424
Views
24
CrossRef citations to date
0
Altmetric
Review Article

Bisphenol A: A notorious player in the mosaic of autoimmunity

, &
Pages 370-377 | Received 29 Aug 2018, Accepted 19 Nov 2018, Published online: 28 Dec 2018

References

  • Bergman Å, Heindel J, Jobling S, et al. State of the science of endocrine disrupting chemicals. Toxicol Lett. 2012; 211:S3.
  • Steinmetz R, Mitchner NA, Grant A, et al. The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology. 1998;139:2741–2747.
  • Khan D, Ansar Ahmed S. The immune system is a natural target for estrogen action: Opposing effects of estrogen in two prototypical autoimmune diseases. Front Immunol. 2016;6:1–8.
  • Hughes GC, Clark EA. Regulation of dendritic cells by female sex steroids: relevance to immunity and autoimmunity. Autoimmunity. 2007;40:470–481.
  • Dietert RR, Dietert JM. Potential for early-life immune insult including developmental immunotoxicity in autism and autism spectrum disorders: focus on critical windows of immune vulnerability. J Toxicol Environ. 2008;11:660–680.
  • Lee J, Choi K, Park J, et al. Bisphenol A distribution in serum, urine, placenta, breast milk, and umbilical cord serum in a birth panel of mother–neonate pairs. Sci Total Environ. 2018; 626:1494–1501.
  • Balakrishnan B, Henare K, Thorstensen EB, et al. Transfer of bisphenol A across the human placenta. Am J Obstet Gynecol. 2010;202:393.e1–397.
  • Brien EO, Dolinoy DC, Mancuso P, et al. Perinatal Bisphenol A Exposures Increase Production of Pro- inflammatory Mediators in Bone Marrow-derived Mast Cells of Adult Mice. J Immunotoxicol. 2014;11:205–212.
  • Roy A, Bauer SM, Lawrence BP. Developmental exposure to bisphenol a modulates innate but not adaptive immune responses to influenza a virus infection. PLoS One 2012;7:1–12.
  • Harel M, Shoenfeld Y. Predicting and preventing autoimmunity, myth or reality? Ann N Y Acad Sci. 2006;1069:322–345.
  • Shepshelovich D, Shoenfeld Y. Prediction and prevention of autoimmune diseases: additional aspects of the mosaic of autoimmunity. Lupus. 2006;15:183–190.
  • Thayer KA, Heindel JJ, Bucher JR, et al. Role of environmental chemicals in diabetes and obesity: A national toxicology program workshop review. Environ Health Perspect. 2012;120:779–789.
  • Lubrano C, Genovesi G, Specchia P, et al. Obesity and metabolic comorbidities: Environmental diseases? Oxid Med Cell Longev. 2013;2013:1–23577225.
  • Schug TT, Janesick A, Blumberg B, et al. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127:204–215.
  • Jochmanová I, Lazúrová Z, Rudnay M, et al. Environmental estrogen bisphenol A and autoimmunity. Lupus. 2015; 24:392–399.
  • Liu Y, Qu K, Hai Y, et al. Bisphenol A (BPA) binding on full-length architectures of estrogen receptor . J Cell Biochem. 2018;119:6784–6794.
  • Li Y, Perera L, Coons LA, et al. Differential in vitro biological action, coregulator interactions, and molecular dynamic analysis of bisphenol A (BPA), BPAF, and BPS ligand–ERα complexes. Environ Health Perspect. 2018;126:1–16.
  • Shafei A, Matbouly M, Mostafa E, et al. Stop eating plastic, molecular signaling of bisphenol A in breast cancer. Environ Sci Pollut Res. 2018; 25:23624–23630.
  • Perrot-Applanat M, Kolf-Clauw M, Michel C, et al. Alteration of mammary gland development by bisphenol a and evidence of a mode of action mediated through endocrine disruption. Mol Cell Endocrinol. 2018;475:29–53.
  • Mallozzi M, Leone C, Manurita F, et al. Endocrine disrupting chemicals and endometrial cancer: an overview of recent laboratory evidence and epidemiological studies. Int J Environ Res Public Health. 2017;14:334.
  • Di Donato M, Cernera G, Giovannelli P, et al. Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol Cell Endocrinol. 2017;457:35–42.
  • Rogers JA, Metz L, Yong VW. Review: Endocrine disrupting chemicals and immune responses: A focus on bisphenol-A and its potential mechanisms. Mol Immunol. 2013;53:421–430.
  • Balistrieri A, Hobohm L, Srivastava T, et al. Alterations in human neutrophil function by Bisphenol A. Am J Physiol Physiol 2018.
  • Peeva E, Venkatesh J, Michael D, et al. Prolactin as a modulator of B cell function: Implications for SLE. Biomed Pharmacother. 2004;58:310–319.
  • Borba VV, Zandman-Goddard G, Shoenfeld Y. Prolactin and autoimmunity. Front Immunol. 2018;9:597–614.
  • Orbach H, Zandman-Goddard G, Boaz M, et al. Prolactin and autoimmunity: hyperprolactinemia correlates with serositis and anemia in SLE patients. Clin Rev Allerg Immunol. 2012;42:189–198.
  • Steinmetz R, Brown NG, Allen DL, et al. The environmental estrogen bisphenol A stimulated prolactin release in vitro and in vivo. Endocrinology. 1997;138:1780–1786.
  • Watson CS, Bulayeva NN, Wozniak AL, et al. Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids. 2007;72:124–134.
  • Miao M, Yuan W, Yang F, et al. Associations between bisphenol a exposure and reproductive hormones among female workers. Int J Environ Res Public Health. 2015;12:13240–13250.
  • Hao L, Zhang J, Zhang Y, et al. Effect of bisphenol a on occurrence and progression of prolactinoma and its underlying mechanisms. Am J Transl Res. 2016;8:4195–4204.
  • Juan-Manuel A, Shoenfeld Y. Multiple autoimmune disease in a patient with hyperprolactinemia. Isr Med Assoc J. 2005;7:740–741.
  • Orbach H, Zandman-Goddard G, Amital H, et al. Novel biomarkers in autoimmune diseases: Prolactin, ferritin, vitamin D, and TPA levels in autoimmune diseases. Ann N Y Acad Sci. 2007;1109:385–400.
  • Orbach H, Shoenfeld Y. Hyperprolactinemia and autoimmune diseases. Autoimmun Rev. 2007;6:537–542.
  • Praprotnik S, Porat-katz BS, Blank M, et al. Prolactin's role in the pathogenesis of the antiphospholipid syndrome. Lupus. 2010;19:1515–1519.
  • Da Costa R, Szyper-Kravitz M, Szekanecz Z, et al. Ferritin and prolactin levels in multiple sclerosis. Isr Med Assoc J. 2011;13:91–95.
  • Watad A, Amital H, Aljadeff G, et al. Prolactin, another important player in the mosaic of autoimmunity. Isr Med Assoc J. 2016;18:542–543.
  • Peeva E, Zouali M. Spotlight on the role of hormonal factors in the emergence of autoreactive B-lymphocytes. Immunol Lett. 2005;101:123–143.
  • Peeva E, Michael D, Cleary J, et al. Prolactin modulates the naive B cell repertoire. J Clin Invest. 2003;111:275–283.
  • Jara LJ, Medina G, Saavedra MA, et al. Prolactin and autoimmunity. Clin Rev Allergy Immunol. 2011; 40:50–59.
  • Raphael I, Nalawade S, Eagar TN, et al. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015;74:5–17.
  • Yan H, Takamoto M, Sugane K. Exposure to Bisphenol A prenatally or in adulthood promotes T(H)2 cytokine production associated with reduction of CD4CD25 regulatory T cells. Environ Health Perspect. 2008;116:514–519.
  • Chen Y, Xu HS, Guo TL. Modulation of cytokine/chemokine production in human macrophages by bisphenol A: a comparison to analogues and interactions with genistein. J Immunotoxicol. 2018;15:96–103.
  • Camarca A, Gianfrani C, Ariemma F, et al. Human peripheral blood mononuclear cell function and dendritic cell differentiation are affected by bisphenol-A exposure. PLoS One. 2016;11:1–18.
  • Liu Y, Mei C, Liu H, et al. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A. Biochem Biophys Res Commun. 2014;451:592–598.
  • Teixeira D, Marques C, Diogo P, et al. Effects of xenoestrogens in human M1 and M2 macrophage migration, cytokine release, and estrogen‐related signaling pathways. Environ Toxicol. 2016;31:1496–1509.
  • Panchanathan R, Liu H, Leung Y, et al. Bisphenol A (BPA) stimulates the interferon signaling and activates the inflammasome activity in myeloid cells. Mol Cell Endocrinol. 2015; 415:45–55.
  • Cetkovic-Cvrlje M, Thinamany S, Bruner KA. Bisphenol A (BPA) aggravates multiple low-dose streptozotocin-induced Type 1 diabetes in C57BL/6 mice. J Immunotoxicol. 2017;14:160–168.
  • Luo S, Li Y, Li Y, et al. Gestational and lactational exposure to low-dose bisphenol A increases Th17 cells in mice offspring. Environ Toxicol Pharmacol. 2016;47:149–158.
  • Holladay SD, Xiao S, Diao H, et al. Perinatal bisphenol a exposure in C57B6/129svj male mice: Potential altered cytokine/chemokine production in adulthood. Int J Environ Res Public Health. 2010;7:2845–2852.
  • Yoshino S, Yamaki K, Li X, et al. Prenatal exposure to bisphenol A up-regulates immune responses, including T helper 1 and T helper 2 responses, in mice. Immunology. 2004;112:489–495.
  • Cernadas M, Lu J, Watts G, et al. CD1a expression defines an interleukin-12 producing population of human dendritic cells. Clin Exp Immunol. 2009;155:523–533.
  • Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol. 2003;3:51–19220838.
  • Invernizzi P. Liver auto-immunology: the paradox of autoimmunity in a tolerogenic organ. J Autoimmun. 2013;46:1–6.
  • Doherty DG. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun. 2016;66:60–75.
  • Kharrazian D. The potential roles of bisphenol A (BPA) pathogenesis in autoimmunity. Autoimmune Dis. 2014;2014:743616
  • Gassman NR. Induction of oxidative stress by bisphenol A and its pleiotropic effects. Environ Mol Mutagen. 2017;58:60–71.
  • Kazemi S, Mousavi Kani SN, Rezazadeh L, et al. Low dose administration of Bisphenol A induces liver toxicity in adult rats. Biochem Biophys Res Commun. 2017;494:107–112.
  • Montaño-Loza A, Crispín-Acuña J, Remes-Troche J. M. U. Abnormal hepatic biochemistries and clinical liver disease in patients with primary Sjögren’s syndrome. Ann Hepatol. 2007;6:150–155.
  • Namazi MR. Cytochrome-P450 enzymes and autoimmunity: expansion of the relationship and introduction of free radicals as the link. J Autoimmune Dis. 2009;6:4–6.
  • Ozaydin T, Oznurlu Y, Sur E, et al. Effects of bisphenol A on antioxidant system and lipid profile in rats. Biotech Histochem. 2018;93:231–238.
  • Lu Q. The critical importance of epigenetics in autoimmunity. J Autoimmun. 2013;41:1–5.
  • Xu H, Yang M, Qiu W, et al. The impact of endocrine‐disrupting chemicals on oxidative stress and innate immune response in zebrafish embryos. Environ Toxicol Chem. 2013;32:1793–1799.
  • Kim JH, Rozek LS, Soliman AS, et al. Bisphenol A- associated epigenomic changes in prepubescent girls: a cross-sectional study in Gharbiah, Egypt. Environ Heal A Glob Access Sci Source. 2013;12:1–15.
  • Gilbert KM, Blossom SJ, Reisfeld B, et al. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4+ T cells. Environ Epigenet. 2017;3:1–16.
  • Dozmorov MG, Coit P, Maksimowicz-Mckinnon K, et al. Age-associated DNA methylation changes in naive CD4 + T cells suggest an evolving autoimmune epigenotype in aging T cells. Epigenomics. 2017;9:429–445.
  • Matatiele P, Tikly M, Tarr G, et al. DNA methylation similarities in genes of Black South Africans with systemic lupus erythematosus and systemic sclerosis. J Biomed Sci. 2015;22:1–9.
  • Jeffries M, Dozmorov M, Tang Y, et al. Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics. 2011;6:593–601.
  • Charras A, Konsta OD, Le Dantec C, et al. Cell-specific epigenome-wide DNA methylation profile in long-term cultured minor salivary gland epithelial cells from patients with Sjögren's syndrome. Ann Rheum Dis. 2017;76:625–628.
  • Park SH, Kim SK, Choe JY, et al. Hypermethylation of EBF3 and IRX1 genes in synovial fibroblasts of patients with rheumatoid arthritis. Mol Cells. 2013;35:298–304.
  • Nakano K, Whitaker JW, Boyle DL, et al. DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis. 2013;72:110–117.
  • Karatzas PS, Mantzaris GJ, Safioleas M, et al. DNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel disease. Medicine (Baltimore). 2014;93:e309–25526479.
  • Bromer JG, Zhou Y, Taylor MB, et al. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. Faseb J. 2010; 24:2273–2280.
  • He M, Ichinose T, Yoshida S, et al. Exposure to bisphenol A enhanced lung eosinophilia in adult male mice. Allergy Asthma Clin Immunol. 2016;12:16–19.
  • Lee MH, Chung SW, Kang BY, et al. Enhanced interleukin- 4 production in CD4+ T cells and elevated immunoglobulin E levels in antigen-primed mice by bisphenol A and nonylphenol, endocrine disruptors: involvement of nuclear factor-AT and CA2+. Immunology. 2003;109:76–86.
  • Wang I-J, Chen C-Y, Bornehag C-G. Bisphenol A exposure may increase the risk of development of atopic disorders in children. Int J Hygiene Environ Health. 2016;219:311–316.
  • Zoeller RT, Bansal R, Parris C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology. 2005;146:607–612.
  • Sriphrapradang C, Chailurkit L, Aekplakorn W, et al. Association between bisphenol A and abnormal free thyroxine level in men. Endocrine. 2013;44:441–23377699.
  • Chevrier J, Gunier RB, Bradman A, et al. Maternal urinary bisphenol a during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect. 2013;121:138–144.
  • Romano ME, Webster GM, Vuong AM, et al. Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: the HOME Study. Environ Res. 2015;138:453–460.
  • Ahmed RG, Walaa GH, Asmaa FS. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicol Ind Health. 2018;34:397–407.
  • Fernandez MO, Bourguignon NS, Arocena P, et al. Neonatal exposure to bisphenol A alters the hypothalamic-pituitary-thyroid axis in female rats. Toxicol Lett. 2018;285:81–86.
  • Park C, Choi W, Hwang M, et al. Associations between urinary phthalate metabolites and bisphenol A levels, and serum thyroid hormones among the Korean adult population – Korean National Environmental Health Survey (KoNEHS) 2012–2014. Sci Total Environ. 2017;584:950–957.
  • Chailurkit LO, Aekplakorn W, Ongphiphadhanakul B. The association of serum bisphenol A with thyroid autoimmunity. Int J Environ Res Public Health. 2016;13:1153.
  • Fairweather D, Frisancho-Kiss S, Rose NR. Sex differences in autoimmune disease from a pathological perspective. Am J Pathol. 2008;173:600–609.
  • Preciados M, Yoo C, Roy D. Estrogenic endocrine disrupting chemicals influencing NRF1 regulated gene networks in the development of complex human brain diseases. Int J Mol Sci. 2016;17:2086–27983596.
  • Brinkmeyer-Langford C, Rodrigues A, Kochan KJ, et al. Consequences of perinatal bisphenol A exposure in a mouse model of multiple sclerosis. Autoimmunity. 2014;47:57–66.
  • Kharrazian D, Vojdani A. Correlation between antibodies to bisphenol A, its target enzyme protein disulfide isomerase and antibodies to neuron-specific antigens. J Appl Toxicol. 2017;37:479–484.
  • Krementsov DN, Katchy A, Case LK, et al. Studies in experimental autoimmune encephalomyelitis do not support developmental bisphenol a exposure as an environmental factor in increasing multiple sclerosis risk. Toxicol Sci. 2013;135:91–102.
  • Pérez D, Gilburd B, Cabrera-Marante Ó, et al. Predictive autoimmunity using autoantibodies: screening for anti-nuclear antibodies. Clin Chem Lab Med. 2018;56:1771–1777.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.