526
Views
92
CrossRef citations to date
0
Altmetric
Original

Multiple sclerosis and virus induced immune responses: Autoimmunity can be primed by molecular mimicry and augmented by bystander activation

, &
Pages 9-19 | Published online: 07 Jul 2009

References

  • Dejong RN. Multiple sclerosis. History, definition and general considerations. Multiple sclerosis and other demyelinating diseases, PJ Vinken, GW Bruyn. North-Holland Publishing Company, Amsterdam 1970; 45–62
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med 2000; 343: 938–952
  • Markovic-Plese S, McFarland HF. Immunopathogenesis of the multiple sclerosis lesion. Curr Neurol Neurosci Rep 2001; 1: 257–262
  • Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 2000; 123: 1174–1183
  • Sobel RA. T-lymphocyte subsets in the multiple sclerosis lesion. Res Immunol 1989; 140: 208–211
  • Kurtzke JF. The epidemiology of multiple sclerosis. Multiple sclerosis: Clinical and pathogenetic basis, CS Raine, HF McFarland, WW Tourtellotte. Chapman & Hall, London 1997; 91–140
  • Ebers GC, Bulman DE, Sadovnick AD, Paty DW, Warren S, Hader W, Murray TJ, Seland TP, Duquette P, Grey T, Nelson R, Nicolle M, Brunet D. A population-based study of multiple sclerosis in twins. N Engl J Med 1986; 315: 1638–1642
  • Sadovnick AD, Armstrong H, Rice GPA, Bulman D, Hashimoto L, Paty DW, Hashimoto SA, Warren S, Hader W, Murray TJ. A population-based study of multiple sclerosis in twins: Update. Ann Neurol 1993; 33: 281–285
  • Mumford CJ, Wood NW, Kellar-Wood H, Thorpe JW, Miller DH, Compston DA. The British Isles survey of multiple sclerosis in twins. Neurology 1994; 44: 11–15
  • Andersen O, Lygner PE, Bergstrom T, Andersson M, Vahlne A. Viral infections trigger multiple sclerosis relapses: A prospective seroepidemiological study. J Neurol 1993; 240: 417–422
  • Edwards S, Zvartau M, Clarke H, Irving W, Blumhardt LD. Clinical relapses and disease activity on magnetic resonance imaging associated with viral upper respiratory tract infections in multiple sclerosis. J Neurol Neurosurg Psychiatry 1998; 64: 736–741
  • Panitch HS. Influence of infection on exacerbations of multiple sclerosis. Ann Neurol 1994; 36(Suppl)S25–S28
  • Sibley WA, Bamford CR, Clark K. Clinical viral infections and multiple sclerosis. Lancet 1985; 1: 1313–1315
  • Johnson RT. Chronic inflammatory and demyelinating diseases. Viral infections of the nervous system2. Lippincott-Raven Publishers, Philadelphia and New York 1998; 227–263
  • Fujinami RS, Oldstone MBA, Wroblewska Z, Frankel ME, Koprowski H. Molecular mimicry in virus infection: Crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci USA 1983; 80: 2346–2350
  • Fujinami RS, Oldstone MBA. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: Mechanism for autoimmunity. Science 1985; 230: 1043–1045
  • Deshpande SP, Lee S, Zheng M, Song B, Knipe D, Kapp JA, Rouse BT. Herpes simplex virus-induced keratitis: Evaluation of the role of molecular mimicry in lesion pathogenesis. J Virol 2001; 75: 3077–3088
  • von Herrath MG, Fujinami RS, Whitton JL. Microorganisms and autoimmunity: Making the barren field fertile?. Nat Rev Microbiol 2003; 1: 151–157
  • Martin R, Utz U, Coligan JE, Richert JR, Flerlage M, Robinson E, Stone R, Biddison WE, McFarlin DE, McFarland HF. Diversity in fine specificity and T cell receptor usage of the human CD4+ cytotoxic T cell response specific for the immunodominant myelin basic protein peptide 87–106. J Immunol 1992; 148: 1359–1366
  • Burns J, Rosenzweig A, Zweiman B, Lisak RP. Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell Immunol 1983; 81: 435–440
  • Richert JR, McFarlin DE, Rose JW, McFarland HF, Greenstein JI. Expansion of antigen-specific T cells from cerebrospinal fluid of patients with multiple sclerosis. J Neuroimmunol 1983; 5: 317–324
  • Chou YK, Vainiene M, Whitham R, Bourdette D, Chou CH, Hashim G, Offner H, Vandenbark AA. Response of human T lymphocyte lines to myelin basic protein: Association of dominant epitopes with HLA class II restriction molecules. J Neurosci Res 1989; 23: 207–216
  • Martin R, Jaraquemada D, Flerlage M, Richert J, Whitaker J, Long EO, McFarlin DE, McFarland HF. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol 1990; 145: 540–548
  • Pette M, Fujita K, Kitze B, Whitaker JN, Albert E, Kappos L, Wekerle H. Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 1990; 40: 1770–1776
  • Wucherpfennig KW, Ota K, Endo N, Seidman JG, Rosenzweig A, Weiner HL, Hafler DA. Shared human T cell receptor Vβ usage to immunodominant regions of myelin basic protein. Science 1990; 248: 1016–1019
  • Olsson T, Zhi WW, Hojeberg B, Kostulas V, Jiang YP, Anderson G, Ekre HP, Link H. Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-γ. J Clin Investig 1990; 86: 981–985
  • Tsunoda I, Fujinami RS. Two models for multiple sclerosis: Experimental allergic encephalomyelitis and Theiler's murine encephalomyelitis virus. J Neuropathol Exp Neurol 1996; 55: 673–686
  • Wang L-Y, Theil DJ, Whitton JL, Fujinami RS. Infection with a recombinant vaccinia virus encoding myelin proteolipid protein causes suppression of chronic relapsing-remitting experimental allergic encephalomyelitis. J Neuroimmunol 1999; 96: 148–157
  • Evavold BD, Sloan-Lancaster J, Allen PM. Tickling the TCR: Selective T-cell functions stimulated by altered peptide ligands. Immunol Today 1993; 14: 602–609
  • Lang HLE, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, Stuart DI, Bell JI, Jones EY, Fugger L. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 2002; 3: 940–943
  • Oldstone MBA, Nerenberg M, Southern P, Price J, Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: Role of anti-self (virus) immune response. Cell 1991; 65: 319–331
  • Oldstone MBA, von Herrath MG, Evans CF, Horwitz MS. Virus-induced autoimmune disease: Transgenic approach to mimic insulin-dependent diabetes mellitus and multiple sclerosis. Curr Top Microbiol Immunol 1996; 206: 67–83
  • von Herrath MG. Regulation of virally induced autoimmunity and immunopathology: Contribution of LCMV transgenic models to understanding autoimmune insulin-dependent diabetes mellitus. Curr Top Microbiol Immunol 2002; 263: 145–175
  • von Herrath MG, Oldstone MBA, Homann D, Christen U. Is activation of autoreactive lymphocytes always detrimental? Viral infections and regulatory circuits in autoimmunity. Curr Dir Autoimmun 2001; 4: 91–122
  • von Herrath MG, Guerder S, Lewicki H, Flavell RA, Oldstone MBA. Coexpression of B7-1 and viral (“self”) transgenes in pancreatic β cells can break peripheral ignorance and lead to spontaneous autoimmune diabetes. Immunity 1995; 3: 727–738
  • von Herrath MG, Oldstone MBA. Interferon-γ is essential for destruction of β cells and development of insulin-dependent diabetes mellitus. J Exp Med 1997; 185: 531–539
  • von Herrath MG, Holz A. Pathological changes in the islet milieu precede infiltration of islets and destruction of β-cells by autoreactive lymphocytes in a transgenic model of virus-induced IDDM. J Autoimmun 1997; 10: 231–238
  • Welsh RM, McNally JM, Brehm MA, Selin LK. Consequences of cross-reactive and bystander CTL responses during viral infections. Virology 2000; 270: 4–8
  • Brehm MA, Pinto AK, Daniels KA, Schneck JP, Welsh RM, Selin LK. T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat Immunol 2002; 3: 627–634
  • Chen HD, Fraire AE, Joris I, Brehm MA, Welsh RM, Selin LK. Memory CD8+T cells in heterologous antiviral immunity and immunopathology in the lung. Nat Immunol 2001; 2: 1067–1076
  • Selin LK, Varga SM, Wong IC, Welsh RM. Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations. J Exp Med 1998; 188: 1705–1715
  • Tsunoda I, Fujinami RS. TMEV and neuroantigens: Myelin genes and proteins, molecular mimicry, epitope spreading, and autoantibody-mediated remyelination. Experimental models of multiple sclerosis, E Lavi, CS Constantinescu. Springer, New York 2005
  • Tsunoda I, Fujinami RS. Theiler's murine encephalomyelitis virus. Persistent viral infections, R Ahmed, I Chen. John Wiley & Sons Ltd, Chichester 1999; 517–536
  • Fujinami RS, Zurbriggen A, Powell HC. Monoclonal antibody defines determinant between Theiler's virus and lipid-like structures. J Neuroimmunol 1988; 20: 25–32
  • Yamada M, Zurbriggen A, Fujinami RS. Monoclonal antibody to Theiler's murine encephalomyelitis virus defines a determinant on myelin and oligodendrocytes, and augments demyelination in experimental allergic encephalomyelitis. J Exp Med 1990; 171: 1893–1907
  • Biron CA, Cousens LP, Ruzek MC, Su HC, Salazar-Mather TP. Early cytokine responses to viral infections and their roles in shaping endogenous cellular immunity. Adv Exp Med Biol 1998; 452: 143–149
  • Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: Function and regulation by innate cytokines. Annu Rev Immunol 1999; 17: 189–220
  • Biron CA. Role of early cytokines, including alpha and beta interferons (IFN-α/β), in innate and adaptive immune responses to viral infections. Semin Immunol 1998; 10: 383–390
  • Cousens LP, Orange JS, Su HC, Biron CA. Interferon-α/β inhibition of interleukin 12 and interferon-γ production in vitro and endogenously during viral infection. Proc Natl Acad Sci USA 1997; 94: 634–639
  • Arnason BGW. Interferon beta in multiple sclerosis. Clin Immunol Immunopathol 1996; 81: 1–11
  • Murali-Krishna K, Altman JD, Suresh M, Sourdive D, Zajac A, Ahmed R. In vivo dynamics of anti-viral CD8 T cell responses to different epitopes. An evaluation of bystander activation in primary and secondary responses to viral infection. Adv Exp Med Biol 1998; 452: 123–142
  • Lin MY, Selin LK, Welsh RM. Evolution of the CD8 T-cell repertoire during infections. Microbes Infect 2000; 2: 1025–1039
  • Welsh RM. Assessing CD8 T cell number and dysfunction in the presence of antigen. J Exp Med 2001; 193: F19–F22
  • Trinchieri G. Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995; 13: 251–276
  • Orange JS, Wang B, Terhorst C, Biron CA. Requirement for natural killer cell-produced interferon γ in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 1995; 182: 1045–1056
  • Su HC, Nguyen KB, Salazar-Mather TP, Ruzek MC, Dalod MY, Biron CA. NK cell functions restrain T cell responses during viral infections. Eur J Immunol 2001; 31: 3048–3055
  • Rabinovich BA, Li J, Shannon J, Hurren R, Chalupny J, Cosman D, Miller RG. Activated, but not resting, T cells can be recognized and killed by syngeneic NK cells. J Immunol 2003; 170: 3572–3576
  • Xu W, Fazekas G, Hara H, Tabira T. Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis. J Neuroimmunol 2005; 163: 24–30
  • Kastrukoff LF, Morgan NG, Zecchini D, White R, Petkau AJ, Satoh J-I, Paty DW. A role for natural killer cells in the immunopathogenesis of multiple sclerosis. J Neuroimmunol 1998; 86: 123–133
  • Hilliard B, Wilmen A, Seidel C, Liu TS, Goke R, Chen Y. Roles of TNF-related apoptosis-inducing ligand in experimental autoimmune encephalomyelitis. J Immunol 2001; 166: 1314–1319
  • Takahashi K, Miyake S, Kondo T, Terao K, Hatakenaka M, Hashimoto S, Yamamura T. Natural killer type 2 bias in remission of multiple sclerosis. J Clin Investig 2001; 107: R23–R29
  • Orange JS, Biron CA. Characterization of early IL-12, IFN-αβ, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J Immunol 1996; 156: 4746–4756
  • Zajac AJ, Muller D, Pederson K, Frelinger JA, Quinn DG. Natural killer cell activity in lymphocytic choriomeningitis virus-infected beta 2-microglobulin-deficient mice. Int Immunol 1995; 7: 1545–1556
  • Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: Development, specificity, and function. Annu Rev Immunol 1997; 15: 535–562
  • Godfrey DI, Hammond KJL, Poulton LD, Smyth MJ, Baxter AG. NKT cells: Facts, functions and fallacies. Immunol Today 2000; 21: 573–583
  • Araki M, Kondo T, Gumperz JE, Brenner MB, Miyake S, Yamamura T. Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int Immunol 2003; 15: 279–288
  • Illés Z, Shimamura M, Newcombe J, Oka N, Yamamura T. Accumulation of Vα7.2-Jα33 invariant T cells in human autoimmune inflammatory lesions in the nervous system. Int Immunol 2004; 16: 223–230
  • Illés Z, Kondo T, Newcombe J, Oka N, Tabira T, Yamamura T. Differential expression of NK T cell Vα24JαQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J Immunol 2000; 164: 4375–4381
  • Mempel M, Ronet C, Suarez F, Gilleron M, Puzo G, Van Kaer L, Lehuen A, Kourilsky P, Gachelin G. Natural killer T cells restricted by the monomorphic MHC class 1b CD1d1 molecules behave like inflammatory cells. J Immunol 2002; 168: 365–371
  • Sumida T, Sakamoto A, Murata H, Makino Y, Takahashi H, Yoshida S, Nishioka K, Iwamoto I, Taniguchi M. Selective reduction of T cells bearing invariant Vα24JαQ antigen receptor in patients with systemic sclerosis. J Exp Med 1995; 182: 1163–1168
  • Wilson SB, Kent SC, Patton KT, Orban T, Jackson RA, Exley M, Porcelli S, Schatz DA, Atkinson MA, Balk SP, Strominger JL, Hafler DA. Extreme Th1 bias of invariant Vα24JαQ T cells in type 1 diabetes. Nature 1998; 391: 177–181
  • van der Vliet HJJ, von Blomberg BME, Nishi N, Reijm M, Voskuyl AE, van Bodegraven AA, Polman CH, Rustemeyer T, Lips P, van den Eertwegh AJM, Giaccone G, Scheper RJ, Pinedo HM. Circulating Vα24+Vβ11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin Immunol 2001; 100: 144–148
  • Kojo S, Adachi Y, Keino H, Taniguchi M, Sumida T. Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum 2001; 44: 1127–1138
  • Miyamoto K, Miyake S, Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001; 413: 531–534
  • Okuda Y, Okuda M, Apatoff BR, Posnett DN. The activation of memory CD4+ T cells and CD8+T cells in patients with multiple sclerosis. J Neurol Sci 2005; 235: 11–17
  • Paty DW, Li DK. Interferon beta-lb is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 2001; 57: S10–S15, (The UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group)
  • Francis GS, Rice GP, Alsop JC. Interferon β-1a in MS: Results following development of neutralizing antibodies in PRISMS. Neurology 2005; 65: 48–55
  • Panitch HS, Hirsch RL, Haley AS, Johnson KP. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1987; 1: 893–895
  • Johnson KP. Treatment of multiple sclerosis with various interferons: The cons. Neurology 1988; 38: 62–65
  • Panitch HS, Hirsch RL, Schindler J, Johnson KP. Treatment of multiple sclerosis with gamma interferon: Exacerbations associated with activation of the immune system. Neurology 1987; 37: 1097–1102
  • Compston A. Treatment and management of multiple sclerosis. McAlpine's multiple sclerosis3, A Compston, G Ebers, H Lassmann, I McDonald, B Matthews, H Wekerle. Churchill Livingstone, London 1988; 435–498
  • Reichman P. The effects of interferon-β on cytokines and immune responses. Interferon therapy of multiple sclerosis, AT Reder. Marcel Dekker, New York 1997; 161–191
  • Hirsch RL, Johnson KP. The effect of recombinant α2-interferon on defective natural killer cell activity in multiple sclerosis. Neurology 1985; 35: 597–600
  • Rice GPA, Casali P, Merigan TC, Oldstone MBA. Natural killer cell activity in patients with multiple sclerosis given α interferon. Ann Neurol 1983; 14: 333–338
  • Traugott U, Lebon P. Multiple sclerosis: Involvement of interferons in lesion pathogenesis. Ann Neurol 1988; 24: 243–251
  • Vartanian T, Li Y, Zhao M, Stefansson K. Interferon-γ-induced oligodendrocyte cell death: Implications for the pathogenesis of multiple sclerosis. Mol Med 1995; 1: 732–743
  • Brod SA, Marshall GD, Jr, Henninger EM, Sriram S, Khan M, Wolinsky JS. Interferon-β1b treatment decreases tumor necrosis factor-α and increases interleukin-6 production in multiple sclerosis. Neurology 1996; 46: 1633–1638
  • Perini P, Tiberio M, Sivieri S, Facchinetti A, Biasi G, Gallo P. Interleukin-1 receptor antagonist, soluble tumor necrosis factor-α receptor type I and II, and soluble E-selectin serum levels in multiple sclerosis patients receiving weekly intramuscular injections of interferon-β1a. Eur Cytokine Netw 2000; 11: 81–86
  • Ozenci V, Kouwenhoven M, Teleshova N, Pashenkov M, Fredrikson S, Link H. Multiple sclerosis: Pro- and anti-inflammatory cytokines and metalloproteinases are affected differentially by treatment with IFN-β. J Neuroimmunol 2000; 108: 236–243
  • Rep MHG, Schrijver HM, van Lopik T, Hintzen RQ, Roos MTL, Adèr HJ, Polman CH, van Lier RAW. Interferon (IFN)-β treatment enhances CD95 and interleukin 10 expression but reduces interferon-γ producing T cells in MS patients. J Neuroimmunol 1999; 96: 92–100
  • Rothuizen LE, Buclin T, Spertini F, Trinchard I, Munafo A, Buchwalder P-A, Ythier A, Biollaz J. Influence of interferon β-1a dose frequency on PBMC cytokine secretion and biological effect markers. J Neuroimmunol 1999; 99: 131–141
  • Shi F-D, Takeda K, Akira S, Sarvetnick N, Ljunggren H-G. IL-18 directs autoreactive T cells and promotes autodestruction in the central nervous system via induction of IFN-γ by NK cells. J Immunol 2000; 165: 3099–3104
  • Yasuda CL, al Sabbagh A, Oliveira EC, Diaz-Bardales BM, Garcia AA, Santos LM. Interferon β modulates experimental autoimmune encephalomyelitis by altering the pattern of cytokine secretion. Immunol Invest 1999; 28: 115–126
  • Monteiro JM, Harvey C, Trinchieri G. Role of interleukin-12 in primary influenza virus infection. J Virol 1998; 72: 4825–4831
  • Mikloska Z, Danis VA, Adams S, Lloyd AR, Adrian DL, Cunningham AL. In vivo production of cytokines and β (C–C) chemokines in human recurrent herpes simplex lesions—do herpes simplex virus-infected keratinocytes contribute to their production?. J Infect Dis 1998; 177: 827–838
  • Karp CL. Measles: Immunosuppression, interleukin-12, and complement receptors. Immunol Rev 1999; 168: 91–101
  • Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: Do cytokines trigger off exacerbations?. Acta Neurol Scand 1988; 78: 318–323
  • Seder RA, Gazzinelli R, Sher A, Paul WE. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon γ production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci USA 1993; 90: 10188–10192
  • Manetti R, Parronchi P, Giudizi MG, Piccinni M-P, Maggi E, Trinchieri G, Romagnani S. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 1993; 177: 1199–1204
  • Macatonia SE, Hsieh C-S, Murphy KM, O'Garra A. Dendritic cells and macrophages are required for Th1 development of CD4+ T cells from αβ TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-γ production is IFN-γ-dependent. Int Immunol 1993; 5: 1119–1128
  • Szabo SJ, Dighe AS, Gubler U, Murphy KM. Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med 1997; 185: 817–824
  • Magram J, Connaughton SE, Warrier RR, Carvajal DM, Wu C-Y, Ferrante J, Stewart C, Sarmiento U, Faherty DA, Gately MK. IL-12-deficient mice are defective in IFNγ production and type 1 cytokine responses. Immunity 1996; 4: 471–481
  • Leonard JP, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 1995; 181: 381–386
  • Brocke S, Gaur A, Piercy C, Gautam A, Gijbels K, Fathman CG, Steinman L. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature 1993; 365: 642–644
  • Constantinescu CS, Wysocka M, Hilliard B, Ventura ES, Lavi E, Trinchieri G, Rostami A. Antibodies against IL-12 prevent superantigen-induced and spontaneous relapses of experimental autoimmune encephalomyelitis. J Immunol 1998; 161: 5097–5104
  • Bright JJ, Du C, Coon M, Sriram S, Klaus SJ. Prevention of experimental allergic encephalomyelitis via inhibition of IL-12 signaling and IL-12-mediated Th1 differentiation: An effect of the novel anti-inflammatory drug lisofylline. J Immunol 1998; 161: 7015–7022
  • Pagenstecher A, Lassmann S, Carson MJ, Kincaid CL, Stalder AK, Campbell IL. Astrocyte-targeted expression of IL-12 induces active cellular immune responses in the central nervous system and modulates experimental allergic encephalomyelitis. J Immunol 2000; 164: 4481–4492
  • Tsunoda I, Tolley ND, Theil DJ, Whitton JL, Kobayashi H, Fujinami RS. Exacerbation of viral and autoimmune animal models for multiple sclerosis by bacterial DNA. Brain Pathol 1999; 9: 481–493
  • Lankford CS, Frucht DM. A unique role for IL-23 in promoting cellular immunity. J Leukoc Biol 2003; 73: 49–56
  • Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421: 744–748
  • Becher B, Durell BG, Noelle RJ. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Investig 2002; 110: 493–497
  • Gran B, Zhang G-X, Yu S, Li J, Chen X-H, Ventura ES, Kamoun M, Rostami A. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: Evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 2003; 169: 7104–7110
  • Zhang G-X, Gran B, Yu S, Li J, Siglienti I, Chen X, Kamoun M, Rostami A. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 2003; 170: 2153–2160
  • Vandenbroeck K, Alloza I, Gadina M, Matthys P. Inhibiting cytokines of the interleukin-12 family: Recent advances and novel challenges. J Pharm Pharmacol 2004; 56: 145–160
  • Li J, Gran B, Zhang GX, Rostami A, Kamoun M. IL-27 subunits and its receptor (WSX-1) mRNAs are markedly up-regulated in inflammatory cells in the CNS during experimental autoimmune encephalomyelitis. J Neurol Sci 2005; 232: 3–9
  • Theil DJ, Tsunoda I, Rodriguez F, Whitton JL, Fujinami RS. Viruses can silently prime for and trigger central nervous system autoimmune disease. J NeuroVirol 2001; 7: 220–227
  • Libbey JE, Fujinami RS. Are virus infections triggers for autoimmune disease?. Clin Microbiol News Lett 2002; 24: 73–76
  • Fairweather D, Lawson CM, Chapman AJ, Brown CMS, Booth TWM, Papadimitriou JM, Shellam GR. Wild isolates of murine cytomegalovirus induce myocarditis and antibodies that cross-react with virus and cardiac myosin. Immunology 1998; 94: 263–270
  • Lawson CM, O'Donoghue HL, Reed WD. Mouse cytomegalovirus infection induces antibodies which cross-react with virus and cardiac myosin: A model for the study of molecular mimicry in the pathogenesis of viral myocarditis. Immunology 1992; 75: 513–519

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.