183
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel strain of Yarrowia phangngaensis producing a multienzyme complex; a source of enzyme additives for baking high cassava-wheat composite bread

, , , , , , , & show all

References

  • AACC. 2000. Approved methods of the American Association of Cereal Chemists, method 54-30 (alveogrpahic analysis). 10th ed. St. Paul, Minnesota: American Association of Cereal Chemists.
  • Abass, B., W. Awoyale, B. Alenkhe, N. Malu, B. W. Asiru, V. Manyong, and N. Sanginga. 2018. Can food technology innovation change the status of a food security crop? A review of cassava transformation into “bread” in Africa. Food Rev. Int. 34 (1):87–102. doi:10.1080/87559129.2016.1239207.
  • Agu, R. C. 2014. Assessment of alcohol yield potential and processability of wheat grown in tropical Nigeria. Mbaa Tq. 51:27–32.
  • Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.
  • Amel, A. K., G. Mohammed, B. Hayat, H. Kahina, L. Bennamoun, D. Shahrazed, E. Mohamed, and M. Zahia. 2017. Improving bread quality with the application of a newly purified thermostable α-amylase from Rhizopusoryzae FSIS4. Foods 6:1. doi:10.3390/foods6010001.
  • AOAC. 1990. Official methods of analysis. 15th ed. Arlington, USA: Association of Official Analytical Chemists (AOAC).
  • Aryeetey, E., F. D. Wireko-Manu, J. O. Asante, D. Laryea, W. O. Ellis, I. Oduro, and M. Ngadi. 2018. Recipe standardization of bread using cassava-wheat composite flour. J. Culinary Sci. Technol. 17:1–24.
  • Aryeetey, E., F. D. Wireko-Manu, J. O. Asante, D. Laryea, W. O. Ellis, I. Oduro, and M. Ngadi. 2019. Recipe standardization of using cassava-wheat composite flour. 17:232–255. doi:10.1080/15428052.2018.1429972.
  • Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing for methods of assay of xylanase activity. J. Biotech. 23:257–270. doi:10.1016/0168-1656(92)90074-J.
  • Bala, A., and B. Singh. 2017. Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making. World J. Microbiol. Biotechnol. 33 (6):109. doi:10.1007/s11274-017-2278-6.
  • Begum, R., S. K. Rakshit, and S. M. M. Rahman. 2011. Protein fortification and use of cassava flour for bread formulation. Int. J. Food Prop. 14:185–198. doi:10.1080/10942910903160406.
  • Bekatorou, A., C. Psarianos, and A. A. Koutinas. 2006. Production of food grade yeasts. Food Technol. Biotech. 44:407–415.
  • Bi, T., Y. Charles, F. K. N’guessan, C. A. Kouakou, M. Jacques, S. Casaregola, and M. Dje. 2016. Identification of yeasts isolated from raffia wine (Raphiahookeri) produced in Côte d’Ivoire and genotyping of Saccharomyces cerevisiae strains by PCR inter-delta. World J. Microbiol. Biotechnol. 32:1–9. doi:10.1007/s11274-015-1971-6.
  • Bitrus, J., O. Amadi, T. N. Nwagu, C. I. Nnamchi, and A. N. Moneke. 2020. Application of wild yeast (Saccharomyces cerevisiae) isolates from palm wine and honey in baking of cassava/wheat composite bread. Food Nutr. Sci. 11:895–911. doi:10.4236/fns.2020.117050.
  • Caballero, P. A., M. Gómez, and C. M. Rosell. 2007. Bread quality and dough rheology of enzyme supplemented wheat flour. Eur. Food Res. Technol. 5:525–534. doi:10.1007/s00217-006-0311-3.
  • Cardoso, V., B. Borellia, C. Laraa, M. Soaresa, C. Pataroa, E. Bodevanc, and C. Ros. 2015. The influence of seasons and ripening time on yeast communities of a traditional Brazilian cheese. Food Res. Int. 69:331–340. doi:10.1016/j.foodres.2014.12.040.
  • Cauvain, S., and L. Young. 2006. Ingredients and their influences. In Baked products. Science, technology and practice, ed. S. Cauvain and L. Young, 72–98. Oxford: Blackwell Publishing.
  • Charles, A. L., Y. H. Chang, W. C. Ko, K. Sriroth, and T. C. Huang. 2004. Some physical and chemical properties of starch isolates of cassava genotypes. Starch/Starke 56:413:418.
  • Chikere, B. C. 2018. Candida phangngaensis strain IBB_42 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1 and 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence GenBank accession number. MH793861.1.
  • Chisenga, S. M., T. S. Worneh, G. Bultosa, and B. A. Alimi. 2019. Progress in research and applications of cassava flour and starch: A review. J. Food Sci. Technol. 56 (6):2799–2813.
  • Collares, R. M., L. Milasevicius, M. Bassaco, N. Salau, M. Mazutti, D. Bisognin, and L. Terra. 2012. Optimization of enzymatic hydrolysis of cassava to obtain fermentable sugars. J. Zhejiang Uni. Sci. B. 13:579–586. doi:10.1631/jzus.B1100297.
  • Dahiya, S., B. K. Baja, K. Anil, S. K. Tiwari, and B. Sing. 2020. A review on biotechnological potential of multifarious enzymes in bread making. Process Biochem. 99:290–306. doi:10.1016/j.procbio.2020.09.002.
  • De Gobba, K., and L. S. Olsen. 2016. Components of wheat flouras activator of commercial enzymes for bread improvement. Eur. Food Res. Technol. 242:1647–1654. doi:10.1007/s00217-016-2663-7.
  • Eduardo, M., U. Svanberg, J. Oliveira, and L. Ahrne. 2013. Effect of cassava flour characteristic on properties of cassava-wheat-maize composite bread types. Int. J. Food Sci. Art ID. 30540710.1155/2013/305407.
  • Eleazu, C., K. Eleazu, C. Aniedu, J. Amajor, A. Ikpeama, and I. Ebenzer. 2014. Effect of partial replacement of wheat flour with high quality cassava flour on the chemical composition, antioxidant activity, sensory quality, and microbial quality of bread. Prev. Nutr. Food Sci. 19:115–123. doi:10.3746/pnf.2014.19.2.115.
  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evol. 39:783–791. doi:10.1111/j.1558-5646.1985.tb00420.x.
  • Gerits, L. R., B. Pareyt, and J. A. Delcour. 2014. A lipase based approach for studying the role of wheat lipids in bread making. Food Chem. 156:190–196. doi:10.1016/j.foodchem.2014.01.107.
  • Ghoshal, G., U. S. Shivhare, and U. C. Banerjee. 2017. Rheological properties and microstructure of xylanase containing whole wheat bread dough. J. Food Sci. Technol. 54:1928–1937. doi:10.1007/s13197-017-2627-3.
  • Goesaert, H., K. Brijs, W. S. Veeraverbeke, C. M. Courtin, and K. Gebruers. 2005. Wheat flour constituents: How they impact bread quality and how to impact their functionality. Trends Food Sci. Technol. 16:12–30. doi:10.1016/j.tifs.2004.02.011.
  • Groenewald, M., T. Boekhout, C. Neuvéglise, C. Gaillardin, P. W. M. Van Dijck, and M. Wyss. 2014. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol. 40:187–206. doi:10.3109/1040841X.2013.770386.
  • Guan, X., Q. Xu, Y. Zheng, L. Quan, and B. Lin. 2017. Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels. Braz. J. Microbiol. 48:730–739. doi:10.1016/j.bjm.2017.02.011.
  • Heredia-Sandoval, N. C., M. Y. Valencia-Tapia, A. M. Calderon de la Barca, and A. R. Islas-Rubio. 2016. Microbial protease in baked goods: Modification of gluten and effects on immunogenicity and product quality. Food 5:59. doi:10.3390/foods5030059.
  • Hoseney, R. C. 1984. Functional properties of pentosans in baked foods. Food Technol. 38:114.
  • Kashmiri, M. A., A. Adnan, and B. W. Butt. 2006. Production, purification and partial characterization of lipase from. Afr. J. Biotechnol. 5:878–882.
  • Khalil, A. H., E. H. Mansour, and F. M. Dawoud. 2000. Influence of malt on rheological and baking properties of wheat-cassava composite flours. LWT-Food Sci. Technol. 33:159–164. doi:10.1006/fstl.1999.0629.
  • Khoomrung, S., P. Chumnanpuen, S. Jansa-ard, I. Nookaew, and J. Nielsen. 2012. Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 94:1637–1646. doi:10.1007/s00253-012-4125-x.
  • Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol.Evol. 35:1547–1549. doi:10.1093/molbev/msy096.
  • Limtong, S., W. Youngmanitchai, H. Kawasaki, and T. Seki. 2008. Candida phangngensis sp. nov., an anamorphic yeast species in the Yarrowia clade, isolated from water in mangrove forests in Phang-Nga Province, Thailand. Int. J. Syst. Evol. Microbiol. 58:515–519. doi:10.1099/ijs.0.65506-0.
  • Liu, H., X. Ji, and H. Huang. 2015. Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnol. Adv. 33:1522–1546.
  • Liu, N., M. Brennan, L. Serventi, and C. Brennan. 2017. Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran. Food Chem. 234:93–102. doi:10.1016/j.foodchem.2017.04.160.
  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.
  • ltschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.
  • Masamba, M., and H. Jinazali. 2014. Effect of cassava flour processing methods and substitution level on proximate composition, sensory characteristics and overall acceptability of bread made from wheat- cassava flour blends. Afr. J. Food Agr.Nutr. Dev. 14:2190–2203.
  • Melim, M., T. S. Martins-Meyer, V. Figueiredo, B. Lobo, and G. Dellamora-Ortiz. 2013. Enzymes in bakery: Currentand future trends, 287–321. London, UK: Intech openpp.
  • Meunchan, M., S. Michely, H. Devillers, J. M. Nicaud, A. Marty, and C. Neuvéglise. 2015. Comprehensive analysis of a yeast lipase family in the Yarrowia Clade. PLoS One 10 (11):e0143096. doi:10.1371/journal.pone.0143096.
  • Michely, S., C. Gaillardin, M. Nicaud, and C. Neuve ́glise. 2013. Comparative physiology of Oleaginous species from the Yarrowia Clade. PLoS One 8 (5):e63356. doi:10.1371/journal.pone.0063356.
  • Nicaud, J. 2012. Yarrowia lipolytica. Yeast 29 (10):409–418. doi:10.1002/yea.2921.
  • Nwosu, J. N., C. I. Owuamanam, G. C. Omeire, and C. C. Eke. 2014. Quality parameters of bread produced from substitution of wheat flour with cassava flour using soybean as an improver. Am. J. Res. Comm. 2:99–118.
  • Ohimain, E. I. 2015. Overcoming the challenges of implementing the 40% Cassava bread policy in Nigeria. J. Sci. Res. Rep. 7:305–312.
  • Oluwale, B. A., M. O. Ilori, Y. Ayeni, and E. M. Ogunjemilua. 2018. Assessment of cassava composite flour inclusion in bread production in Southwestern Nigeria. J. Food Proc. Technol. 9:760. doi:10.4172/2157-7110.1000760.
  • Otekunrin, O. S., and B. Sawicka. 2019. Cassava, a 21st century staple crop: How can Nigeria harness its enormous trade potentials? Acta Agri.Slov. 33:194–202. doi:10.31080/ASAG.2019.03.0586.
  • Pason, P., A. Kosugi, R. Waeonukul, C. Tachaapaikoon, K. Ratanakhanokchai, T. Arai, Y. Murata, J. Nakajima, and Y. Mori. 2010. Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. Appl. Microbiol. Biotechnol. 85:573–580. doi:10.1007/s00253-009-2117-2.
  • Quarterman, J., P. J. Slininger, C. P. Kurtzman, S. R. Thompson, and B. S. Dien. 2016. A survey of yeast from the Yarrowia clade for lipid production in dilute acid pretreated lignocellulosic biomass hydrolysate. Appl. Microbiol. Biotechnol. 101:3319–3334. doi:10.1007/s00253-016-8062-y.
  • Quarterman, J. C., P. J. Slininger, R. E. Hector, and B. S. Dien. 2018. Engineering Candida phangngensis-an oleaginous yeast from the Yarrowia clade-for enhanced detoxification of lignocellulose-derived inhibitors and lipid overproduction. FEMS Yeast Res. 18 (8). doi:10.1093/femsyr/foy102.
  • Rakicka, M., A. Kieroń, P. Hapeta, C. Neuvéglise, and Z. Lazar. 2016. Sweet and sour potential of yeast from the Yarrowia clade. Biomass Bioenergy 92:48–54. doi:10.1016/j.biombioe.2016.06.004.
  • Ramesh, S., R. Kumar, R. Agalya Devi, and K. Balakrishnan. 2014. Isolation of a lipase producing bacteria for enzyme synthesis in shake flask cultivation. Int. J. Curr. Microbiol. App. Sci. 3 (3):712–719.
  • Reichenberger, K., A. Luz, I. Seitl, and L. Fischer. 2020. Determination of the direct activity of the maltogenic amylase from Geobacillusstearothermophilus in White Bread. Food Anal. Methods 13:496–502. doi:10.1007/s12161-019-01673-7.
  • Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol.Evol. 4:406–425. doi:10.1093/oxfordjournals.molbev.a040454.
  • Serventi, L., L. H. Skibsted, and U. Kidmose. 2020. Sensory and textural characterization of composite wheat–cassava bread as a function of lipase dose and storage time. Eur. Food Res. Technol. 246:23–32. doi:10.1007/s00217-019-03387-w.
  • Serventi, L., S. Jensen, L. H. Skibsted, and U. Kidmose. 2016. Addition of enzymes to improve sensory quality of composite wheat–cassava bread. Eur. Food Res. Technol. 242:1245–1252. doi:10.1007/s00217-015-2628-2.
  • Shweta, V., B. R. Bhat, M. R. Swathi, and M. Govindappa. 2013. Isolation and charecterization of Glucose Oxidase (GOD) from Aspergillus flavus and Penicillium sp. Int. J. Curr. Microbiol. Appl. Sci. 2:153–161.
  • Staack, L., E. A. Della Pia, B. Jørgensen, D. Pettersson, and N. R. Pedersen. 2019. Cassava cell wall characterization and degradation by a multicomponent NSP-targeting enzyme (NSPase). Sci Rep 9:10150. doi:10.1038/s41598-019-46341-2.
  • Suh, S. O., N. Zhang, N. Nguyen, S. Gross, and M. Blackwell. 2008. Lab manual for yeast study, 7–21. USA: Mycology Lab.
  • Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol. Biol.Evol. 9:678–687. doi:10.1093/oxfordjournals.molbev.a040752.
  • Trabelsi, S., S. B. Mabrouk, M. Kriaa, R. Ameri, M. Sahnouon, M. Mezghani, and S. Bejar. 2019. The optimized production, purification, characterization, and application in the bread making industry of three acid‐stable alpha‐amylases isoforms from a new isolated Bacillus subtilis strain US586. J. Food Biochem. 43 (5):e12826. doi:10.1111/jfbc.12826.
  • van Dyk, J. S., M. Sakka, K. Sakka, and B. Pletschke. 2010. Identification of endoglucanases, xylanases, pectinases and mannanases in the multi-enzyme complex of Bacillus licheniformis SVD1. Enzyme Microb. Technol. 47 (3):112–118. doi:10.1016/j.enzmictec.2010.05.004.
  • Viljoen, B. C., and J. L. Kock. 1989. A taxonomic study of the yeast Genus Candida Berkhout. Syst. Appl. Microbiol. 12:91–102. doi:10.1016/S0723-2020(89)80044-X.
  • Vu, D., M. Groenewald, S. Szoke, G. Cardinali, U. Eberhardt, B. Stielow, M. De Vries, G. J. Verkleij, P. W. Crous, T. Boekhout, et al. 2016. DNA barcoding analysis of more than 9 000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud. Mycol. 85:91–105. doi:10.1016/j.simyco.2016.11.007.
  • Wang, Y., H. Hu, J. Ma, Q. Yan, and H. Jiang. 2020. A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry. Food Chem. 305:125447. doi:10.1016/j.foodchem.2019.125447.
  • White, T. J., T. Bruns, S. J. Lee, and J. L. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Proto. 18 (1):315–322.
  • Williams, H. J., and T. G. Edward. 1980. Estimation of cyanide with alkaline picrate. J. Sci. Food Agric. 31 (1):15–22. doi:10.1002/jsfa.2740310104.
  • Zhang, L., Z. Li, Y. Qian, Y. Zhang, W. Zheng, Y. Zhao, Y. Huang, and Z. Cui. 2019. Improvement of the quality and shelf life of wheat bread by a maltohexaose producing α-amylase. J. Cereal Sci. 87:165–171. doi:10.1016/j.jcs.2019.03.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.