226
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Macrophage: A key player in neuropathic pain

, , , , &
Received 20 Dec 2023, Accepted 13 Apr 2024, Published online: 25 Apr 2024

References

  • Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9(8):807–819. doi:10.1016/S1474-4422(10)70143-5.
  • Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev. 2021;101(1):259–301. doi:10.1152/physrev.00045.2019.
  • Bannister K, Sachau J, Baron R, Dickenson AH. Neuropathic pain: mechanism-based therapeutics. Annu Rev Pharmacol Toxicol. 2020;60(1):257–274. doi:10.1146/annurev-pharmtox-010818-021524.
  • Malcangio M. Role of the immune system in neuropathic pain. Scand J Pain. 2019;20(1):33–37. doi:10.1515/sjpain-2019-0138.
  • Fiore NT, Debs SR, Hayes JP, Duffy SS, Moalem-Taylor G. Pain-resolving immune mechanisms in neuropathic pain. Nat Rev Neurol. 2023;19(4):199–220. doi:10.1038/s41582-023-00777-3.
  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–455. doi:10.1038/nature12034.
  • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–737. doi:10.1038/nri3073.
  • De Vlaminck K, Van Hove H, Kancheva D, et al. Differential plasticity and fate of brain-resident and recruited macrophages during the onset and resolution of neuroinflammation. Immunity. 2022;55(11):2085–2102.e9. doi:10.1016/j.immuni.2022.09.005.
  • Bautista M, Krishnan A. Self-renewal of peripheral nerve resident macrophage: does it represent a unique activation status? Neural Regen Res. 2022;17(5):999–1000. doi:10.4103/1673-5374.324845.
  • Chen O, Donnelly CR, Ji R-R. Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons. Curr Opin Neurobiol. 2020;62:17–25. doi:10.1016/j.conb.2019.11.006.
  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–6173. doi:10.4049/jimmunol.164.12.6166.
  • Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. doi:10.1016/j.immuni.2014.06.008.
  • Msheik Z. 2022. The macrophage: a key player in the pathophysiology of peripheral neuropathies.
  • Sideris-Lampretsas G, Malcangio M. Microglial heterogeneity in chronic pain. Brain Behav Immun. 2021;96:279–289. doi:10.1016/j.bbi.2021.06.005.
  • Jin H, Liu K, Tang J, et al. Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleural and peritoneal cavity macrophages following injury. Nat Commun. 2021;12(1):2863. doi:10.1038/s41467-021-23197-7.
  • Liu K, Jin H, Tang M, et al. Lineage tracing clarifies the cellular origin of tissue-resident macrophages in the developing heart. Journal of Cell Biology. 2022;221(6):e202108093. doi:10.1083/jcb.202108093.
  • Nakashima H, Kearney BM, Kato A, et al. Novel phenotypical and functional sub-classification of liver macrophages highlights changes in population dynamics in experimental mouse models. Cytometry A. 2023;103(11):902–914. doi:10.1002/cyto.a.24783.
  • Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 2017;35(1):441–468. doi:10.1146/annurev-immunol-051116-052358.
  • Utz SG, See P, Mildenberger W, et al. Early fate defines microglia and non-parenchymal Brain macrophage development. Cell. 2020;181(3):557–573.e18. doi:10.1016/j.cell.2020.03.021.
  • Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547–551. doi:10.1038/nature13989.
  • Kierdorf K, Erny D, Goldmann T, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16(3):273–280. doi:10.1038/nn.3318.
  • Mesquida-Veny F, Del Río JA, Hervera A. Macrophagic and microglial complexity after neuronal injury. Prog Neurobiol. 2021;200:101970. doi:10.1016/j.pneurobio.2020.101970.
  • Stoll G, Jander S, Myers RR. Degeneration and ­regeneration of the peripheral nervous system: from Augustus Waller’s observations to neuroinflammation. J Peripher Nerv Syst. 2002;7(1):13–27. doi:10.1046/j.1529-8027.2002.02002.x.
  • Ydens E, Amann L, Asselbergh B, et al. Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nat Neurosci. 2020;23(5):676–689. doi:10.1038/s41593-020-0618-6.
  • Amann L, Prinz M. The origin, fate and function of macrophages in the peripheral nervous system—an update. Int Immunol. 2020;32(11):709–717. doi:10.1093/intimm/dxaa030.
  • Kolter J, Kierdorf K, Henneke P. Origin and differentiation of nerve-associated macrophages. J Immunol. 2020;204(2):271–279. doi:10.4049/jimmunol.1901077.
  • Domoto R, Sekiguchi F, Tsubota M, Kawabata A. Macrophage as a peripheral pain regulator. Cells. 2021;10(8):1881. doi:10.3390/cells10081881.
  • Silva CEA, Guimarães RM, Cunha TM. Sensory neuron–associated macrophages as novel modulators of neuropathic pain. Pain Rep. 2021;6(1):e873. doi:10.1097/PR9.0000000000000873.
  • Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain. Nat Rev Dis Primers. 2017;3(1):17002. doi:10.1038/nrdp.2017.2.
  • Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32(1):1–32. doi:10.1146/annurev.neuro.051508.135531.
  • Loeser JD, Treede R-D. The kyoto protocol of IASP basic pain terminology. ✩Pain. 2008;137(3):473–477. doi:10.1016/j.pain.2008.04.025.
  • Inoue K, Tsuda M. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci. 2018;19(3):138–152. doi:10.1038/nrn.2018.2.
  • Treede R-D, Rief W, Barke A, et al. Chronic pain as a symptom or a disease: the IASP classification of chronic pain for the international classification of diseases (ICD-11). Pain. 2019;160(1):19–27. doi:10.1097/j.pain.0000000000001384.
  • Ji R-R, Xu Z-Z, Gao Y-J. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 2014;13(7):533–548. doi:10.1038/nrd4334.
  • Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol. 2019;173:102–121. doi:10.1016/j.pneurobio.2018.12.001.
  • Peng J, Gu N, Zhou L, et al. Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nat Commun. 2016;7(1):12029. doi:10.1038/ncomms12029.
  • Yu X, Liu H, Hamel KA, et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat Commun. 2020;11(1):264. doi:10.1038/s41467-019-13839-2.
  • Montague K, Simeoli R, Valente J, Malcangio M. A novel interaction between CX3CR1 and CCR2 signalling in monocytes constitutes an underlying mechanism for persistent vincristine-induced pain. J Neuroinflammation. 2018;15(1):101. doi:10.1186/s12974-018-1116-6.
  • Ji R-R, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 2018;129(2):343–366. doi:10.1097/ALN.0000000000002130.
  • Echeverry S, Shi XQ, Yang M, et al. Spinal microglia are required for long-term maintenance of neuropathic pain. Pain. 2017;158(9):1792–1801. doi:10.1097/j.pain.0000000000000982.
  • Chen G, Zhang Y-Q, Qadri YJ, Serhan CN, Ji R-R. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron. 2018;100(6):1292–1311. doi:10.1016/j.neuron.2018.11.009.
  • Clark AK, Yip PK, Grist J, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A. 2007;104(25):10655–10660. doi:10.1073/pnas.0610811104.
  • Guan Z, Kuhn JA, Wang X, et al. Injured sensory neuron–derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat Neurosci. 2016;19(1):94–101. doi:10.1038/nn.4189.
  • Kobayashi M, Konishi H, Sayo A, Takai T, Kiyama H. TREM2/DAP12 signal elicits proinflammatory response in microglia and exacerbates neuropathic pain. J Neurosci. 2016;36(43):11138–11150. doi:10.1523/JNEUROSCI.1238-16.2016.
  • Zhuang Z-Y, Kawasaki Y, Tan P-H, Wen Y-R, Huang J, Ji R-R. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun. 2007;21(5):642–651. doi:10.1016/j.bbi.2006.11.003.
  • Tsuda M, Masuda T, Kitano J, Shimoyama H, Tozaki-Saitoh H, Inoue K. IFN-γ receptor signaling mediates spinal microglia activation driving neuropathic pain. PNAS. 2009;106(19):8032–8037. doi:10.1073/pnas.0810420106.
  • Yi M-H, Liu YU, Liu K, et al. Chemogenetic manipulation of microglia inhibits neuroinflammation and neuropathic pain in mice. Brain Behav Immun. 2021;92:78–89. doi:10.1016/j.bbi.2020.11.030.
  • Sideris-Lampretsas G, Malcangio M. Pain-resolving ­microglia. Science. 2022;376(6588):33–34. doi:10.1126/science.abo5592.
  • Berta T, Park C-K, Xu Z-Z, et al. Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion. J Clin Invest. 2014;124(3):1173–1186. doi:10.1172/JCI72230.
  • Berta T, Qadri YJ, Chen G, Ji RR. Microglial signaling in chronic pain with a special focus on caspase 6, p38 MAP kinase, and sex dependence. J Dent Res. 2016;95(10):1124–1131. doi:10.1177/0022034516653604.
  • Berta T, Lee JE, Park C-K. Unconventional role of caspase-6 in spinal microglia activation and chronic pain. Mediators Inflamm. 2017;2017:9383184–9383188. doi:10.1155/2017/9383184.
  • Park C-K, Lü N, Xu Z-Z, Liu T, Serhan CN, Ji R-R. Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J Neurosci. 2011a;31(42):15072–15085. doi:10.1523/JNEUROSCI.2443-11.2011.
  • Cao H, Ren W-H, Zhu M-Y, Zhao Z-Q, Zhang Y-Q. Activation of glycine site and GluN2B subunit of NMDA receptors is necessary for ERK/CREB signaling cascade in rostral anterior cingulate cortex in rats: Implications for affective pain. Neurosci Bull. 2012;28(1):77–87. doi:10.1007/s12264-012-1060-x.
  • Gruber-Schoffnegger D, Drdla-Schutting R, Hönigsperger C, Wunderbaldinger G, Gassner M, Sandkühler J. Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-α and IL-1β is mediated by glial cells. J Neurosci. 2013;33(15):6540–6551. doi:10.1523/JNEUROSCI.5087-12.2013.
  • Hu H-J, Carrasquillo Y, Karim F, et al. The Kv4.2 ­potassium channel subunit is required for pain plasticity. Neuron. 2006;50(1):89–100. doi:10.1016/j.neuron.2006.03.010.
  • Xu Z-Z, Zhang L, Liu T, et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med. 2010;16(5):592–597, 1p following 597. doi:10.1038/nm.2123.
  • Atta AA, Ibrahim WW, Mohamed AF, Abdelkader NF. Microglia polarization in nociplastic pain: mechanisms and perspectives. Inflammopharmacol. 2023;31(3):1053–1067. doi:10.1007/s10787-023-01216-x.
  • Clark AK, Staniland AA, Marchand F, Kaan TKY, McMahon SB, Malcangio M. P2X7-dependent release of interleukin-1β and Nociception in the spinal cord following lipopolysaccharide. J Neurosci. 2010;30(2):573–582. doi:10.1523/JNEUROSCI.3295-09.2010.
  • Clark AK, Yip PK, Malcangio M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J Neurosci. 2009;29(21):6945–6954. doi:10.1523/JNEUROSCI.0828-09.2009.
  • Hughes PM, Botham MS, Frentzel S, Mir A, Perry VH. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia. 2002;37(4):314–327.
  • Zhang Z-J, Jiang B-C, Gao Y-J. Chemokines in neuron–glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci. 2017;74(18):3275–3291. doi:10.1007/s00018-017-2513-1.
  • Biber K, Neumann H, Inoue K, Boddeke HWGM. Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci. 2007;30(11):596–602. doi:10.1016/j.tins.2007.08.007.
  • Pawelec P, Ziemka-Nalecz M, Sypecka J, Zalewska T. The impact of the CX3CL1/CX3CR1 axis in neurological disorders. Cells. 2020;9(10):2277. doi:10.3390/cells9102277.
  • Feng R, Muraleedharan Saraswathy V, Mokalled MH, Cavalli V. Self-renewing macrophages in dorsal root ganglia contribute to promote nerve regeneration. Proc Natl Acad Sci U S A. 2023;120(7):e2215906120. doi:10.1073/pnas.2215906120.
  • Hu X, Du L, Liu S, et al. A TRPV4-dependent neuroimmune axis in the spinal cord promotes neuropathic pain. Journal of Clinical Investigation. 2023;133(5):e161507. doi:10.1172/JCI161507.
  • Tansley S, Gu N, Guzmán AU, et al. Microglia-mediated degradation of perineuronal nets promotes pain. Science. 2022a;377(6601):80–86. doi:10.1126/science.abl6773.
  • Chu J, Yang J, Zhou Y, et al. ATP-releasing SWELL1 channel in spinal microglia contributes to neuropathic pain. Sci Adv. 2023;9(13):eade9931. doi:10.1126/sciadv.ade9931.
  • Yang J-X, Wang H-F, Chen J-Z, et al. Potential neuroimmune interaction in chronic pain: a review on ­immune cells in peripheral and central sensitization. Front Pain Res. 2022;3:946846. doi:10.3389/fpain.2022.946846.
  • Tu Y, Muley MM, Beggs S, Salter MW. Microglia-independent peripheral neuropathic pain in male and female mice. Pain. 2022;163(11):e1129–e1144. doi:10.1097/j.pain.0000000000002643.
  • Gu N, Peng J, Murugan M, et al. Spinal microgliosis due to resident microglial proliferation is required for pain hypersensitivity after peripheral nerve injury. Cell Rep. 2016;16(3):605–614. doi:10.1016/j.celrep.2016.06.018.
  • Ji R-R, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain. 2013;154 Suppl 1(0 1):S10–S28. doi:10.1016/j.pain.2013.06.022.
  • Zhang H, Yoon S-Y, Zhang H, Dougherty PM. Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of paclitaxel-induced painful neuropathy. J Pain. 2012;13(3):293–303. doi:10.1016/j.jpain.2011.12.002.
  • Niehaus JK, Taylor-Blake B, Loo L, Simon JM, Zylka MJ. Spinal macrophages resolve nociceptive hypersensitivity after peripheral injury. Neuron. 2021;109(8):1274–1282.e6. doi:10.1016/j.neuron.2021.02.018.
  • Kohno K, Shirasaka R, Yoshihara K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain. Science. 2022;376(6588):86–90. doi:10.1126/science.abf6805.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. doi:10.1016/j.cell.2006.02.015.
  • Donnelly CR, Chen O, Ji R-R. How do sensory neurons sense danger signals? Trends Neurosci. 2020;43(10):822–838. doi:10.1016/j.tins.2020.07.008.
  • Liu T, Gao Y-J, Ji R-R. Emerging role of Toll-like ­receptors in the control of pain and itch. Neurosci Bull. 2012;28(2):131–144. doi:10.1007/s12264-012-1219-5.
  • Bethea JR, Fischer R. Role of peripheral immune cells for development and recovery of chronic pain. Front Immunol. 2021;12:641588. doi:10.3389/fimmu.2021.641588.
  • Hu P, Bembrick AL, Keay KA, McLachlan EM. 2007. Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve.
  • Gheorghe R-O, Grosu AV, Bica-Popi M, Ristoiu V. The Yin/Yang balance of communication between sensory neurons and macrophages in traumatic peripheral neuropathic pain. IJMS. 2022;23(20):12389. doi:10.3390/ijms232012389.
  • Yowtak J, Lee KY, Kim HY, et al. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain. 2011;152(4):844–852. doi:10.1016/j.pain.2010.12.034.
  • Binshtok AM, Wang H, Zimmermann K, et al. Nociceptors are interleukin-1β sensors. J Neurosci. 2008;28(52):14062–14073. doi:10.1523/JNEUROSCI.3795-08.2008.
  • Ma W, Quirion R. Up-regulation of interleukin-6 ­induced by prostaglandin E 2 from invading macrophages following nerve injury: an in vivo and in vitro study. J Neurochem. 2005;93(3):664–673. doi:10.1111/j.1471-4159.2005.03050.x.
  • Ma W, St-Jacques B, Cruz Duarte P. Targeting pain mediators induced by injured nerve-derived COX2 and PGE2 to treat neuropathic pain. Expert Opin Ther Targets. 2012;16(6):527–540. doi:10.1517/14728222.2012.680955.
  • White FA, Sun J, Waters SM, et al. Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc Natl Acad Sci U S A. 2005;102(39):14092–14097. doi:10.1073/pnas.0503496102.
  • Zhang FF, Morioka N, Harano S, et al. Perineural ­expression of high-mobility group box-1 contributes to long-lasting mechanical hypersensitivity via matrix metalloprotease-9 up-regulation in mice with painful peripheral neuropathy. J Neurochem. 2016;136(4):837–850. doi:10.1111/jnc.13434.
  • Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. Br J Pharmacol. 2018;175(12):2138–2157. doi:10.1111/bph.13962.
  • De Logu F, Nassini R, Materazzi S, et al. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat Commun. 2017;8(1):1887. doi:10.1038/s41467-017-01739-2.
  • Honda K, Shinoda M, Kondo M, et al. Sensitization of TRPV1 and TRPA1 via peripheral mGluR5 signaling contributes to thermal and mechanical hypersensitivity. Pain. 2017;158(9):1754–1764. doi:10.1097/j.pain.0000000000000973.
  • Kamau PM, Li H, Yao Z, et al. Potent CaV3.2 channel inhibitors exert analgesic effects in acute and chronic pain models. Biomed Pharmacother. 2022;153:113310. doi:10.1016/j.biopha.2022.113310.
  • Smith PA. K + channels in primary afferents and their role in nerve injury-induced pain. Front Cell Neurosci. 2020;14:566418. doi:10.3389/fncel.2020.566418.
  • Natura G, Von Banchet GS, Schaible H-G. Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats. Pain. 2005;116(3):194–204. doi:10.1016/j.pain.2005.04.002.
  • Sun J, Ramnath RD, Zhi L, Tamizhselvi R, Bhatia M. Substance P enhances NF-κB transactivation and chemokine response in murine macrophages via ERK1/2 and p38 MAPK signaling pathways. Am J Physiol Cell Physiol. 2008;294(6):C1586–C1596. doi:10.1152/ajpcell.00129.2008.
  • Simeoli R, Montague K, Jones HR, et al. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma. Nat Commun. 2017;8(1):1778. doi:10.1038/s41467-017-01841-5.
  • Ying H, Kang Y, Zhang H, et al. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J Immunol. 2015;194(3):1239–1251. doi:10.4049/jimmunol.1402088.
  • Zhong Y, Yi C. MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3. Biosci Rep. 2016;36(4):e00363. doi:10.1042/BSR20160105.
  • Baliu-Piqué M, Jusek G, Holzmann B. Neuroimmunological communication via CGRP promotes the development of a regulatory phenotype in TLR4-stimulated macrophages. Eur J Immunol. 2014;44(12):3708–3716. doi:10.1002/eji.201444553.
  • Lim JE, Chung E, Son Y. A neuropeptide, substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNγ. Sci Rep. 2017;7(1):9417. doi:10.1038/s41598-017-09639-7.
  • Fonseca MM, Davoli-Ferreira M, Santa-Cecília F, et al. IL-27 counteracts neuropathic pain development through induction of IL-10. Front Immunol. 2019;10:3059. doi:10.3389/fimmu.2019.03059.
  • Huang Y, Zhu L, Zhang W, Tang Q, Zhong Y. IL-10 alleviates radicular pain by inhibiting TNF-α/p65 dependent Nav1.7 up-regulation in DRG neurons of rats. Brain Res. 2022;1791:147997. doi:10.1016/j.brainres.2022.147997.
  • Zhang J, Ma J, Trinh RT, Heijnen CJ, Kavelaars A. An HDAC6 inhibitor reverses chemotherapy-induced ­mechanical hypersensitivity via an IL-10 and macrophage dependent pathway. Brain Behav Immun. 2022;100:287–296. doi:10.1016/j.bbi.2021.12.005.
  • Pannell M, Labuz D, Celik MÖ, et al. Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides. J Neuroinflammation. 2016;13(1):262. doi:10.1186/s12974-016-0735-z.
  • Altier C, Khosravani H, Evans RM, et al. ORL1 ­receptor–mediated internalization of N-type calcium channels. Nat Neurosci. 2006;9(1):31–40. doi:10.1038/nn1605.
  • Corder G, Castro DC, Bruchas MR, Scherrer G. Endogenous and exogenous opioids in pain. Annu Rev Neurosci. 2018;41(1):453–473. doi:10.1146/annurev-neuro-080317-061522.
  • Jo YY, Lee JY, Park C-K. Resolvin E1 inhibits substance p-induced potentiation of TRPV1 in primary sensory neurons. Mediators Inflamm. 2016;2016:5259321–5259329. doi:10.1155/2016/5259321.
  • Park C-K, Xu Z-Z, Liu T, Lü N, Serhan CN, Ji R-R. Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. J Neurosci. 2011b;31(50):18433–18438. doi:10.1523/JNEUROSCI.4192-11.2011.
  • Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci. 2018;19(2):63–80. doi:10.1038/nrn.2017.170.
  • Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab. 2022;4(7):802–812. doi:10.1038/s42255-022-00594-w.
  • Duggett NA, Griffiths LA, Flatters SJL. Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons. Pain. 2017;158(8):1499–1508. doi:10.1097/j.pain.0000000000000939.
  • Hagenston AM, Simonetti M. Neuronal calcium signaling in chronic pain. Cell Tissue Res. 2014;357(2):407–426. doi:10.1007/s00441-014-1942-5.
  • van der Vlist M, Raoof R, Willemen HLDM, et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron. 2022;110(4):613–626.e9. doi:10.1016/j.neuron.2021.11.020.
  • Singh SK, Krukowski K, Laumet GO, et al. CD8+ T cell–derived IL-13 increases macrophage IL-10 to ­resolve neuropathic pain. JCI Insight. 2022;7(5):e154194. doi:10.1172/jci.insight.154194.
  • Bang S, Xie Y-K, Zhang Z-J, Wang Z, Xu Z-Z, Ji R-R. GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. J Clin Invest. 2018;128(8):3568–3582. doi:10.1172/JCI99888.
  • Hakim S, Woolf CJ. Macrophages set the bar for acute pain sensitivity. Nat Immunol. 2023;24(3):382–384. doi:10.1038/s41590-023-01438-9.
  • Tanaka T, Okuda H, Isonishi A, et al. Dermal macrophages set pain sensitivity by modulating the amount of tissue NGF through an SNX25–Nrf2 pathway. Nat Immunol. 2023;24(3):439–451. doi:10.1038/s41590-022-01418-5.
  • Osborne NR, Davis KD. 2022. Sex and gender differences in pain. International Review of Neurobiology. 2022;164:277–307. doi:10.1016/bs.irn.2022.06.013.
  • Ghazisaeidi S, Muley MM, Salter MW. Neuropathic pain: mechanisms, sex differences, and potential therapies for a global problem. Annu Rev Pharmacol Toxicol. 2023;63(1):565–583. doi:10.1146/annurev-pharmtox-051421-112259.
  • Mogil JS. Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci. 2020;21(7):353–365. doi:10.1038/s41583-020-0310-6.
  • Mogil JS. Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nat Rev Neurosci. 2012;13(12):859–866. doi:10.1038/nrn3360.
  • Villa A, Gelosa P, Castiglioni L, et al. Sex-specific features of microglia from adult mice. Cell Rep. 2018;23(12):3501–3511. doi:10.1016/j.celrep.2018.05.048.
  • Halievski K, Ghazisaeidi S, Salter MW. Sex-dependent mechanisms of chronic pain: a focus on microglia and P2X4R. J Pharmacol Exp Ther. 2020;375(1):202–209. doi:10.1124/jpet.120.265017.
  • Mapplebeck JCS, Dalgarno R, Tu Y, et al. Microglial P2X4R-evoked pain hypersensitivity is sexually dimorphic in rats. Pain. 2018;159(9):1752–1763. doi:10.1097/j.pain.0000000000001265.
  • Kuhn JA, Vainchtein ID, Braz J, et al. Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice. eLife. 2021;10:e69056. doi:10.7554/eLife.69056.
  • Lee J, Chung S, Hwang M, Kwon Y, Han SH, Lee SJ. Estrogen mediates the sexual dimorphism of GT1b-induced central pain sensitization. Cells. 2023;12(5):808. doi:10.3390/cells12050808.
  • Sorge RE, Mapplebeck JCS, Rosen S, et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci. 2015;18(8):1081–1083. doi:10.1038/nn.4053.
  • Sorge RE, LaCroix-Fralish ML, Tuttle AH, et al. Spinal cord toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice. J Neurosci. 2011;31(43):15450–15454. doi:10.1523/JNEUROSCI.3859-11.2011.
  • Szabo-Pardi T, Agalave N, Burton M. The role of ­microglia versus peripheral macrophages in maladaptive plasticity after nerve injury. Neural Regen Res. 2021;16(6):1202–1203. doi:10.4103/1673-5374.300438.
  • Taves S, Berta T, Liu D-L, et al. Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: sex-dependent microglial signaling in the spinal cord. Brain Behav Immun. 2016;55:70–81. doi:10.1016/j.bbi.2015.10.006.
  • Tansley S, Uttam S, Ureña Guzmán A, et al. Single-cell RNA sequencing reveals time- and sex-specific ­responses of mouse spinal cord microglia to peripheral nerve injury and links ApoE to chronic pain. Nat Commun. 2022b;13(1):843. doi:10.1038/s41467-022-28473-8.
  • Luo X, Chen O, Wang Z, et al. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron. 2021;109(17):2691–2706.e5. doi:10.1016/j.neuron.2021.06.015.
  • Ji J, He Q, Luo X, et al. IL-23 Enhances C-fiber-mediated and blue light-induced spontaneous pain in female mice. Front Immunol. 2021;12:787565. doi:10.3389/fimmu.2021.787565.
  • Luo X, Huh Y, Bang S, et al. Macrophage toll-like ­receptor 9 contributes to chemotherapy-induced neuropathic pain in male mice. J Neurosci. 2019;39(35):6848–6864. doi:10.1523/JNEUROSCI.3257-18.2019.
  • Rivero T. d, Fischer R, Yang F, Swanson KA, Bethea JR. Tumor necrosis factor receptor 1 inhibition is therapeutic for neuropathic pain in males but not in ­females. Pain. 2019;160(4):922–931. doi:10.1097/j.pain.0000000000001470.
  • Teasdale RD, Collins BM. Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochemical Journal. 2012;441;39–59. doi:10.1042/BJ20111226

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.