KB, et al. Cerebral malaria is associated with differential cytoadherence to brain endothelial cells. EMBO Mol Med. 2019;11(2):e9164. doi:10.15252/emmm.201809164.
  • Belachew EB. Immune response and evasion mechanisms of Plasmodium falciparum parasites. J Immunol Res. 2018;2018:6529681–6529686. doi:10.1155/2018/6529681.
  • Gazzinelli RT, Kalantari P, Fitzgerald KA, Golenbock DT. Innate sensing of malaria parasites. Nat Rev Immunol. 2014;14(11):744–757. doi:10.1038/nri3742.
  • Arroyo EN, Pepper M. B cells are sufficient to prime the dominant CD4+ Tfh response to Plasmodium infection. J Exp Med. 2019;217(2):e20190849. doi:10.1084/jem.20190849.
  • Long CA, Zavala F. Immune responses in malaria. Cold Spring Harb Perspect Med. 2017;7(8):a025577. doi:10.1101/cshperspect.a025577.
  • Del Portillo HA, Ferrer M, Brugat T, Martin-Jaular L, Langhorne J, Lacerda MV. The role of the spleen in malaria. Cell Microbiol. 2012;14(3):343–355. doi:10.1111/j.1462-5822.2011.01741.x.
  • Dunst J, Kamena F, Matuschewski K. Cytokines and chemokines in cerebral malaria pathogenesis. Front Cell Infect Microbiol. 2017;7:324. doi:10.3389/fcimb.2017.00324.
  • Schofield L, Grau GE. Immunological processes in malaria pathogenesis. Nat Rev Immunol. 2005;5(9):722–735. doi:10.1038/nri1686.
  • Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7(10):803–815. doi:10.1038/nri2171.
  • Viebig NK, Wulbrand U, Förster R, Andrews KT, Lanzer M, Knolle PA. Direct activation of human endothelial cells by Plasmodium falciparum-infected erythrocytes. Infect Immun. 2005;73(6):3271–3277. doi:10.1128/IAI.73.6.3271-3277.2005.
  • Kurup SP, Butler NS, Harty JT. T cell-mediated immunity to malaria. Nat Rev Immunol. 2019;19(7):457–471. doi:10.1038/s41577-019-0158-z.
  • Huggins MA, Johnson HL, Jin F, et al. Perforin expression by CD8 T cells is sufficient to cause fatal brain edema during experimental cerebral malaria. Infect Immun. 2017;85(5). doi:10.1128/iai.00985-16.
  • Howland SW, Poh CM, Gun SY, et al. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria. EMBO Mol Med. 2013;5(7):984–999. doi:10.1002/emmm.201202273.
  • Haque A, Best SE, Unosson K, et al. Granzyme B expression by CD8+ T cells is required for the development of experimental cerebral malaria. J Immunol. 2011;186(11):6148–6156. doi:10.4049/jimmunol.1003955.
  • Baz A, Jackson DC, Kienzle N, Kelso A. Memory cytolytic T-lymphocytes: induction, regulation and implications for vaccine design. Expert Rev Vaccines. 2005;4(5):711–723. doi:10.1586/14760584.4.5.711.
  • Reyes-Sandoval A, Wyllie DH, Bauza K, et al. CD8+ T effector memory cells protect against liver-stage malaria. J Immunol. 2011;187(3):1347–1357. doi:10.4049/jimmunol.1100302.
  • Belnoue E, Kayibanda M, Vigario AM, et al. On the pathogenic role of brain-sequestered αβ CD8+ T cells in experimental cerebral malaria. J Immunol. 2002;169(11):6369–6375. doi:10.4049/jimmunol.169.11.6369.
  • Swanson PA, Hart GT, Russo MV, et al. CD8+ T cells induce fatal brainstem pathology during cerebral malaria via luminal antigen-specific engagement of brain vasculature. PLoS Pathog. 2016;12(12):e1006022. doi:10.1371/journal.ppat.1006022.
  • Nie CQ, Bernard NJ, Norman MU, et al. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathog. 2009;5(4):e1000369. doi:10.1371/journal.ppat.1000369.
  • Sorensen EW, Lian J, Ozga AJ, et al. CXCL10 stabilizes T cell–brain endothelial cell adhesion leading to the induction of cerebral malaria. JCI Insight. 2018;3(8). doi:10.1172/jci.insight.98911.
  • Howland SW, Poh CM, Rénia L. Activated brain endothelial cells cross-present malaria antigen. PLoS Pathog. 2015;11(6):e1004963. doi:10.1371/journal.ppat.1004963.
  • Eeka P, Phanithi PB. Cytotoxic T Lymphocyte Granzyme-b mediates neuronal cell death during Plasmodium berghei ANKA induced experimental cerebral malaria. Neurosci Lett. 2018;664:58–65. doi:10.1016/j.neulet.2017.11.021.
  • Vyas SP, Goswami R. A decade of Th9 cells: role of Th9 cells in inflammatory bowel disease. Front Immunol. 2018;9:1139. doi:10.3389/fimmu.2018.01139.
  • Jurewicz MM, Stern LJ. Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics. 2019;71(3):171–187. doi:10.1007/s00251-018-1095-x.
  • Lundie RJ, de Koning-Ward TF, Davey GM, et al. Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8α+ dendritic cells. Proc Natl Acad Sci U S A. 2008;105(38):14509–14514. doi:10.1073/pnas.0806727105.
  • Oakley MS, Sahu BR, Lotspeich-Cole L, et al. The transcription factor T-bet regulates parasitemia and promotes pathogenesis during Plasmodium berghei ANKA murine malaria. J Immunol. 2013;191(9):4699–4708. doi:10.4049/jimmunol.1300396.
  • Yañez DM, Manning DD, Cooley AJ, Weidanz WP, Van Der Heyde H. Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. Journal of Immunology (Baltimore, Md. 1950). 1996;157(4):1620–1624. doi:10.4049/jimmunol.157.4.1620.
  • Oh H, Ghosh S. NF-κB: roles and regulation in different CD 4+ T-cell subsets. Immunol Rev. 2013;252(1):41–51. doi:10.1111/imr.12033.
  • Murphy KM, Stockinger B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol. 2010;11(8):674–680. doi:10.1038/ni.1899.
  • Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40(7):1830–1835. doi:10.1002/eji.201040391.
  • Perez-Mazliah D, Langhorne J. CD4 T-cell subsets in malaria: TH1/TH2 revisited. Front Immunol. 2015;5:671. doi:10.3389/fimmu.2014.00671.
  • Lazarevic V, Glimcher LH. T-bet in disease. Nat Immunol. 2011;12(7):597–606. doi:10.1038/ni.2059.
  • Walker JA, McKenzie AN. TH2 cell development and function. Nat Rev Immunol. 2018;18(2):121–133. doi:10.1038/nri.2017.118.
  • Oakley MS, Sahu BR, Lotspeich-Cole L, et al. T-bet modulates the antibody response and immune protection during murine malaria. Eur J Immunol. 2014;44(9):2680–2691. doi:10.1002/eji.201344437.
  • von der Weid T, Kopf M, Köhler G, Langhorne J. The immune response to Plasmodium chabaudi malaria in interleukin-4-deficient mice. Eur J Immunol. 1994;24(10):2285–2293. doi:10.1002/eji.1830241004.
  • Langhorne J, Quin SJ, Sanni LA. Mouse models of blood-stage malaria infections: immune responses and cytokines involved in protection and pathology. Chem Immunol. 2002;80(80):204–228. doi:10.1159/000058845.
  • Lönnberg T, Svensson V, James KR, et al. Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria. Sci Immunol. 2017;2(9):eaal2192. doi:10.1126/sciimmunol.aal2192.
  • Amani V, Vigário A, Belnoue E, et al. Involvement of IFN-γ receptor-mediated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. Eur J Immunol. 2000;30(6):1646–1655. doi:10.1002/1521-4141(200006)30:6<1646::AID-IMMU1646>3.0.CO;2-0.
  • Villegas-Mendez A, Greig R, Shaw TN, et al. IFN-γ–producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain. J Immunol. 2012;189(2):968–979. doi:10.4049/jimmunol.1200688.
  • Claser C, Malleret B, Gun SY, et al. CD8+ T cells and IFN-γ mediate the time-dependent accumulation of infected red blood cells in deep organs during experimental cerebral malaria. PLoS One. 2011;6(4):e18720. doi:10.1371/journal.pone.0018720.
  • Coomes SM, Pelly VS, Kannan Y, et al. IFNγ and IL-12 Restrict Th2 Responses during Helminth/Plasmodium Co-Infection and Promote IFNγ from Th2 Cells. PLoS Pathog. 2015;11(7):e1004994. doi:10.1371/journal.ppat.1004994.
  • Ghoreschi K, Laurence A, Yang X-P, Hirahara K, O’Shea JJ. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol. 2011;32(9):395–401. doi:10.1016/j.it.2011.06.007.
  • Zhao Y, Liu Z, Qin L, Wang T, Bai O. Insights into the mechanisms of Th17 differentiation and the Yin-Yang of Th17 cells in human diseases. Mol Immunol. 2021;134:109–117. doi:10.1016/j.molimm.2021.03.010.
  • Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–238. doi:10.1038/nature04753.
  • Yang XO, Nurieva R, Martinez GJ, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 2008;29(1):44–56. doi:10.1016/j.immuni.2008.05.007.
  • Zhao P, Li J, Tian Y, et al. Restoring Th17/Treg balance via modulation of STAT3 and STAT5 activation contributes to the amelioration of chronic obstructive pulmonary disease by Bufei Yishen formula. J Ethnopharmacol. 2018;217:152–162. doi:10.1016/j.jep.2018.02.023.
  • Egeberg A, Gisondi P, Carrascosa JM, Warren R, Mrowietz U. The role of the interleukin-23/Th17 pathway in cardiometabolic comorbidity associated with psoriasis. J Eur Acad Dermatol Venereol. 2020;34(8):1695–1706. doi:10.1111/jdv.16273.
  • Keswani T, Bhattacharyya A. Differential role of T regulatory and Th17 in Swiss mice infected with Plasmodium berghei ANKA and Plasmodium yoelii. Exp Parasitol. 2014;141:82–92. doi:10.1016/j.exppara.2014.03.003.
  • Sarkar S, Keswani T, Sengupta A, Mitra S, Bhattacharyya A. Differential modulation of glial cell mediated neuroinflammation in Plasmodium berghei ANKA infection by TGF β and IL 6. Cytokine. 2017;99:249–259. doi:10.1016/j.cyto.2017.07.026.
  • Cipollini V, Anrather J, Orzi F, Iadecola C. Th17 and cognitive impairment: possible mechanisms of action. Front Neuroanat. 2019;13:95. doi:10.3389/fnana.2019.00095.
  • Scheinecker C, Göschl L, Bonelli M. Treg cells in health and autoimmune diseases: new insights from single cell analysis. J Autoimmun. 2020;110:102376. doi:10.1016/j.jaut.2019.102376.
  • Chauhan R, Awasthi V, Thakur RS, Pande V, Chattopadhyay D, Das J. CD4+ ICOS + Foxp3+: a sub-population of regulatory T cells contribute to malaria pathogenesis. Malar J. 2022;21(1):32. doi:10.1186/s12936-022-04055-3.
  • Pohar J, Simon Q, Fillatreau S. Antigen-specificity in the thymic development and peripheral activity of CD4+ FOXP3+ T regulatory cells. Front Immunol. 2018;9:1701. doi:10.3389/fimmu.2018.01701.
  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. cell. 2008;133(5):775–787. doi:10.1016/j.cell.2008.05.009.
  • Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W. A critical function for TGF-β signaling in the development of natural CD4+ CD25+ Foxp3+ regulatory T cells. Nat Immunol. 2008;9(6):632–640. doi:10.1038/ni.1607.
  • Cowman AF, Healer J, Marapana D, Marsh K. Malaria: biology and disease. Cell. 2016;167(3):610–624. doi:10.1016/j.cell.2016.07.055.
  • Sekiya T, Yoshimura A. In vitro Th differentiation protocol. TGF-β Signaling: Methods and Protocols. 2016:183–191.
  • Rojas García C, Campos Mora M, Cárcamo I, et al. T regulatory cells-derived extracellular vesicles and their contribution to the generation of immune tolerance, 2020.
  • Walther M, Jeffries D, Finney OC, et al. Distinct roles for FOXP3+ and FOXP3− CD4+ T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathog. 2009;5(4):e1000364. doi:10.1371/journal.ppat.1000364.
  • Hansen DS, Schofield L. Natural regulatory T cells in malaria: host or parasite allies? PLoS Pathog. 2010;6(4):e1000771. doi:10.1371/journal.ppat.1000771.
  • Steeg C, Adler G, Sparwasser T, Fleischer B, Jacobs T. Limited role of CD4+ Foxp3+ regulatory T cells in the control of experimental cerebral malaria. J Immunol. 2009;183(11):7014–7022. doi:10.4049/jimmunol.0901422.
  • Neurath MF, Kaplan MH. Th9 cells in immunity and immunopathological diseases. Semin Immunopathol. 2017;39(1):1–4. doi:10.1007/s00281-016-0611-z.
  • Dardalhon V, Awasthi A, Kwon H, et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3− effector T cells. Nat Immunol. 2008;9(12):1347–1355. doi:10.1038/ni.1677.
  • Kaplan MH. The Transcription Factor Network in Th9 Cells. Springer; 2017:11–20. doi:10.1007/s00281-016-0600-2.
  • Licona-Limón P, Arias-Rojas A, Olguín-Martínez E. IL-9 and Th9 in parasite immunity. Semin Immunopathol. 2017;39(1):29–38. doi:10.1007/s00281-016-0606-9.
  • He Y, Dong L, Cao Y, Bi Y, Liu G. IL-9 and Th9 cells in tumor immunity. Tumor Microenviron Role Interleuk Part A. 2020:35–46.
  • Shik D, Tomar S, Lee J-B, Chen C-Y, Smith A, Wang Y-H. IL-9-producing cells in the development of IgE-mediated food allergy. Semin Immunopathol. 2017;39(1):69–77. doi:10.1007/s00281-016-0605-x.
  • Elyaman W, Khoury SJ. Th9 cells in the pathogenesis of EAE and multiple sclerosis. Semin Immunopathol. 2017;39(1):79–87. doi:10.1007/s00281-016-0604-y.
  • Ghosh S, Mukherjee S, Sengupta A, et al. CD4+ IL9+ (Th9) cells as the major source of IL-9, potentially modulate Th17/Treg mediated host immune response during experimental cerebral malaria. Mol Immunol. 2022;152:240–254. doi:10.1016/j.molimm.2022.11.005.
  • Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol. 2013;25(4):305–312. doi:10.1016/j.smim.2013.10.009.
  • Aqel S, Kraus E, Jena N, et al. Novel small molecule IL-6 inhibitor suppresses autoreactive Th17 development and promotes Treg development. Clin Exp Immunol. 2019;196(2):215–225. doi:10.1111/cei.13258.
  • Sengupta A, Keswani T, Sarkar S, Ghosh S, Mukherjee S, Bhattacharyya A. Autophagic induction modulates splenic plasmacytoid dendritic cell mediated immune response in cerebral malarial infection model. Microbes Infect. 2019;21(10):475–484. doi:10.1016/j.micinf.2019.05.004.
  • Organization WH. Guidelines for the Treatment of Malaria. Geneva: World Health Organization; 2015.
  • Kouakou YI, Tod M, Leboucher G, et al. Systematic review of artesunate pharmacokinetics: implication for treatment of resistant malaria. Int J Infect Dis. 2019;89:30–44. doi:10.1016/j.ijid.2019.08.030.
  • Albrecht-Schgoer K, Lackner P, Schmutzhard E, Baier G. Cerebral malaria: current clinical and immunological aspects. Front Immunol. 2022;13:863568. doi:10.3389/fimmu.2022.863568.
  • Taylor TE, Molyneux ME. The pathogenesis of pediatric cerebral malaria: eye exams, autopsies, and neuroimaging. Ann N Y Acad Sci. 2015;1342(1):44–52. doi:10.1111/nyas.12690.
  • Patel MM, Patel BM. Crossing the blood–brain barrier: recent advances in drug delivery to the brain. CNS Drugs. 2017;31(2):109–133. doi:10.1007/s40263-016-0405-9.
  • Tajes M, Ramos-Fernández E, Weng-Jiang X, et al. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol. 2014;31(5):152–167. doi:10.3109/09687688.2014.937468.
  • Jiang X, Chen L, Zheng Z, et al. Synergistic effect of combined artesunate and tetramethylpyrazine in experimental cerebral malaria. ACS Infect Dis. 2020;6(9):2400–2409. doi:10.1021/acsinfecdis.0c00124.
  • Fasching P, Stradner M, Graninger W, Dejaco C, Fessler J. Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Molecules. 2017;22(1):134. doi:10.3390/molecules22010134.
  • Rts S. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386(9988):31–45.
  • Datoo MS, Dicko A, Tinto H, et al. Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. Lancet. 2024;403(10426):533–544. doi:10.1016/S0140-6736(23)02511-4.
  • Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and role of regulatory T cells in rheumatoid arthritis. Front Immunol. 2021;12:626193. doi:10.3389/fimmu.2021.626193.
  • Raimondo MG, Biggioggero M, Crotti C, Becciolini A, Favalli EG. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis. Drug Des Devel Ther. 2017;11:1593–1603. doi:10.2147/DDDT.S100302.
  • Chauhan R, Tiwari M, Chaudhary A, Sharan Thakur R, Pande V, Das J. Chemokines: A key driver for inflammation in protozoan infection. Int Rev Immunol. 2023:1–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.