492
Views
95
CrossRef citations to date
0
Altmetric
Original

Epigenetics in human autoimmunity

(Epigenetics in autoimmunity—DNA methylation in systemic lupus erythematosus and beyond)

&
Pages 278-286 | Received 26 Nov 2007, Accepted 07 Dec 2007, Published online: 07 Jul 2009

References

  • Harley JB, Kelly JA, Kaufman KM. Unraveling the genetics of systemic lupus erythematosus. Springer Semin Immunopathol 2006; 28: 119–130
  • Cooper GS, Parks CG, Treadwell EL, St Clair EW, Gilkeson GS, Dooley MA. Occupational risk factors for the development of systemic lupus erythematosus. J Rheumatol 2004; 31: 1928–1933
  • Jarvinen P, Aho K. Twin studies in rheumatic diseases. Semin Arthritis Rheum 1994; 24: 19–28
  • Rao T, Richardson B. Environmentally induced autoimmune diseases: Potential mechanisms. Environ Health Perspect 1999; 107(Suppl 5)737–742
  • Richardson B. Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4+ cells. Hum Immunol 1986; 17: 456–470
  • Richardson BC, Liebling MR, Hudson JL. CD4+ cells treated with DNA methylation inhibitors induce autologous B cell differentiation. Clin Immunol Immunopathol 1990; 55: 368–381
  • Richardson BC, Strahler JR, Pivirotto TS, Quddus J, Bayliss GE, Gross LA, O'Rourke KS, Powers D, Hanash SM, Johnson MA. Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus. Arthritis Rheum 1992; 35: 647–662
  • Lu Q, Ray D, Gutsch D, Richardson B. Effect of DNA methylation and chromatin structure on ITGAL expression. Blood 2002; 99: 4503–4508
  • Richardson B, Powers D, Hooper F, Yung RL, O'Rourke K. Lymphocyte function-associated antigen 1 overexpression and T cell autoreactivity. Arthritis Rheum 1994; 37: 1363–1372
  • Yung R, Powers D, Johnson K, Amento E, Carr D, Laing T, Yang J, Chang S, Hemati N, Richardson B. Mechanisms of drug-induced lupus. II. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupuslike disease in syngeneic mice. J Clin Invest 1996; 97: 2866–2871
  • Wulfing C, Sumen C, Sjaastad MD, Wu LC, Dustin ML, Davis MM. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat Immunol 2002; 3: 42–47
  • Rolink AG, Pals ST, Gleichmann E. Allosuppressor and allohelper T cells in acute and chronic graft-vs.-host disease. II. F1 recipients carrying mutations at H-2K and/or I-A. J Exp Med 1983; 157: 755–771
  • Quddus J, Johnson KJ, Gavalchin J, Amento EP, Chrisp CE, Yung RL, Richardson BC. Treating activated CD4+T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest 1993; 92: 38–53
  • Kaplan MJ, Lewis EE, Shelden EA, Somers E, Pavlic R, McCune WJ, Richardson BC. The apoptotic ligands TRAIL, TWEAK, and Fas ligand mediate monocyte death induced by autologous lupus T cells. J Immunol 2002; 169: 6020–6029
  • Lu Q, Wu A, Ray D, Deng C, Attwood J, Hanash S, Pipkin M, Lichtenheld M, Richardson B. DNA methylation and chromatin structure regulate T cell perforin gene expression. J Immunol 2003; 170: 5124–5132
  • Kaplan MJ, Lu Q, Wu A, Attwood J, Richardson B. Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. J Immunol 2004; 172: 3652–3661
  • Denny MF, Chandaroy P, Killen PD, Caricchio R, Lewis EE, Richardson BC, Lee KD, Gavalchin J, Kaplan MJ. Accelerated macrophage apoptosis induces autoantibody formation and organ damage in systemic lupus erythematosus. J Immunol 2006; 176: 2095–2104
  • Oelke K, Lu Q, Richardson D, Wu A, Deng C, Hanash S, Richardson B. Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis Rheum 2004; 50: 1850–1860
  • Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 2007; 179: 6352–6358
  • Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 2007; 179: 6352–6358
  • Reiner SL. Epigenetic control in the immune response. Hum Mol Genet 2005; 14(Spec No. 1)R41–R46
  • Lu Q, Wu A, Richardson BC. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 2005; 174: 6212–6219
  • Yung RL, Richardson BC. Drug-induced lupus. Rheum Dis Clin North Am 1994; 20: 61–86
  • Batchelor JR, Welsh KI, Tinoco RM, Dollery CT, Hughes GR, Bernstein R, Ryan P, Naish PF, Aber GM, Bing RF, Russell GI. Hydralazine-induced systemic lupus erythematosus: Influence of HLA-DR and sex on susceptibility. Lancet 1980; 1: 1107–1109
  • Lee BH, Yegnasubramanian S, Lin X, Nelson WG. Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem 2005; 280: 40749–40756
  • Scheinbart LS, Johnson MA, Gross LA, Edelstein SR, Richardson BC. Procainamide inhibits DNA methyltransferase in a human T cell line. J Rheumatol 1991; 18: 530–534
  • Deng C, Lu Q, Zhang Z, Rao T, Attwood J, Yung R, Richardson B. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum 2003; 48: 746–756
  • Mazari L, Ouarzane M, Zouali M. Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus. Proc Natl Acad Sci USA 2007; 104: 6317–6322
  • Deng C, Kaplan MJ, Yang J, Ray D, Zhang Z, McCune WJ, Hanash SM, Richardson BC. Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum 2001; 44: 397–407
  • Gorelik G, Fang J-Y, Wu A, Sawalha A, Richardson B. Impaired T cell PKC delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J Immunol 2007; 179: 5553–5563
  • Gorelik G, Fang JY, Wu A, Sawalha AH, Richardson B. Impaired T cell protein kinase Cdelta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J Immunol 2007; 179: 5553–5563
  • Miyamoto A, Nakayama K, Imaki H, Hirose S, Jiang Y, Abe M, Tsukiyama T, Nagahama H, Ohno S, Hatakeyama S, Nakayama KI. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cdelta. Nature 2002; 416: 865–869
  • Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 1990; 33: 1665–1673
  • Kammer GM, Perl A, Richardson BC, Tsokos GC. Abnormal T cell signal transduction in systemic lupus erythematosus. Arthritis Rheum 2002; 46: 1139–1154
  • Oelke K, Richardson B. Decreased T cell ERK pathway signaling may contribute to the development of lupus through effects on DNA methylation and gene expression. Int Rev Immunol 2004; 23: 315–331
  • Crow MK, Kirou KA. Regulation of CD40 ligand expression in systemic lupus erythematosus. Curr Opin Rheumatol 2001; 13: 361–369
  • Richardson BC, Yung RL, Johnson KJ, Rowse PE, Lalwani ND. Monocyte apoptosis in patients with active lupus. Arthritis Rheum 1996; 39: 1432–1434
  • Lu Q, Kaplan M, Ray D, Ray D, Zacharek S, Gutsch D, Richardson B. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 2002; 46: 1282–1291
  • Mishra N, Brown DR, Olorenshaw IM, Kammer GM. Trichostatin A reverses skewed expression of CD154, interleukin-10, and interferon-gamma gene and protein expression in lupus T cells. Proc Natl Acad Sci USA 2001; 98: 2628–2633
  • Marks PA, Dokmanovic M. Histone deacetylase inhibitors: Discovery and development as anticancer agents. Expert Opin Investig Drugs 2005; 14: 1497–1511
  • Kim YI, Logan JW, Mason JB, Roubenoff R. DNA hypomethylation in inflammatory arthritis: Reversal with methotrexate. J Lab Clin Med 1996; 128: 165–172
  • Wang Y, Fan PS, Kahaleh B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 2006; 54: 2271–2279
  • Ozbalkan Z, Bagislar S, Kiraz S, Akyerli CB, Ozer HT, Yavuz S, Birlik AM, Calguneri M, Ozcelik T. Skewed X chromosome inactivation in blood cells of women with scleroderma. Arthritis Rheum 2005; 52: 1564–1570
  • Ozcelik T, Uz E, Akyerli CB, Bagislar S, Mustafa CA, Gursoy A, Akarsu N, Toruner G, Kamel N, Gullu S. Evidence from autoimmune thyroiditis of skewed X-chromosome inactivation in female predisposition to autoimmunity. Eur J Hum Genet 2006; 14: 791–797
  • Millington GW. Genomic imprinting and dermatological disease. Clin Exp Dermatol 2006; 31: 681–688
  • Bos J. Skin immune system, J Bos. CRC Press, Boca Raton, FL 1997; 3–16
  • Luger T. Skin immune system, J Bos. CRC Press, Boca Raton, FL 1997; 271–310
  • Kang K, Poster A, Nedorost S, Stevens S, Cooper K. Dermatology, J Bolognia, J Jorizzo, R Rapini. Mosby, New York 2003; 199–214
  • Yawalkar N, Hunger RE, Buri C, Schmid S, Egli F, Brand CU, Mueller C, Pichler WJ, Braathen LR. A comparative study of the expression of cytotoxic proteins in allergic contact dermatitis and psoriasis: Spongiotic skin lesions in allergic contact dermatitis are highly infiltrated by T cells expressing perforin and granzyme B. Am J Pathol 2001; 158: 803–808
  • Taylor RS, Baadsgaard O, Hammerberg C, Cooper KD. Hyperstimulatory CD1a+CD1b+CD36+ Langerhans cells are responsible for increased autologous T lymphocyte reactivity to lesional epidermal cells of patients with atopic dermatitis. J Immunol 1991; 147: 3794–3802
  • Kondo H, Ichikawa Y, Imokawa G. Percutaneous sensitization with allergens through barrier-disrupted skin elicits a Th2-dominant cytokine response. Eur J Immunol 1998; 28: 769–779
  • Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O'Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay M, McLean WH. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006; 38: 441–446
  • Larsen FS, Holm NV, Henningsen K. Atopic dermatitis. A genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol 1986; 15: 487–494
  • Nakamura T, Sekigawa I, Ogasawara H, Mitsuishi K, Hira K, Ikeda S, Ogawa H. Expression of DNMT-1 in patients with atopic dermatitis. Arch Dermatol Res 2006; 298: 253–256
  • Kuwabara N, Kondo N, Fukutomi O, Fujii H, Orii T. Methylation patterns of I epsilon region in B cells stimulated with interleukin 4 and Epstein–Barr virus in patients with a high level of serum IgE. Eur J Immunogenet 1995; 22: 265–275
  • Lorenzo PRs, Kuwabara N, Kondo N, Orii T. IgE production by B-cells stimulated with interleukin-4 and Epstein–Barr virus in patients with elevated serum IgE levels. J Investig Allergol Clin Immunol 1995; 5: 78–81
  • Wrone-Smith T, Nickoloff BJ. Dermal injection of immunocytes induces psoriasis. J Clin Invest 1996; 98: 1878–1887
  • Nickoloff BJ, Nestle FO. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J Clin Invest 2004; 113: 1664–1675
  • Brandrup F, Holm N, Grunnet N, Henningsen K, Hansen HE. Psoriasis in monozygotic twins: Variations in expression in individuals with identical genetic constitution. Acta Derm Venereol 1982; 62: 229–236
  • Duffy DL, Spelman LS, Martin NG. Psoriasis in Australian twins. J Am Acad Dermatol 1993; 29: 428–434
  • Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T, Wasik MA. STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci USA 2005; 102: 6948–6953
  • Bruecher-Encke B, Griffin JD, Neel BG, Lorenz U. Role of the tyrosine phosphatase SHP-1 in K562 cell differentiation. Leukemia 2001; 15: 1424–1432
  • Ruchusatsawat K, Wongpiyabovorn J, Shuangshoti S, Hirankarn N, Mutirangura A. SHP-1 promoter 2 methylation in normal epithelial tissues and demethylation in psoriasis. J Mol Med 2006; 84: 175–182
  • Sano S, Chan KS, Carbajal S, Clifford J, Peavey M, Kiguchi K, Itami S, Nickoloff BJ, DiGiovanni J. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med 2005; 11: 43–49
  • Zhang K, Zhang R, Li X, Yin G, Niu X, Hou R. The mRNA expression and promoter methylation status of the p16 gene in colony-forming cells with high proliferative potential in patients with psoriasis. Clin Exp Dermatol 2007; 32: 702–708
  • Snowden JA, Heaton DC. Development of psoriasis after syngeneic bone marrow transplant from psoriatic donor: Further evidence for adoptive autoimmunity. Br J Dermatol 1997; 137: 130–132
  • Woods AC, Mant MJ. Amelioration of severe psoriasis with psoriatic arthritis for 20 years after allogeneic haematopoietic stem cell transplantation. Ann Rheum Dis 2006; 65: 697
  • Kastelan M, Prpic Massari L, Gruber F, Zamolo G, Zauhar G, Coklo M, Rukavina D. Perforin expression is upregulated in the epidermis of psoriatic lesions. Br J Dermatol 2004; 151: 831–836
  • Giblin PA, Lemieux RM. LFA-1 as a key regulator of immune function: Approaches toward the development of LFA-1-based therapeutics. Curr Pharm Des 2006; 12: 2771–2795
  • Gladman DD. Natural history of psoriatic arthritis. Baillieres Clin Rheumatol 1994; 8: 379–394
  • Rahman P, Gladman DD, Schentag CT, Petronis A. Excessive paternal transmission in psoriatic arthritis. Arthritis Rheum 1999; 42: 1228–1231
  • Karason A, Gudjonsson JE, Upmanyu R, Antonsdottir AA, Hauksson VB, Runasdottir EH, Jonsson HH, Gudbjartsson DF, Frigge ML, Kong A, Stefansson K, Valdimarsson H, Gulcher JR. A susceptibility gene for psoriatic arthritis maps to chromosome 16q: Evidence for imprinting. Am J Hum Genet 2003; 72: 125–131
  • Howitz J, Brodthagen H, Schwartz M, Thomsen K. Prevalence of vitiligo. Arch Dermatol 1977; 113: 47–52, Epidemiological survey on the Isle of Bornholm, Denmark
  • Das SK, Majumder PP, Chakraborty R, Majumdar TK, Haldar B. Studies on vitiligo. Genet Epidemiol 1985; 2: 71–78, I. Epidemiological profile in Calcutta, India
  • Nordlund J, Ortonne J, LePoole I. The pigmentary system: Physiology and pathophysiology, J Nordlund, R Boissy, V Hearing, R King, W Oetting, J-P Ortonne. Blackwell, Oxford 2006; 551–598
  • Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res 2003; 16: 208–214
  • Laberge G, Mailloux CM, Gowan K, Holland P, Bennett DC, Fain PR, Spritz RA. Early disease onset and increased risk of other autoimmune diseases in familial generalized vitiligo. Pigment Cell Res 2005; 18: 300–305
  • Spritz RA. The genetics of generalized vitiligo and associated autoimmune diseases. Pigment Cell Res 2007; 20: 271–278
  • Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, Fain PR, Spritz RA. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 2007; 356: 1216–1225
  • Spritz RA, Gowan K, Bennett DC, Fain PR. Novel vitiligo susceptibility loci on chromosomes 7 (AIS2) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am J Hum Genet 2004; 74: 188–191
  • Taieb A. NALP1 and the inflammasomes: Challenging our perception of vitiligo and vitiligo-related autoimmune disorders. Pigment Cell Res 2007; 20: 260–262
  • Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP. CD8+T cell immunity against a tumor/self-antigen is augmented by CD4+T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 2005; 174: 2591–2601
  • Sreekumar GP, Erf GF, Smyth JR, Jr. 5-azacytidine treatment induces autoimmune vitiligo in parental control strains of the Smyth line chicken model for autoimmune vitiligo. Clin Immunol Immunopathol 1996; 81: 136–144
  • Schauenstein K, Csordas A, Kromer G, Dietrich H, Wick G. In vivo treatment with 5-azacytidine causes degeneration of central lymphatic organs and induces autoimmune disease in the chicken. Int J Exp Pathol 1991; 72: 311–318

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.