102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Seeking for the best conditions for fish fossil preservation in Las Hoyas Konservat-Lagerstätte using microbial mats

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 24 Mar 2023, Accepted 17 Jul 2023, Published online: 26 Jul 2023

References

  • Abed RMM, Polerecky L, Al Najjar M, de Beer D. 2006. Effect of temperature on photosynthesis, oxygen consumption and sulfide production in an extremely hypersaline cyanobacterial mat. Aquat Microb Ecol. 44:21–30. doi:10.3354/ame044021.
  • Abramoff MD, Magalhaes PJ, Ram SJ. 2004. Image Processing with ImageJ. Biophotonics International. 11(7):36–42.
  • Adamczuk M, Ferencz B, Mieczan T, Dawidek J. 2019. Allochthonous subsidies as driving forces for development of plankton in an autotrophic, temperate, and small lake. Hydrobiologia. 846(1):59–73. doi: 10.1007/s10750-019-04052-9.
  • Alfonso MB, Brendel AS, Vitale AJ, Seitz C, Piccolo MC, Perillo GME. 2018. Drivers of ecosystem metabolism in two managed shallow lakes with different salinity and trophic conditions: The sauce grande and La Salada lakes (Argentina). Water (Switzerland). 10(9):1136. doi: 10.3390/w10091136.
  • Alfonso MB, Vitale AJ, Menéndez MC, Perillo VL, Piccolo MC, Perillo GME. 2015. Estimation of ecosystem metabolism from diel oxygen technique in a saline shallow lake: La Salada (Argentina). Hydrobiologia. 752(1):223–237. doi: 10.1007/s10750-014-2092-1.
  • Babcock LE, Leslie SA, Elliot DH, Stigall AL, Ford LA, Briggs DE, Goodbred S, Miller M, Furbish D. 2006. The “preservation paradox”: microbes as a key to exceptional fossil preservation in the Kirkpatrick Basalt (Jurassic), Antarctica. Antarctica Sediment Rec. 4(4):4–8. doi: 10.2110/sedred.2006.4.4.
  • Barral A, Gómez B, Fourel F, Daviero-Gomez V, Lécuyer C. 2017. CO2 and temperature decoupling at the million-year scale during the Cretaceous Greenhouse. Sci Rep. 7(1):8310. doi: 10.1038/s41598-017-08234-0.
  • Berlanga M, Palau M, Guerrero R. 2022. Community homeostasis of coastal microbial mats from the Camargue during winter (cold) and summer (hot) seasons. Ecosphere. 13(2):e3922. doi: 10.1002/ecs2.3922.
  • Brett MT, Bunn SE, Chandra S, Galloway AWE, Guo F, Kainz MJ, Kankaala P, Lau DCP, Moulton TP, Power ME. 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biol. 62(5):833–853. doi: 10.1111/fwb.12909.
  • Burgener L, Hyland E, Reich BJ, Scotese C. 2023. Cretaceous climates: Mapping paleo-Köppen climatic zones using a bayesian statistical analysis of lithologic, paleontologic, and geochemical proxies. Palaeogeo, Palaeoclimat, Palaeoecol. 613:111373. doi:10.1016/j.palaeo.2022.111373.
  • Buscalioni AD, Fregenal-Martínez M. 2010. A holistic approach to the palaeoecology of Las Hoyas Konservat-Lagerstätte (La Huérguina Formation, Lower Cretaceous, Iberian Ranges, Spain). J Iber Geol. 36(2):297–326. doi: 10.5209/rev_JIGE.2010.v36.n2.13.
  • Buscalioni AD, and Poyato-Ariza F. 2016. Las Hoyas: A unique Cretaceous Ecosystem. New Mexico Museum of Natural History and Science Bulletin: Cretaceous period: biotic diversity and biogeography. 71:51–63.
  • Decker KLM, Potter CS, Bebout BM, Des Marais DJ, Carpenter S, Discipulo M, Hoehler TM, Miller SR, Thamdrup B, Turk KA, et al. 2005. Mathematical simulations of the O, S and C biogeochemistry of a hypersaline microbial mat. FEMS Microbiol Ecol. 52(3):377–395. doi:10.1016/j.femsec.2004.12.005.
  • De Kluijver A, Soetaert K, Czerny J, Schulz KG, Boxhammer T, Riebesell U, Middelburg JJ. 2013. A 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levels. Biogeosciences. 10(3):1425–1440. doi: 10.5194/bg-10-1425-2013.
  • De Luca EH, Hamilton JG, Naidu S, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, et al. 1999. Net Primary Production of a forest ecosystem with experimental CO2 enrichment. Science. 284(5417):1177–1179. doi: 10.1126/science.284.5417.1177.
  • De Wit R. 2016. Lake La Salada de Chiprana (NE Spain), an example of an athalassic salt lake in a cultural landscape. In: Nageeb RM, editor Lake sciences and climate change IntechOpen; pp. 43–60. doi:10.5772/64443.
  • Dupraz C, Reid PR, Braissant O, Decho AW, Norman RS, Visscher PT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev. 96(3):141–162. doi: 10.1016/j.earscirev.2008.10.005.
  • Epping E, Kúhl M. 2000. The responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain). Environ Microbiol. 2(4):465–474. doi: 10.1046/j.1462-2920.2000.00129.x.
  • Florín M, Montes C. 1998. Which are the relevant scales to assess primary production of Mediterranean semi-arid salt lakes? Int J Ecol Environ Sci. 24:161–177.
  • Fregenal-Martínez M, Melendez N. 2016. Environmental reconstruction: a historical review. In: Poyato-Ariza F, and Buscalioni A, editors. Rhoyas: a Cretaceous wetland. Munchen: Friedrich Pfeil, Verlag; p. 14–28.
  • Gromiec MJ. 1989. Reaeration. In: Jørgensen S Gromiec M, editors. Mathematical submodels in water quality systems. developments in environmental modelling 14. Amsterdam: Elsevier; pp. 33–64. doi: 10.1016/B978-0-444-88030-7.50002-0.
  • Guerrero MC. 1991. Caracterización limnológica de la laguna Salada de Chiprana (Zaragoza, España) y sus comunidades de bacterias fototróficas. Limnetica. 7(1):83–96. doi: 10.23818/limn.07.07.
  • Hall CAS, Moll R. 1975. Methods of assessing aquatic primary productivity. In: Lieth H Whittaker R, editors. Primary productivity of the biosphere. New York (NY): Springer Verlag; pp. 19–53. doi: 10.1007/978-3-642-80913-2_3.
  • Haworth M, Hesselbo SP, McElwain JC, Robinson SA, James W. 2005. Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology. 33(9):749–752. doi: 10.1130/G21736.1.
  • Haywood AM, Valdes PJ, Markwick PJ. 2004. Cretaceous (Wealden) climates: a modelling perspective. Cretac Res. 25(3):303–311. doi: 10.1016/j.cretres.2004.01.005.
  • Iniesto M, Blanco-Moreno C, Villalba A, Buscalioni AD, Guerrero MC, López-Archilla AI. 2018. Plant tissue decay in long-term experiments with microbial mats. Geosciences. 8(11):387–408. doi: 10.3390/geosciences8110387.
  • Iniesto M, Buscalioni AD, Guerrero MC, Benzerara K, Moreira D, López-Archilla AI. 2016. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates. Sci Rep. 6(1):25716. doi: 10.1038/srep25716.
  • Iniesto M, López-Archilla AI, Fregenal-Martínez MA, Buscalioni AD, Guerrero MC. 2013. Involvement of microbial mats in delayed decay: an experimental essay on fish preservation. Palaios. 28(1–2):56–66. doi: 10.2110/palo.2011.p11-099r.
  • Iniesto M, Laguna C, Florín F, Guerrero MC, Chicote A, Buscalioni AD, López-Archilla AI. 2015a. The impact of microbial mats and their microenvironmental conditions in early decay of fish. Palaios. 30(11):792–801. doi: 10.2110/palo.2014.086.
  • Iniesto M, Nina Z, López-Archilla AI, Sylvain B, Buscalioni AD, Guerrero MC, Benzerara K. 2015b. Preservation in microbial mats: mineralization by a talc-like phase of a fish embedded in a microbial sarcophagus. Front Earth Sci. 3(51):1–13. doi: 10.3389/feart.2015.00051.
  • Iniesto M, Villalva I, Buscalioni AD, López-Archilla AI, López-Archilla AI. 2017. The effect of microbial mats in the decay of anurans with implications for understanding taphonomic processes in the fossil record. Sci Rep. 7(1):45160. doi: 10.1038/srep45160.
  • Janssen K, Mähler B, Rust J, Bierbaum G, McCoy VE. 2022. The complex role of microbial metabolic activity in fossilization. Biol Rev. 97(2):449–465. doi: 10.1111/brv.12806.
  • Jodloswska S, Latala A. 2013. Combined effects of light and temperature on growth, photosynthesis, and pigment content in the mat-forming cyanobacterium Geitlerinema amphibium. Photosynthetica. 51(2):202–214. doi: 10.1007/s11099-013-0019-0.
  • Jonkers HM, Koh IO, Behrend P, Muyzer G, De BD. 2005. Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat. Microb Ecol. 49:291–300. doi:10.1007/s00248-004-0260-y.
  • Jonkers HM, Ludwig R, De Wit R, Pringault O, Muyzer G, Niemann H, Finke N, De Beer D. 2003. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’(NE Spain). FEMS Microbiol Ecol. 44(2):175–189. doi: 10.1016/S0168-6496(02)00464-6.
  • Kelly MG, Hornberger GM, Cosby BJ. 1974. Continuous automated measurement of rates of photosynthesis and respiration in an undisturbed river community. Limnol Oceanogr. 19(2):305–312. doi: 10.4319/lo.1974.19.2.0305.
  • Laas A, Nõges P, Kõiv T, Nõges T. 2012. High-frequency metabolism study in a large and shallow temperate lake reveals seasonal switching between net autotrophy and net heterotrophy. Hydrobiologia. 694(1):57–74. doi: 10.1007/s10750-012-1131-z.
  • Landwehrs J, Feulner G, Petri S, Sames B, Wagreich M. 2021. Investigating Mesozoic climate trends and sensitivities with a large ensemble of climate model simulations. Paleoceanogr Paleoclimatol. 36(6):e2020PA004134. doi: 10.1029/2020PA004134.
  • Lepock JR. 2005. How do cells respond to their thermal environment? Int J Hyperth. 21(8):681–687. doi: 10.1080/02656730500307298.
  • López-Archilla AI, Mollá S, Coleto MC, Guerrero MC, Montes C. 2004. Ecosystem metabolism in a Mediterranean shallow lake (Laguna de Santa Olalla, Doñana National Park, SW Spain). Wetlands. 24(4):848–858. doi: 10.1672/0277-5212(2004)024[0848:EMIAMS]2.0.CO;2.
  • Ludwig R, Al-Horani FA, de Beer D, Jonkers HM. 2005. Photosynthesis-controlled calcification in a hypersaline microbial mat. Limnol Oceanogr. 50(6):1836–1843. doi: 10.4319/lo.2005.50.6.1836.
  • Markager S, Sand-Jensen K. 1989. Patterns of night-time respiration in a dense phytoplankton community under a natural light regime. J Ecol. 44(1):49–61. doi: 10.2307/2260915.
  • Mazière C, Bodo M, Perdrau MA, Cravo-Laureau C, Duran R, Dupuy C, Hubas C. 2022. Climate change influences chlorophylls and bacteriochlorophylls metabolism in hypersaline microbial mat. Sci Total Environ. 802:149787. doi:10.1016/j.scitotenv.2021.149787.
  • Mukundan MK, Antony PD, Nair MR. 1986. A review on autolysis in fish. Fish Res. 4(3–4):259–269. doi: 10.1016/0165-7836(86)90007-X.
  • [NOAA GML] National oceanic and atmospheric administration global monitoring laboratory. 2022. https://gml.noaa.gov/ccgg/
  • Noffke N. 2021. Microbially induced sedimentary structures in clastic deposits: implication for the prospection for fossil life on Mars. Astrobiol. 21(7):866–892. doi: 10.1089/ast.2021.0011.
  • Noll P, Lilge L, Hausmann R, Henkel M. 2020. Modeling and exploiting microbial temperature response. Processes. 8(1):121. doi: 10.3390/pr8010121.
  • Odum EP. 1971. Fundamentals of ecology. 3 ed. Philadelphia: W.B. Saunders Copp. 1–574 pp.
  • Odum HT. 1956. Primary production in flowing water. Limnol Oceanogr. 1(2):102–117. doi: 10.4319/lo.1956.1.2.0102.
  • Retallack GJ. 2011. Exceptional fossil preservation during CO2 greenhouse crises?: Palaeogeography, Palaeoclimatology. Palaeoecology. 307:59–74.
  • Russell BD, Connell SD, Findlay HS, Tait K, Widdicombe S, Mieszkowska N. 2013. Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption. Phil Trans R Soc B. 368(1627):20120438. doi: 10.1098/rstb.2012.0438.
  • Sand-Jensen K, Staehr P. 2009. Net heterotrophy in Small Danish Lakes: A Widespread feature over gradients in trophic status and land cover. Ecosystems. 12(2):336–348. doi: 10.1007/s10021-008-9226-0.
  • Scharfenberger U, Jeppesen E, Beklioglu M, Søndergaard M, Angeler DG, Çakıroglu AI, Drakare S, Hejzlar J, Mahdy A, Papastergiadou E, et al. 2019. Effects of trophic status, water level, and temperature on shallow lake metabolism and metabolic balance: A standardized pan-European mesocosm experiment. Limnol Oceanogr. 64(2):616–631. doi: 10.1002/lno.11064.
  • Thyssen N, Erlandsen M, Jeppesen E, Ursin C. 1987. Reaeration of oxygen in shallow, macrophyte rich streams: I-Determination of the reaeration rate coefficient. Int Rev Gesamten Hydrobiol. 72(4):405–429. doi: 10.1002/iroh.19870720403.
  • Visscher PT, Stolz JF. 2005. Microbial mats as bioreactors: populations, processes and products. Paelogeogr Paleoclimatol Paleoecol. 219(1–2):87–100. doi: 10.1016/j.palaeo.2004.10.016.
  • Zhang Y, Qi X, Wang S, Wu G, Briggs BR, Jiang H, Dong H, Hou W. 2020. Carbon fixation by photosynthetic mats along a temperature gradient in a Tengchong hot spring. JGR Biogeosciences. 125(9):e2020JG005719. doi: 10.1029/2020JG005719.
  • Zoboli O, Schilling K, Ludwig AL, Kreuzinger N, Zessner M. 2018. Primary productivity and climate change in Austrian lowland rivers. Water Sci Technol. 77(2):417–425. doi: 10.2166/wst.2017.553.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.