210
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced expression of human endogenous retroviruses in new-onset type 1 diabetes: Potential pathogenetic and therapeutic implications

, , , , , , & show all
Pages 283-288 | Received 13 Jan 2020, Accepted 20 May 2020, Published online: 25 Jun 2020

References

  • Feschotte C, Gilbert C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet. 2012;13(4):283–296.
  • Johnson WE. Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol. 2019;17(6):355–370.
  • Katoh I, Kurata S. Association of endogenous retroviruses and long terminal repeats with human disorders. Front Oncol. 2013;3:234.
  • Trela M, Nelson PN, Rylance PB. The role of molecular mimicry and other factors in the association of human endogenous retroviruses and autoimmunity. APMIS. 2016;124(1–2):88–104.
  • Rolland A, Jouvin-Marche E, Viret C, et al. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol. 2006;176(12):7636–7644.
  • Campbell-Thompson M, Fu A, Kaddis JS, et al. Insulitis and β-cell mass in the natural history of type 1 diabetes. Diabetes. 2016;65(3):719–731.
  • Tai N, Wong FS, Wen L. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes. J Autoimmun. 2016;71:26–34.
  • Zhang L, Wu H, Zhao M, et al. Identifying the differentially expressed microRNAs in autoimmunity: a systemic review and meta-analysis. Autoimmunity. 2020;53(3):122–136.
  • Pak CY, Jun HS, Lee M, et al. Beta cell-specific expression of retroviral mRNAs and group-specific antigen and the development of beta cell-specific autoimmunity in non-obese diabetic mice. Autoimmunity. 1995;20(1):19–24.
  • Levisetti MG, Suri A, Vidavsky I, et al. Autoantibodies and CD4 T cells target a beta cell retroviral envelope protein in non-obese diabetic mice. Int Immunol. 2003;15(12):1473–1483.
  • Tsumura H, Miyazawa M, Ogawa S, et al. Detection of endogenous retrovirus antigens in NOD mouse pancreatic beta-cells. Lab Anim. 1998;32(1):86–94.
  • Bashratyan R, Regn D, Rahman MJ, et al. Type 1 diabetes pathogenesis is modulated by spontaneous autoimmune responses to endogenous retrovirus antigens in NOD mice. Eur J Immunol. 2017;47(3):575–584.
  • Levet S, Medina J, Joanou J, et al. An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes. JCI Insight. 2017;2(17):e94387.
  • Conrad B, Weissmahr RN, Boni J, et al. A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell. 1997;90(2):303–313.
  • Kim A, Jun HS, Wong L, et al. Human endogenous retrovirus with a high genomic sequence homology with IDDMK(1,2)22 is not specific for Type I (insulin-dependent) diabetic patients but ubiquitous. Diabetologia. 1999;42(4):413–418.
  • Garson JA, Usher L, Al-Chalabi A, et al. Response to the Letter from Garcia-Montojo and colleagues concerning our paper entitled, Quantitative analysis of human endogenous retrovirus-K transcripts in postmortem premotor cortex fails to confirm elevated expression of HERV-K RNA in amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2019;7(1):102.
  • Bergallo M, Montanari P, Mareschi K, et al. Expression of the pol gene of human endogenous retroviruses HERV-K and -W in leukemia patients. Arch Virol. 2017;162(12):3639–3644.
  • Bergallo M, Galliano I, Pirra A, et al. Transcriptional activity of human endogenous retroviruses is higher at birth in inversed correlation with gestational age. Infect Genet Evol. 2019;68:273–279.
  • Bergallo M, Galliano I, Daprà V, et al. Transcriptional activity of human endogenous retroviruses in response to prenatal exposure of maternal cigarette smoking. Am J Perinatol. 2018;36:1060–1065.
  • Jern P, Sperber GO, Blomberg J. Definition and variation of human endogenous retrovirus H. Virology. 2004;327(1):93–110.
  • Santoni FA, Guerra J, Luban J. HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology. 2012;9(1):111.
  • Yi JM, Kim HM, Kim HS. Human endogenous retrovirus HERV-H family in human tissues and cancer cells: expression, identification, and phylogeny. Cancer Lett. 2006;231(2):228–239.
  • Garay-Malpartida HM, Mourao RF, Mantovani M, et al. Toll-like receptor 4 (TLR4) expression in human and murine pancreatic beta-cells affects cell viability and insulin homeostasis. BMC Immunol. 2011;12:18
  • Li M, Song L, Gao X, et al. Toll-like receptor 4 on islet β cells senses expression changes in high-mobility group box 1 and contributes to the initiation of type 1 diabetes . Exp Mol Med. 2012;44(4):260–267.
  • Amyot J, Semache M, Ferdaoussi M, et al. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling. PloS One. 2012;7(4):e36200
  • Brudek T, Christensen T, Aagaard L, et al. B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity. Retrovirology. 2009;6:104.
  • Muir A, Ruan QG, Marron MP, et al. The IDDMK(1,2)22 retrovirus is not detectable in either mRNA or genomic DNA from patients with type 1 diabetes. Diabetes. 1999;48(1):219–222.
  • Mason MJ, Speake C, Gersuk VH, et al. Low HERV-K(C4) copy number is associated with type 1 diabetes. Diabetes. 2014;63(5):1789–1795.
  • Jerram ST, Dang MN, Leslie RD. The role of epigenetics in type 1 diabetes. Curr Diab Rep. 2017;17(10):89
  • Pathak R, Feil R. Environmental effects on chromatin repression at imprinted genes and endogenous retroviruses. Curr Opin Chem Biol. 2018;45:139–147.
  • Patterson CC, Harjutsalo V, Rosenbauer J, et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989-2013: a multicentre prospective registration study. Diabetologia. 2019;62(3):408–417.
  • Ruprecht K, Obojes K, Wengel V, et al. Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: implications for multiple sclerosis. J Neurovirol. 2006;12(1):65–71.
  • Mameli G, Poddighe L, Mei A, et al. Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PloS One. 2012;7(9):e44991.
  • Assinger A, Yaiw KC, Gottesdorfer I, et al. Human cytomegalovirus (HCMV) induces human endogenous retrovirus (HERV) transcription. Retrovirology. 2013;10:132.
  • Schmidt N, Domingues P, Golebiowski F, et al. An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity. Proc Natl Acad Sci USA. 2019;116(35):17399–17408.
  • Costas J. Characterization of the intragenomic spread of the human endogenous retrovirus family HERV-W. Mol Biol Evol. 2002;19(4):526–533.
  • Crow MK. Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity. 2010;43(1):7–16.
  • Leete P, Willcox A, Krogvold L, et al. Differential insulitic profiles determine the extent of β-cell destruction and the age at onset of type 1 diabetes. Diabetes. 2016;65(5):1362–1369.
  • Mi S, Lee X, Li X, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000;403(6771):785–789.
  • Blaise S, de Parseval N, Benit L, et al. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci USA. 2003;100(22):13013–13018.
  • Perron H, Garson JA, Bedin F, et al. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci Usa. 1997;94(14):7583–7588.
  • Curtin F, Bernard C, Levet S, et al. A new therapeutic approach for type 1 diabetes: rationale for GNbAC1, an anti-HERV-W-env monoclonal antibody. Diabetes Obes Metab. 2018;20(9):2075–2084.
  • Morandi E, Tanasescu R, Tarlinton RE, et al. Do antiretroviral drugs protect from multiple sclerosis by inhibiting expression of MS-associated retrovirus? Front Immunol. 2018;9:3092
  • Laderoute MP, Giulivi A, Larocque L, et al. The replicative activity of human endogenous retrovirus K102 (HERV-K102) with HIV viremia. Aids. 2007;21:2417–2424.
  • Bowen LN, Tyagi R, Li W, et al. HIV-associated motor neuron disease: HERV-K activation and response to antiretroviral therapy. Neurology. 2016;87(17):1756–1762.
  • Tyagi R, Li W, Parades D, et al. Inhibition of human endogenous retrovirus-K by antiretroviral drugs. Retrovirology. 2017;14(1):21
  • Manghera M, Ferguson-Parry J, Lin R, et al. NF-κB and IRF1 induce endogenous retrovirus K expression via interferon-stimulated response elements in Its 5' long terminal repeat. J Virol. 2016;90(20):9338–9349.
  • Piccinini M, Rinaudo RM, Chiapello N, et al. The human 26S proteasome is a target of antiretroviral agents. AIDS. 2002;16(5):693–700.
  • Piccinini M, Rinaudo RM, Anselmino A, et al. The HIV protease inhibitors nelfinavir and saquinavir, but not a variety of HIV reverse transcriptase inhibitors, adversely affect human proteasome function. Antivir Ther. 2005;10(2):215–223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.