1,902
Views
109
CrossRef citations to date
0
Altmetric
Review Article

Recent advances of exosomes in immune modulation and autoimmune diseases

, , , , &
Pages 357-365 | Received 01 Jan 2016, Accepted 15 May 2016, Published online: 03 Jun 2016

References

  • Ajit, S. K. 2012. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors. 12: 3359–3369
  • Natasha, G., B. Gundogan, A. Tan, et al. 2014. Exosomes as immunotheranostic nanoparticles. Clin. Ther. 36: 820–829
  • Rekker, K., M. Saare, A. M. Roost, et al. 2014. Comparison of serum exosome isolation methods for microRNA profiling. Clin. Biochem. 47: 135–138
  • Stoorvogel, W., M. J. Kleijmeer, H. J. Geuze, et al. 2002. The biogenesis and functions of exosomes. Traffic. 3: 321–330
  • Zhang, L., and J. L. Wrana. 2014. The emerging role of exosomes in Wnt secretion and transport. Curr. Opin. Genetics. Dev. 27: 14–19
  • Keller, S., J. Ridinger, A. K. Rupp, et al. 2011. Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med. 9: 86–94
  • Raposo, G., H. W. Nijman, W. Stoorvogel, et al. 1996. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183: 1161–1172
  • Agarwal, A., G. Fanelli, M. Letizia, et al. 2014. Regulatory T cell-derived exosomes: possible therapeutic and diagnostic tools in transplantation. Front. Immunol. 5: 555–561
  • Zhang, B., Y. Yin, R. C. Lai, et al. 2014. Immunotherapeutic potential of extracellular vesicles. Front. Immunol. 5: 518
  • Chaput, N., J. Taieb, N. E. Schartz, et al. 2004. Exosome-based immunotherapy. Cancer Immunol. Immunother. CII. 53: 234–239
  • Beach, A., H. G. Zhang, M. Z. Ratajczak, et al. 2014. Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J. Ovarian. Res. 7: 14–24
  • Buschow, S. I., B. W. van Balkom, M. Aalberts, et al. 2010. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol. Cell. Biol. 88: 851–856
  • Gehrmann, U., T. I. Naslund, S. Hiltbrunner, et al. 2014. Harnessing the exosome-induced immune response for cancer immunotherapy. Semin. Cancer Biol. 28: 58–67
  • Viaud, S., C. Thery, S. Ploix, et al. 2010. Dendritic cell-derived exosomes for cancer immunotherapy: what's next? Cancer Res. 70: 1281–1285
  • Thery, C., L. Duban, E. Segura, et al. 2002. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat. Immunol. 3: 1156–1162
  • Buschow, S. I., E. N. Nolte-'t Hoen, G. van Niel, et al. 2009. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic. 10: 1528–1542
  • Segura, E., C. Nicco, B. Lombard, et al. 2005. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood. 106: 216–223
  • Quah, B. J., and H. C. O'Neill. 2005. The immunogenicity of dendritic cell-derived exosomes. Blood Cells Mol Dis. 35: 94–110
  • Pant, S., H. Hilton, and M. E. Burczynski. 2012. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem. Pharmacol. 83: 1484–1494
  • Andre, F., N. Chaput, N. E. Schartz, et al. 2004. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol. 172: 2126–2136
  • Thery, C., A. Regnault, J. Garin, et al. 1999. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell. Biol. 147: 599–610
  • Hwang, I. 2013. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol. Cells. 36: 105–111
  • Knight, A. M. 2008. Regulated release of B cell-derived exosomes: do differences in exosome release provide insight into different APC function for B cells and DC? Eur. J. Immunol. 38: 1186–1189
  • Garside, P., E. Ingulli, R. R. Merica, et al. 1998. Visualization of specific B and T lymphocyte interactions in the lymph node. Science. 281: 96–99
  • Yan, J., B. P. Harvey, R. J. Gee, et al. 2006. B cells drive early T cell autoimmunity in vivo prior to dendritic cell-mediated autoantigen presentation. J. Immunol. 177: 4481–4487
  • Frydrychowicz, M., A. Kolecka-Bednarczyk, M. Madejczyk, et al. 2015. Exosomes - structure, biogenesis and biological role in non-small-cell lung cancer. Scand. J. Immunol. 81: 2–10
  • Clayton, A., A. Turkes, S. Dewitt, et al. 2004. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 18: 977–979
  • Ren, Y., J. Yang, R. Xie, et al. 2011. Exosomal-like vesicles with immune-modulatory features are present in human plasma and can induce CD4+ T-cell apoptosis in vitro. Transfusion. 51: 1002–1011
  • Papp, K., P. Vegh, J. Prechl, et al. 2008. B lymphocytes and macrophages release cell membrane deposited C3-fragments on exosomes with T cell response-enhancing capacity. Mol. Immunol. 45: 2343–2351
  • Klinker, M. W., V. Lizzio, T. J. Reed, et al. 2014. Human B cell-derived lymphoblastoid cell lines constitutively produce Fas ligand and secrete MHCII(+)FasL(+) killer exosomes. Front. Immunol. 5: 144–153
  • O'Neill, H. C., and B. J. Quah. 2008. Exosomes secreted by bacterially infected macrophages are proinflammatory. Science Signal. 1: pe8
  • Schorey, J. S., and S. Bhatnagar. 2008. Exosome function: from tumor immunology to pathogen biology. Traffic. 9: 871–881
  • Bhatnagar, S., and J. S. Schorey. 2007. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. J. Biol. Chem. 282: 25779–25789
  • Hassani, K., and M. Olivier. 2013. Immunomodulatory impact of leishmania-induced macrophage exosomes: a comparative proteomic and functional analysis. PLoS. Negl. Trop. Dis. 7: e2185
  • McDonald, M. K., Y. Tian, R. A. Qureshi, et al. 2014. Functional significance of macrophage-derived exosomes in inflammation and pain. Pain. 155: 1527–1539
  • Smyth, L. A., K. Ratnasothy, J. Y. Tsang, et al. 2013. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur. J. Immunol. 43: 2430–2440
  • Okoye, I. S., S. M. Coomes, V. S. Pelly, et al. 2014. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 41: 89–103
  • Chatila, T. A., and C. B. Williams. 2014. Regulatory T cells: exosomes deliver tolerance. Immunity. 41: 3–5
  • Xie, Y., X. Zhang, T. Zhao, et al. 2013. Natural CD8(+)25(+) regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma. Biochem. Biophys. Res. Commun. 438: 152–155
  • Villarroya-Beltri, C., C. Gutierrez-Vazquez, F. Sanchez-Cabo, et al. 2013. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4: 2980–2989
  • Xiao, C., and K. Rajewsky. 2009. MicroRNA control in the immune system: basic principles. Cell. 136: 26–36
  • Bronevetsky, Y., and K. M. Ansel. 2013. Regulation of miRNA biogenesis and turnover in the immune system. Immunol. Rev. 253: 304–316
  • Montecalvo, A., A. T. Larregina, W. J. Shufesky, et al. 2012. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 119: 756–766
  • Fernandez-Messina, L., C. Gutierrez-Vazquez, E. Rivas-Garcia, et al. 2015. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol. Cell. 107: 61–77
  • Almanza, G., V. Anufreichik, J. J. Rodvold, et al. 2013. Synthesis and delivery of short, noncoding RNA by B lymphocytes. Proc. Natl. Acad. Sci. USA. 110: 20182–20187
  • Momen-Heravi, F., S. Bala, T. Bukong, et al. 2014. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomed. 10: 1517–1527
  • Ismail, N., Y. Wang, D. Dakhlallah, et al. 2013. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 121: 984–995
  • Yang, M., J. Chen, F. Su, et al. 2011. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol. Cancer. 10: 117–129
  • de Candia, P., A. Torri, M. Pagani, et al. 2014. Serum microRNAs as biomarkers of human lymphocyte activation in health and disease. Front. Immunol. 5: 43–48
  • Gutierrez-Vazquez, C., C. Villarroya-Beltri, M. Mittelbrunn, et al. 2013. Transfer of extracellular vesicles during immune cell-cell interactions. Immunol. Rev. 251: 125–142
  • Mittelbrunn, M., C. Gutierrez-Vazquez, C. Villarroya-Beltri, et al. 2011. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2: 282–291
  • Gibbings, D. J., C. Ciaudo, M. Erhardt, et al. 2009. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature. Cell. Biol. 11: 1143–1149
  • Rana, S., K. Malinowska, and M. Zoller. 2013. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia. 15: 281–295
  • Bryniarski, K., W. Ptak, A. Jayakumar, et al. 2013. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J. Allergy Clin. Immunol. 132: 170–181
  • Dreux, M., U. Garaigorta, B. Boyd, et al. 2012. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell. Host. Microbe. 12: 558–570
  • Pegtel, D. M., K. Cosmopoulos, D. A. Thorley-Lawson, et al. 2010. Functional delivery of viral miRNAs via exosomes. Proc. Natl. Acad. Sci. USA. 107: 6328–6333
  • Cereghetti, D. M., and P. P. Lee. 2014. Tumor-derived exosomes contain microRNAs with immunological function: implications for a novel immunosuppression mechanism. Microrna. 2: 194–204
  • Fabbri, M., A. Paone, F. Calore, et al. 2012. MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. USA. 109: E2110–E2116
  • Buzas, E. I., B. Gyorgy, G. Nagy, et al. 2014. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol. 10: 356–364
  • Skriner, K., K. Adolph, P. R. Jungblut, et al. 2006. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum. 54: 3809–3814
  • Kapsogeorgou, E. K., R. F. Abu-Helu, H. M. Moutsopoulos, et al. 2005. Salivary gland epithelial cell exosomes: a source of autoantigenic ribonucleoproteins. Arthritis Rheum. 52: 1517–1521
  • Rahman, M. J., D. Regn, R. Bashratyan, et al. 2014. Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes. 63: 1008–1020
  • Martinez-Lostao, L., F. Garcia-Alvarez, G. Basanez, et al. 2010. Liposome-bound APO2L/TRAIL is an effective treatment in a rabbit model of rheumatoid arthritis. Arthritis Rheum. 62: 2272–2282
  • Martinez-Lorenzo, M. J., A. Anel, B. Saez-Gutierrez, et al. 2007. Rheumatoid synovial fluid T cells are sensitive to APO2L/TRAIL. Clin. Immunol. 122: 28–40
  • Mohan, C., and S. Assassi. 2015. Biomarkers in rheumatic diseases: how can they facilitate diagnosis and assessment of disease activity? BMJ. 351: h5079
  • Park, J. Y., J. E. Lee, J. B. Park, et al. 2014. Roles of long non-coding RNAs on tumorigenesis and glioma development. Brain. Tumor. Res. Treat. 2: 1–6
  • Qiu, M. T., J. W. Hu, R. Yin, et al. 2013. Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol. 34: 613–620
  • Hung, T., and H. Y. Chang. 2010. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol. 7: 582–585
  • Shi, X., M. Sun, H. Liu, et al. 2013. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 339: 159–166
  • Wang, J., Y. Zhou, J. Lu, et al. 2014. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med. Oncol. 31: 148–155
  • Song, J., D. Kim, J. Han, et al. 2015. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin. Exp. Med. 15: 121–126
  • Yang, C., and P. D. Robbins. 2012. Immunosuppressive exosomes: a new approach for treating arthritis. Int. J. Rheumatol. 2012: 573528
  • Cai, Z., W. Zhang, F. Yang, et al. 2012. Immunosuppressive exosomes from TGF-beta1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell. Res. 22: 607–610
  • Kim, S. H., E. R. Lechman, N. Bianco, et al. 2005. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol. 174: 6440–6448
  • Kim, S. H., N. R. Bianco, W. J. Shufesky, et al. 2007. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J. Immunol. 179: 2242–2249
  • Kim, S. H., N. Bianco, R. Menon, et al. 2006. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol. Ther. 13: 289–300
  • Bianco, N. R., S. H. Kim, A. E. Morelli, et al. 2007. Modulation of the immune response using dendritic cell-derived exosomes. Methods. Mol. Biol. 380: 443–455
  • Sabapatha, A., C. Gercel-Taylor, and D. D. Taylor. 2006. Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am. J. Reprod. Immunol. 56: 345–355
  • Hedlund, M., A. C. Stenqvist, O. Nagaeva, et al. 2009. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J. Immunol. 183: 340–351
  • Ostman, S., M. Taube, and E. Telemo. 2005. Tolerosome-induced oral tolerance is MHC dependent. Immunology. 116: 464–476
  • Prado, N., E. G. Marazuela, E. Segura, et al. 2008. Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J. Immunol. 181: 1519–1525
  • Admyre, C., S. M. Johansson, K. R. Qazi, et al. 2007. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179: 1969–1978
  • Routsias, J. G., and A. G. Tzioufas. 2010. Autoimmune response and target autoantigens in Sjogren's syndrome. Eur. J. Clin. Invest. 40: 1026–1036
  • Properzi, F., M. Logozzi, and S. Fais. 2013. Exosomes: the future of biomarkers in medicine. Biomark Med. 7: 769–778
  • Michael, A., S. D. Bajracharya, P. S. T. Yuen, et al. 2010. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16: 34–38
  • Palanisamy, V., S. Sharma, A. Deshpande, et al. 2010. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One. 5: e8577
  • Zan, H., C. Tat, and P. Casali. 2014. MicroRNAs in lupus. Autoimmunity. 47: 272–285
  • Pisetsky, D. S. 2014. The complex role of DNA, histones and HMGB1 in the pathogenesis of SLE. Autoimmunity. 47: 487–493
  • Ortega, L. M., D. R. Schultz, O. Lenz, et al. 2010. Review: lupus nephritis: pathologic features, epidemiology and a guide to therapeutic decisions. Lupus. 19: 557–574
  • Pisitkun, T., R. F. Shen, and M. A. Knepper. 2004. Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad Sci. USA. 101: 13368–13373
  • Miranda, K. C., D. T. Bond, M. McKee, et al. 2010. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 78: 191–199
  • Zhou, H., A. Cheruvanky, X. Hu, et al. 2008. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int. 74: 613–621
  • Barutta, F., M. Tricarico, A. Corbelli, et al. 2013. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One. 8: e73798
  • Bala, S., J. Petrasek, S. Mundkur, et al. 2012. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. 56: 1946–1957
  • Perez-Hernandez, J., M. J. Forner, C. Pinto, et al. 2015. Increased urinary exosomal microRNAs in patients with systemic lupus erythematosus. PLoS One. 10: e0138618
  • Wang, G., L. S. Tam, E. K. Li, et al. 2011. Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus. 20: 493–500
  • Sole, C., J. Cortes-Hernandez, M. L. Felip, et al. 2015. miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol. Dial. Transplant. 30: 1488–1496
  • Ichii, O., S. Otsuka-Kanazawa, T. Horino, et al. 2014. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS One. 9: e110383
  • Thery, C., M. Ostrowski, and E. Segura. 2009. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9: 581–593
  • Yanez-Mo, M., P. R. Siljander, Z. Andreu, et al. 2015. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 4: 27066–27125
  • Alvarez-Erviti, L., Y. Seow, H. Yin, et al. 2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29: 341–345
  • van Dommelen, S. M., P. Vader, S. Lakhal, et al. 2012. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J. Control Release. 161: 635–644

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.