71
Views
7
CrossRef citations to date
0
Altmetric
Original

Autoimmunity in HLA-DQ8 transgenic mice expressing granulocyte/macrophage-colony stimulating factor in the beta cells of islets of langerhans

, , , , &
Pages 169-179 | Received 21 Sep 2006, Accepted 05 Jan 2006, Published online: 07 Jul 2009

References

  • Yoon JW, Jun HS. Autoimmune destruction of pancreatic beta cells. Am J Ther 2005; 12: 580–591
  • Wicker LS, Clark J, Fraser HI, Garner VES, Gonzalez-Munoz A, Healy B, Howlett S, Hunter K, Rainbow D, Rosa RL. Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 2005; 25: 29–33
  • Larsen CE, Alper CA. The genetics of HLA-associated disease. Curr Opin Immunol 2004; 16: 660–667
  • Maier LM, Wicker LS. Genetic susceptibility to type 1 diabetes. Curr Opin Immunol 2005; 17: 601–608, Autoimmunity/Allergy and hypersensitivity
  • Nepom G, Kwok W. Molecular basis for HLA-DQ associations with IDDM. Diabetes 1998; 47: 1177–1184
  • Antonis K, Moustakas GKP. Molecular properties of HLA-DQ alleles conferring susceptibility to or protection from insulin-dependent diabetes mellitus: Keys to the fate of islet?-cells. Am J Med Genet 2002; 115: 37–47
  • Shoda LKM, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, Eisenbarth GS, Mathis D, Rossini AA, Campbell SE. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 2005; 23: 115–126
  • Wicker LS, Todd JA, Peterson LB. Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol 1995; 13: 179–200
  • Aoki CA, Borchers AT, Ridgway WM, Keen CL, Ansari AA, Gershwin ME. NOD mice and autoimmunity. Autoimmun Rev 2005; 4: 373–379
  • Lee KH, Wucherpfennig KW, Wiley DC. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol 2001; 2: 501–507
  • Suri A, Walters JJ, Gross ML, Unanue ER. Natural peptides selected by diabetogenic DQ8 and murine I-Ag7 molecules show common sequence specificity. J Clin Invest 2005; 115: 2268–2276
  • Yu B, Gauthier L, Hausmann DH, Wucherpfennig KW. Binding of conserved islet peptides by human and murine MHC class II molecules associated with susceptibility to type I diabetes. Eur J Immunol 2000; 30: 2497–2506
  • Wen L, Wong FS, Sherwin R, Mora C. Human DQ8 can substitute for murine I-Ag7 in the selection of diabetogenic T cells restricted to I-Ag7. J Immunol 2002; 168: 3635–3640
  • Abraham RS, Kudva YC, Wilson SB, Strominger JL, David CS. Co-expression of HLA DR3 and DQ8 results in the development of spontaneous insulitis and loss of tolerance to GAD65 in transgenic mice. Diabetes 2000; 49: 548–554
  • Abraham RS, Wen L, Marietta EV, David CS. Type 1 diabetes-predisposing MHC alleles influence the selection of glutamic acid decarboxylase (GAD) 65-specific T cells in a transgenic model. J Immunol 2001; 166: 1370–1379
  • Kudva YC, Rajagopalan G, Raju R, Abraham RS, Smart M, Hanson J, David CS. Modulation of insulitis and type 1 diabetes by transgenic HLA-DR3 and DQ8 in NOD mice lacking endogenous MHC class II. Hum Immunol 2002; 63: 987–999
  • Raju R, Munn SR, Majoribanks C, David CS. Islet cell autoimmunity in NOD mice transgenic for HLA-DQ8 and lacking I-Ag7. Transplant Proc 1998; 30: 561
  • Wen L, Chen NY, Tang J, Sherwin R, Wong FS. The regulatory role of DR4 in a spontaneous diabetes DQ8 transgenic model. J Clin Invest 2001; 107: 871–880
  • Wen L, Wong FS, Tang J, Chen NY, Altieri M, David C, Flavell R, Sherwin R. In vivo evidence for the contribution of human histocompatibility leukocyte antigen (HLA)-DQ molecules to the development of diabetes. J Exp Med 2000; 191: 97–104
  • Rajagopalan G, Kudva YC, Chen L, Wen L, David CS. Autoimmune diabetes in HLA-DR3/DQ8 transgenic mice expressing the co-stimulatory molecule B7-1 in the {beta} cells of islets of Langerhans. Int Immunol 2003; 15: 1035–1044
  • Rajagopalan G, Kudva YC, Flavell R, David C. Accelerated diabetes in rat insulin promoter-tumor necrosis factor-α transgenic nonobese diabetic mice lacking major histocompatibility class II molecules. Diabetes 2003; 52: 342–347
  • Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science 1985; 229: 16–22, 10.1126/science.2990035
  • Fleetwood AJ, Cook AD, Hamilton JA. Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol 2005; 25: 405–428
  • Judkowski V, Krakowski M, Rodriguez E, Mocnick L, Santamaria P, Sarvetnick N. Increased islet antigen presentation leads to type-1 diabetes in mice with autoimmune susceptibility. Eur J Immunol 2004; 34: 1031–1040
  • Rajagopalan G, Smart MK, Krco CJ, David CS. Expression and function of transgenic HLA-DQ molecules and lymphocyte development in mice lacking invariant chain. J Immunol 2002; 169: 1774–1783
  • Kudva YC, Deng YJ, Govindarajan R, Abraham RS, Marietta EV, Notkins AL, David CS. HLA-DQ8 transgenic and NOD mice recognize different epitopes within the cytoplasmic region of the tyrosine phosphatase-like molecule, IA-2. Hum Immunol 2001; 62: 1099–1105
  • Abraham RS, Wilson SB, de Souza NF, Jr., Strominger JL, Munn SR, David CS. NOD background genes influence T cell responses to GAD 65 in HLA-DQ8 transgenic mice. Hum Immunol 1999; 60: 583–590
  • Herman AE, Tisch RM, Patel SD, Parry SL, Olson J, Noble JA, Cope AP, Cox B, Congia M, McDevitt HO. Determination of glutamic acid decarboxylase 65 peptides presented by the type I diabetes-associated HLA-DQ8 class II molecule identifies an immunogenic peptide motif. J Immunol 1999; 163: 6275–6282
  • Liu J, Purdy LE, Rabinovitch S, Jevnikar AM, Elliott JF. Major DQ8-restricted T-cell epitopes for human GAD65 mapped using human CD4, DQA1*0301, DQB1*0302 transgenic IA(null) NOD mice. Diabetes 1999; 48: 469–477
  • Kelemen K, Gottlieb PA, Putnam AL, Davidson HW, Wegmann DR, Hutton JC. HLA-DQ8-associated T cell responses to the diabetes autoantigen phogrin (IA-2{beta}) in human prediabetes. J Immunol 2004; 172: 3955–3962
  • Havari E, Lennon-Dumenil AM, Klein L, Neely D, Taylor JA, McInerney MF, Wucherpfennig KW, Lipes MA. Expression of the B7.1 costimulatory molecule on pancreatic {beta} cells abrogates the requirement for CD4 T cells in the development of type 1 diabetes. J Immunol 2004; 173: 787–796
  • Hamilton JA. GM-CSF in inflammation and autoimmunity. Trends Immunol 2002; 23: 403–408
  • Cook AD, Braine EL, Hamilton JA. Stimulus-dependent requirement for granulocyte-macrophage colony-stimulating factor in inflammation. J Immunol 2004; 173: 4643–4651
  • Stampfli MR, Wiley RE, Scott Neigh G, Gajewska BU, Lei X-F, Snider DP, Xing Z, Jordana M. GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce allergic sensitization in mice. J Clin Invest 1998; 102: 1704–1714
  • Biondo M, Nasa Z, Marshall A, Hock Toh B, Alderuccio F. Local transgenic expression of granulocyte macrophage-colony stimulating factor initiates. Autoimmunity J Immunol 2001; 166: 2090–2099
  • Campbell IK, Bendele A, Smith DA, Hamilton JA. Granulocyte-macrophage colony stimulating factor exacerbates collagen induced arthritis in mice. Ann Rheum Dis 1997; 56: 364–368
  • Yaacob NS, Kaderi MA, Norazmi MN. The expression of cytokine genes in the peritoneal macrophages and splenic CD4- and CD8-positive lymphocytes of the nonobese diabetic mice. J Clin Immunol 2004; 24: 177–184
  • Litherland SA, Grebe KM, Belkin NS, Paek E, Elf J, Atkinson M, Morel L, Clare-Salzler MJ, McDuffie M. Nonobese diabetic mouse congenic analysis reveals chromosome 11 locus contributing to diabetes susceptibility, macrophage STAT5 dysfunction, and granulocyte–macrophage colony-stimulating factor overproduction. J Immunol 2005; 175: 4561–4565
  • Picarella D, Kratz A, Li C, Ruddle N, Flavell R. Transgenic tumor necrosis factor (TNF)-alpha production in pancreatic islets leads to insulitis, not diabetes. Distinct patterns of inflammation in TNF-alpha and TNF-beta transgenic mice. J Immunol 1993; 150: 4136–4150
  • Green EA, Flavell RA. Tumor necrosis factor-alpha and the progression of diabetes in non-obese diabetic mice. Immunol Rev 1999; 169: 11–22
  • Krakowski M, Abdelmalik R, Mocnik L, Krahl T, Sarvetnick N. Granulocyte macrophage-colony stimulating factor (GM-CSF) recruits immune cells to the pancreas and delays STZ-induced diabetes. J Pathol 2002; 196: 103–112
  • Pomerleau DP, Bagley RJ, Serreze DV, Mathews CE, Leiter EH. Major histocompatibility complex-linked diabetes susceptibility in NOD/Lt mice: Subcongenic analysis localizes a component of Idd16 at the H2-D end of the diabetogenic H2g7 complex. Diabetes 2005; 54: 1603–1606
  • Inoue K, Ikegami H, Fujisawa T, Noso S, Nojima K, Babaya N, Itoi-Babaya M, Makimo S, Ogihara T. Allelic variation in class I K gene as candidate for a second component of MHC-linked susceptibility to type 1 diabetes in non-obese diabetic mice. Diabetologia 2004; 47: 739–747
  • Rajagopalan G, Kudva YC, Sen MM, Marietta EV, Murali N, Nath K, Moore J, David CS. IL-10-deficiency unmasks unique immune system defects and reveals differential regulation of organ-specific autoimmunity in non-obese diabetic mice. Cytokine 2006; 34: 85–95
  • Fox CJ, Paterson AD, Mortin-Toth SM, Danska JS. Two genetic loci regulate T cell-dependent islet inflammation and drive autoimmune diabetes pathogenesis. Am J Hum Genet 2000; 67: 67–81
  • Fox C, Danska J. Independent genetic regulation of T-cell and antigen-presenting cell participation in autoimmune islet inflammation. Diabetes 1998; 47: 331–338
  • Lang RA, Metcalf D, Cuthbertson RA, Lyons I, Stanley E, Kelso A, Kannourakis G, Williamson DJ, Klintworth GK, Gonda TJ, et al. Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 1987; 51: 675–686
  • Burke B, Pridmore A, Harraghy N, Collick A, Brown J, Mitchell T. Transgenic mice showing inflammation-inducible overexpression of granulocyte macrophage colony-stimulating factor. Clin Diagn Lab Immunol 2004; 11: 588–598

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.