621
Views
59
CrossRef citations to date
0
Altmetric
Research Article

Biological Role of the N-Formyl Peptide Receptors

, , , , &
Pages 103-127 | Published online: 08 Oct 2008

REFERENCES

  • Murphy P.M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol 1994; 12: 593–633, [CSA]
  • Gerard C., Gerard N.P. The pro-inflammatory seven-transmembrane segment receptors of the leukocyte. Curr. Opin. Immunol 1994; 6: 140–145, [CROSSREF], [CSA]
  • Schiffmann E., Corcoran B.A., Wahl S.M. N-formylmethionyl peptides as chemoattractants for leukocytes. Proc. Natl. Acad. Sci. USA 1975; 72: 1059–1062, [CSA]
  • Marasco W.A., Phan S.H., Krutzsch H., Showell H.J., Feltner D.E., Nairn R., Becker E.L., Ward P.A. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide nauthophil chemotactic factor produced by Escherichia coli. J. Biol. Chem 1984; 259: 5430–5439, [CSA]
  • Carp H. Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils. J. Exp. Med 1982; 155: 264–275, [CROSSREF], [CSA]
  • Bockaert J., Pin J.P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 1999; 18: 1723–1729, [CROSSREF], [CSA]
  • Gudermann T., Kalkbrenner F., Dippel E., Laugwitz K.L., Schultz G. Specificity and complexity of receptor-G-protein interaction. Adv. Second Messenger Phosphoprotein. Res 1997; 31: 253–262, [CSA]
  • Haviland D.L., Borel A.C., Fleischer D.T., Haviland J.C., Wetsel R.A. Structure, 5′-flanking sequence, and chromosome location of the human N-formyl peptide receptor gene. A single-copy gene comprised of two exons on chromosome 19q.13.3 that yields two distinct transcripts by alternative polyadenylation. Biochemistry 1993; 32: 4168–4174, [CROSSREF], [CSA]
  • Boulay F., Tardif M., Brouchon L., Vignais P. Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA. Biochem. Biophys. Res. Commun 1990; 168: 1103–1109, [CROSSREF], [CSA]
  • Yang D., Chen Q., Le Y., Wang J.M., Oppenheim J.J. Differential regulation of formyl peptide receptor-like 1 expression during the differentiation of monocytes to dendritic cells and macrophages. J. Immunol 2001; 166: 4092–4098, [CSA]
  • Yang D., Chen Q., Gertz B., He R., Phulsuksombati M., Ye R.D., Oppenheim J.J. Human dendritic cells express functional formyl peptide receptor-like-2 (FPRL2) throughout maturation. J. Leukoc. Biol 2002; 72: 598–607, [CSA]
  • Migeotte I., Riboldi E., Franssen J.D., Grégoire F., Loison C., Wittamer V., Detheux M., Robberecht P., Costagliola S., Vassart G., Sozzani S., Parmentier M., Communi D. Identification and characterization of an endogenous chemotactic ligand specific for FPRL2. J. Exp. Med 2005; 201: 83–93, [CROSSREF], [CSA]
  • Ye R.D., Quehenberger O., Thomas K.M., Navarro J., Cavanagh S.L., Prossnitz E.R., Cochrane C.G. The rabbit neutrophil N-formyl peptide receptor. cDNA cloning, expression, and structure/function implications. J. Immunol 1993; 150: 1383–1394, [CSA]
  • Snyderman R., Pike M.C. N-Formylmethionyl peptide receptors on equine leukocytes initiate secretion but not chemotaxis. Science 1980; 209: 493–495, [CSA]
  • Liang T.S., Wang J.M., Murphy P.M., Gao J.L. Serum amyloid A is a chemotactic agonist at FPR2, a low-affinity N-formylpeptide receptor on mouse neutrophils. Biochem. Biophys. Res. Commun 2000; 270: 331–335, [CROSSREF], [CSA]
  • Hartt J.K., Liang T., Sahagun-Ruiz A., Wang J.M., Gao J.L., Murphy P.M. The HIV-1 cell entry inhibitor T-20 potently chemoattracts neutrophils by specifically activating the N-formylpeptide receptor. Biochem. Biophys. Res. Commun 2000; 272: 699–704, [CROSSREF], [CSA]
  • Gao J.L., Lee E.J., Murphy P.M. Impaired antibacterial host defense in mice lacking the N-formylpeptide receptor. J. Exp. Med 1999; 189: 657–662, [CROSSREF], [CSA]
  • Cui Y.H., Le Y., Gong W., Proost P., Van Damme J., Murphy W.J., Wang J.M. Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. J. Immunol 2002b; 168: 434–442, [CSA]
  • Lacy M., Jones J., Whittemore S.R., Haviland D.L., Wetsel R.A., Barnum S.R. Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. J. Neuroimmunol 1995; 61: 71–78, [CROSSREF], [CSA]
  • Esser E., Loschen G. Leukocytic ·O2- and cardiac dysfunctions in isolated perfused rat hearts. Arch. Toxicol 1991; 65: 361–365, [CROSSREF], [CSA]
  • Keitoku M., Kohzuki M., Katoh H., Funakoshi M., Suzuki S., Takeuchi M., Karibe A., Horiguchi S., Watanabe J., Satoh S., Nose M., Abe K., Okayama H., Shirato K. FMLP actions and its binding sites in isolated human coronary arteries. J. Mol. Cell. Cardiol 1997; 29: 881–894, [CROSSREF], [CSA]
  • Panaro M.A., Mitolo V. Cellular responses to FMLP challenging: a mini-review. Immunopharmacol. Immunotoxicol 1999; 21: 397–419, [CSA]
  • Becker E.L., Forouhar F.A., Grunnet M.L., Boulay F., Tardif M., Bormann B.J., Sodja D., Ye R.D., Woska J.R., Jr., Murphy P.M. Broad immunocytochemical localization of the formylpeptide receptor in human organs, tissues, and cells. Cell Tissue Res 1998; 292: 129–135, [CROSSREF], [CSA]
  • Müller-Ladner U., Jones J.L., Wetsel R.A., Gay S., Raine C.S., Barnum S.R. Enhanced expression of chemotactic receptors in multiple sclerosis lesions. J. Neurol. Sci 1996; 144: 135–141, [CROSSREF], [CSA]
  • Sozzani S., Sallusto F., Luini W., Zhou D., Piemonti L., Allavena P., Van Damme J., Valitutti S., Lanzavecchia A., Mantovani A. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J. Immunol 1995; 155: 3292–3295, [CSA]
  • McCoy R., Haviland D.L., Molmenti E.P., Ziambaras T., Wetsel R.A., Perlmutter D.H. N-formylpeptide and complement C5a receptors are expressed in liver cells and mediate hepatic acute phase gene regulation. J. Exp. Med 1995; 182: 207–217, [CROSSREF], [CSA]
  • VanCompernolle S.E., Clark K.L., Rummel K.A., Todd S.C. Expression and function of formyl peptide receptors on human fibroblast cells. J. Immunol 2003; 171: 2050–2056, [CSA]
  • Klinker J.F., Schwaner I., Offermanns S., Hageluken A., Seifert R. Differential activation of dibutyryl cAMP-differentiated HL-60 human leukemia cells by chemoattractants. Biochem. Pharmacol 1994; 48: 1857–1864, [CROSSREF], [CSA]
  • Wenzel-Seifert K., Seifert R. Cyclosporin H is a potent and selective formyl peptide receptor antagonist. Comparison with N-t-butoxycarbonyl-L-phenylalanyl-L-leucyl-L-phenylalanyl-L-leucyl-L-phenylalanine and cyclosporins A, B, C, D, and E.J. Immunol 1993; 150: 4591–4599, [CSA]
  • Seifert R., Wenzel-Seifert K. The human formyl peptide receptor as model system for constitutively active G-protein-coupled receptors. Life Sci 2003; 73: 2263–2280, [CROSSREF], [CSA]
  • Gierschik P., Sidiropoulos D., Jakobs K.H. Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J. Biol. Chem 1989; 264: 21470–21473, [CSA]
  • Lazzari K.G., Proto P.J., Simons E.R. Simultaneous measurement of stimulus-induced changes in cytoplasmic Ca2+ and in membrane potential of human neutrophils. J. Biol. Chem 1986; 261: 9710–9713, [CSA]
  • Laffafian I., Hallett M.B. Does cytosolic free Ca2+ signal neutrophil chemotaxis in response to formylated chemotactic peptide?. J. Cell. Sci 1995; 108: 3199–3205, [CSA]
  • Boitano S., Dirksen E.R., Sanderson M.J. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 1992; 258: 292–295, [CSA]
  • Traynor-Kaplan A.E., Harris A.L., Thompson B.L., Taylor P., Sklar L.A. An inositol tetrakisphosphate-containing phospholipid in activated neutrophils. Nature 1988; 334: 353–356, [CROSSREF], [CSA]
  • Browning D.D., Pan Z.K., Prossnitz E.R., Ye R.D. Cell type-and developmental stage-specific activation of NF-κB by fMet-Leu-Phe in myeloid cells. J. Biol. Chem 1977; 272: 7995–8001, [CSA]
  • Pan Z.K., Chen L.Y., Cochrane C.G., Zuraw B.L. FMet-Leu-Phe stimulates proinflammatory cytokine gene expression in human peripheral blood monocytes: the role of phosphatidylinositol 3-kinase. J. Immunol 2000; 164: 404–411, [CSA]
  • Sadhu C., Masinovsky B., Dick K., Sowell C.G., Staunton D.E. Essential role of phosphoinositide 3-kinase δ in neutrophil directional movement. J. Immunol 2003; 170: 2647–2654, [CSA]
  • Bostan M., Galatiuc C., Hirt M., Constantin M.C., Brasoveanu L.I., Iordachescu D. Phospholipase A2 modulates respiratory burst developed by neutrophils in patients with rheumatoid arthritis. J. Cell. Mol. Med 2003; 7: 57–66, [CSA]
  • Escrig V., Ubeda A., Ferrandiz M.L., Darias J., Sanchez J.M., Alcaraz M.J., Paya M. Variabilin: a dual inhibitor of human secretory and cytosolic phospholipase A2 with anti-inflammatory activity. Pharmacol. Exp. Ther 1997; 282: 123–131, [CSA]
  • Fujita K., Murakami M., Yamashita F., Amemiya K., Kudo I. Phospholipase D is involved in cytosolic phospholipase A2-dependent selective release of arachidonic acid by fMLP-stimulated rat neutrophils. FEBS Lett 1996; 395: 293–298, [CROSSREF], [CSA]
  • Hinder M. Investigation on the effect of experimental phospholipase A2 inhibitors on the formyl-methionyl-leucyl-phenylalanine-stimulated chemotaxis of human leukocytes in vitro. Arzneimittelforschung 1998; 48: 77–81, [CSA]
  • English D. Phosphatidic acid: a lipid messenger involved in intracellular and extracellular signalling. Cell. Signal 1996; 8: 341–347, [CROSSREF], [CSA]
  • Yasui K., Komiyama A. Roles of phosphatidylinositol 3-kinase and phospholipase D in temporal activation of superoxide production in FMLP-stimulated human neutrophils. Cell. Biochem. Funct 2001; 19: 43–50, [CROSSREF], [CSA]
  • Regier D.S., Greene D.G., Sergeant S., Jesaitis A.J., McPhail L.C. Phosphorylation of p22phox is mediated by phospholipase D-dependent and -independent mechanisms. Correlation of NADPH oxidase activity and p22phox phosphorylation. J. Biol. Chem 2000; 275: 28406–28412, [CROSSREF], [CSA]
  • Pillinger M.H., Feoktistov A.S., Capodici C., Solitar B., Levy J., Oei T.T., Philips M.R. Mitogen-activated protein kinase in neutrophils and enucleate neutrophil cytoplasts: evidence for regulation of cell-cell adhesion. J. Biol. Chem 1996; 271: 12049–12056, [CROSSREF], [CSA]
  • Knall C., Young S., Nick J.A., Buhl A.M., Worthen G.S., Johnson G.L. Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J. Biol. Chem 1996; 271: 2832–2838, [CROSSREF], [CSA]
  • Krump E., Sanghera J.S., Pelech S.L., Furuya W., Grinstein S. Chemotactic peptide N-formyl-met-leu-phe activation of p38 mitogen-activated protein kinase (MAPK) and MAPK-activated protein kinase-2 in human neutrophils. J. Biol. Chem 1997; 272: 937–944, [CROSSREF], [CSA]
  • Worthen G.S., Avdi N., Buhl A.M., Suzuki N., Johnson G.L. FMLP activates Ras and Raf in human neutrophils. Potential role in activation of MAP kinase. J. Clin. Invest 1994; 94: 815–823, [PUBMED], [CSA]
  • Avdi N.J., Winston B.W., Russel M., Young S.K., Johnson G.L., Worthen G.S. Activation of MEKK by formyl-methionyl-leucyl-phenylalanine in human neutrophils. Mapping pathways for mitogen-activated protein kinase activation. J. Biol. Chem 1996; 271: 33598–33606, [CROSSREF], [CSA]
  • Nick J.A., Avdi N.J., Young S.K., Knall C., Gerwins P., Johnson G.L., Worthen G.S. Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and FMLP. J. Clin. Invest 1997; 99: 975–986, [CSA]
  • Rane M.J., Arthur J.M., Prossnitz E.R., McLeish K.R. Activation of mitogen-activated protein kinases by formyl peptide receptors is regulated by the cytoplasmic tail. J. Biol. Chem 1998; 273: 20916–20923, [CSA]
  • Huang S., Chen L.Y., Zuraw B.L., Ye R.D., Pan Z.K. Chemoattractant-stimulated NF-kappaB activation is dependent on the low molecular weight GTPase RhoA. J. Biol. Chem 2001; 276: 40977–40981, [CROSSREF], [CSA]
  • Chen L.Y., Doerner A., Lehmann P.F., Huang S., Zhong G., Pan Z.K. A novel protein kinase C (PKCe) is required for fMet-Leu-Phe induced activation of NF-B in human peripheral blood monocytes. J. Biol. Chem 2005; 280: 22497–22501, [CROSSREF], [CSA]
  • Bae Y.S., Park E.Y., Kim Y., He R., Ye R.D., Kwak J.Y., Suh P.G., Ryu S.H. Novel chemoattractant peptides for human leukocytes. Biochem. Pharmacol 2003; 66: 1841–1851, [CROSSREF], [CSA]
  • Le Y., Gong W., Li B., Dunlop N.M., Shen W., Su S.B., Ye R.D., Wang J.M. Utilization of two seven-transmembrane, G protein-coupled receptors, formyl peptide receptor-like 1 and formyl peptide receptor, by the synthetic hexapeptide WKYMVm for human phagocyte activation. J. Immunol 1999; 163: 6777–6784, [CSA]
  • Hu J.Y., Le Y., Gong W., Dunlop N.M., Gao J.L., Murphy P.M., Wang J.M. Synthetic peptide MMK-1 is a highly specific chemotactic agonist for leukocyte FPRL1. J. Leukoc. Biol 2001; 70: 155–161, [CSA]
  • Fabbri E., Spisani S., Barbin L., Biondi C., Buzzi M., Traniello S., Zecchini G.P., Ferretti M.E. Studies on fMLP-receptor interaction and signal transduction pathway by means of fMLP-OMe selective analogues. Cell. Signal 2000; 12: 391–398, [CROSSREF], [CSA]
  • Cavicchioni G., Turchetti M., Spisani S. Biological variation responses in fMLP-OMe analogs, introducing bulky protecting groups on the side-chain of hydrophilic residues at position 2. J. Pept. Res 2002; 60: 223–231, [CROSSREF], [CSA]
  • Cavicchioni G., Turchetti M., Varani K., Falzarano S., Spisani S. Properties of a novel chemotactic esapeptide, an analogue of the prototypical N-formylmethionyl peptide. Bioorg. Chem 2003; 31: 322–330, [CROSSREF], [CSA]
  • Su S.B., Gong W.H., Gao J.L., Shen W.P., Grimm M.C., Deng X., Murphy P.M., Oppenheim J.J., Wang J.M. T20/DP178, an ectodomain peptide of human immunodeficiency virus type 1 gp41, is an activator of human phagocyte N-formyl peptide receptor. Blood 1999a; 93: 3885–3892, [CSA]
  • Su S.B., Gong W., Gao J.L., Shen W., Murphy P.M., Oppenheim J.J., Wang J.M. A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J. Exp. Med 1999b; 189: 395–402, [CROSSREF], [CSA]
  • Le Y., Jiang S., Hu J., Gong W., Su S., Dunlop N.M., Shen W., Li B., Ming Wang J. N36, a synthetic N-terminal heptad repeat domain of the HIV-1 envelope protein gp41, is an activator of human phagocytes. Clin. Immunol 2000; 96: 236–242, [CROSSREF], [CSA]
  • Bylund J., Christophe T., Boulay F., Nystrom T., Karlsson A., Dahlgren C. Proinflammatory activity of a cecropin-like antibacterial peptide from Helicobacter pylori. Antimicrob. Agents Chemother 2001; 45: 1700–1704, [CROSSREF], [CSA]
  • Betten A., Bylund J., Cristophe T., Boulay F., Romero A., Hellstrand K., Dahlgren C. A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J. Clin. Invest 2001; 108: 1221–1228, [CROSSREF], [CSA]
  • Walther A., Riehemann K., Gerke V. A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol. Cell 2000; 5: 831–840, [CROSSREF], [CSA]
  • Ernst S., Lange C., Wilbers A., Goebeler V., Gerke V., Rescher U. An annexin 1 N-terminal peptide activates leukocytes by triggering different members of the formyl peptide receptor family. J. Immunol 2004; 172: 7669–7676, [CSA]
  • Cui Y., Le Y., Yazawa H., Gong W., Wang J.M. Potential role of the formyl peptide receptor-like 1 (FPRL1) in inflammatory aspects of Alzheimer's disease. J. Leukoc. Biol 2002a; 72: 628–635, [CSA]
  • Le Y., Gong W., Tiffany H.L., Tumanov A., Nedospasov S., Shen W., Dunlop N.M., Gao J.L., Murphy P.M., Oppenheim J.J., Wang J.M. Amyloid β42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci 2001a; 21: RC123, [CSA]
  • Le Y., Yazawa H., Gong W., Yu Z., Ferrans V.J., Murphy P.M., Wang J.M. The neurotoxic prion peptide fragment PrP(106–126) is a chemotactic agonist for the G protein-coupled receptor formyl peptide receptor-like 1. J. Immunol 2001b; 166: 1448–1451, [CSA]
  • Gao J.L., Becker E.L., Freer R.J., Muthukumaraswamy N., Murphy P.M. A high potency nonformylated peptide agonist for the phagocyte N-formylpeptide chemotactic receptor. J. Exp. Med 1994; 180: 2191–2197, [CROSSREF], [CSA]
  • Higgins J.D., 3rd, Bridger G.J, Derian C.K., Beblavy M.J., Hernandez P.E., Gaul F.E., Abrams M.J., Pike M.C., Solomon H.F. N-terminus urea-substituted chemotactic peptides: new potent agonists and antagonists toward the neutrophil fMLF receptor. J. Med. Chem 1996; 39: 1013–1015, [CROSSREF], [CSA]
  • Freer R.J., Day A.R., Radding J.A., Schiffmann E., Aswanikumar S., Showell H.J., Becker E.L. Further studies on the structural requirements for synthetic peptide chemoattractants. Biochemistry 1980; 19: 2404–2410, [CROSSREF], [CSA]
  • Dalpiaz A., Ferretti M.E., Pecoraro R., Fabbri E., Traniello S., Scatturin A., Spisani S. Phe-D-Leu-Phe-D-Leu-Phe derivatives as formylpeptide receptor antagonists in human neutrophils: cellular and conformational aspects. Biochim. Biophys. Acta 1999; 1432: 27–39, [CSA]
  • Wenzel-Seifert K., Grunbaum L., Seifert R. Differential inhibition of human neutrophil activation by cyclosporins A, D, and H. Cyclosporin H is a potent and effective inhibitor of formyl peptide-induced superoxide formation. J. Immunol 1991; 147: 1940–1946, [CSA]
  • Derian C.K., Solomon H.F., Higgins J.D., 3rd, Beblavy M.J., Santulli R.J., Bridger G.J., Pike M.C., Kroon D.J., Fischman A.J. Selective inhibition of N‐formylpeptide-induced neutrophil activation by carbamate-modified peptide analogues. Biochemistry 1996; 35: 1265–1269, [CROSSREF], [CSA]
  • Chen X., Yang D., Shen W., Dong H.F., Wang J.M., Oppenheim J.J., Howard M.Z. Characterization of chenodeoxycholic acid as an endogenous antagonist of the G-coupled formyl peptide receptors. Inflamm. Res 2000; 49: 744–755, [CROSSREF], [CSA]
  • Chen X., Mellon R.D., Yang L., Dong H., Oppenheim J.J., Howard O.M. Regulatory effects of deoxycholic acid, a component of the anti-inflammatory traditional Chinese medicine Niuhuang, on human leukocyte response to chemoattractant. Biochem. Pharmacol 2002; 63: 533–541, [CROSSREF], [CSA]
  • Ali H., Richardson R.M., Haribabu B., Snyderman R. Chemoattractant receptor cross-desensitization. J. Biol. Chem 1999; 274: 6027–6030, [CROSSREF], [CSA]
  • Prossnitz E.R., Ye R.D. The N-formyl peptide receptor: a model for the study of chemoattractant receptor structure and function. Pharmacol. Ther 1997a; 74: 73–102, [CROSSREF], [CSA]
  • Prossnitz E.R. Desensitization of N-formylpeptide receptor-mediated activation is dependent upon receptor phosphorylation. J. Biol. Chem 1997b; 272: 15213–15219, [CROSSREF], [CSA]
  • Hsu M.H., Chiang S.C., Ye R.D., Prossnitz E.R. Phosphorylation of the N-formyl peptide receptor is required for receptor internalization but not chemotaxis. J. Biol. Chem 1997; 272: 29426–29429, [CROSSREF], [CSA]
  • Tomhave E.D., Richardson R.M., Didsbury J.R., Menard L., Snyderman R., Ali H. Cross-desensitization of receptors for peptide chemoattractants. Characterization of a new form of leukocyte regulation. J. Immunol 1994; 153: 3267–3275, [CSA]
  • Didsbury J.R., Uhing R.J., Tomhave E., Gerard C., Gerard N., Snyderman R. Receptor Class Desensitization of Leukocyte Chemoattractant Receptors. Proc. Natl. Acad. Sci. USA 1991; 88: 1564–1568, [CSA]
  • Richardson R.M., DuBose R.A., Ali H., Tomhave E.D., Haribabu B., Snyderman R. Regulation of human interleukin-8 receptor A: identification of a phosphorylation site involved in modulating receptor functions. Biochemistry 1995a; 34: 14193–14201, [CROSSREF], [CSA]
  • Richardson R.M., Ali H., Tomhave E.D., Haribabu B., Snyderman R. Cross-desensitization of Chemoattractant Receptors Occurs at Multiple Levels. J. Biol. Chem 1995b; 270: 27829–27833, [CROSSREF], [CSA]
  • Watts R.G., Crispens M.A., Howard T.H. A quantitative study of the role of F‐actin in producing neutrophil shape. Cell. Motil. Cytoskeleton 1991; 19: 159–168, [CROSSREF], [CSA]
  • Fernandez-Segura E., Garcia J.M., Santos J.L., Campos A. Shape, F-actin, and surface morphology changes during chemotactic peptide-induced polarity in human neutrophils. Anat. Rec 1995; 241: 519–528, [CROSSREF], [CSA]
  • Calvello R., Saccia M., Maffione A.B., Panaro M.A., Mitolo V. Power spectral analysis of the shape of fMLP-stimulated granulocytes. A tool for the study of cytoskeletal organization under normal and pathological conditions. Immunopharmacol. Immunotoxicol 2002; 24: 139–163, [CROSSREF], [CSA]
  • Arbour N., Tremblay P., Oth D. N-formyl-methionyl-leucyl-phenylalanine induces and modulates IL-1 and IL-6 in human PBMC. Cytokine 1996; 8: 468–475, [CROSSREF], [CSA]
  • Sen R., Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 1986; 47: 921–928, [CROSSREF], [CSA]
  • Baeuerle P.A., Henkel T. Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol 1994; 12: 141–179, [CSA]
  • Ye R.D., Boulay F. Structure and function of leukocyte chemoattractant receptors. Adv. Pharmacol 1997; 39: 221–289, [CSA]
  • Gallin J.I., Snyderman R. Inflammation: basic principles and clinical correlates 2nd. Raven Press, New York, N.Y. 1999
  • Gwinn M.R., Sharma A., De Nardin E. Single nucleotide polymorphisms of the N-formyl peptide receptor in localized juvenile periodontitis. J. Periodontol 1999; 70: 1194–1201, [CROSSREF], [CSA]
  • Sipe J.D. The acute-phase response. Immunophysiology: The Role of Cells and Cytokines in Immunity and Inflammation, J.J. Oppenheim, E.M. Shevach. Oxford University Press, New York 1990; 259–273
  • Badolato R., Wang J.M., Murphy W.J., Lloyd A.R., Michiel D.F., Bausserman L.L., Kelvin D.J., Oppenheim J.J. Serum amyloid A is a chemoattractant: induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J. Exp. Med 1994; 180: 203–209, [CROSSREF], [CSA]
  • Kisilevsky R. Serum amyloid A (SAA), a protein without a function: some suggestions with reference to cholesterol metabolism. Med. Hypotheses 1991; 35: 337–341, [CROSSREF], [CSA]
  • Malle E., De Beer F.C. Human serum amyloid A (SAA) protein: a prominent acute-phase reactant for clinical practice. Eur. J. Clin. Invest 1996; 26: 427–435, [CROSSREF], [CSA]
  • Glenner G.G. Amyloid deposits and amyloidosis: the beta-fibrilloses (second of two parts). N. Engl. J. Med 1980; 302: 1333–1343, [CSA]
  • Stone M.J. Amyloidosis: a final common pathway for protein deposition in tissues. Blood 1990; 75: 531–545, [CSA]
  • Lorton D., Schaller J., Lala A., De Nardin E. Chemotactic-like receptors and Aβ peptide indvuced responses in Alzheimer's disease. Neurobiol. Aging 2000; 21: 463–473, [CROSSREF], [CSA]
  • Davis J.B., McMurray H.F., Schubert D. The amyloid β-protein of Alzheimer's disease is chemotactic for mononuclear phagocytes. Biochem. Biophys. Res. Commun 1992; 189: 1096–1100, [CROSSREF], [CSA]
  • El J.; Hickman, Khoury S.E., Thomas C.A., Cao L., Silverstein S.C., Loike J.D. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 1996; 382: 716–719, [CSA]
  • Yan S.D., Chen X., Fu J., Chen M., Zhu H., Roher A., Slattery T., Zhao L., Nagashima M., Morser J., Migheli A., Nawroth P., Stern D., Schmidt A.M. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 1996; 382: 685–691, [PUBMED], [CSA]
  • Nakai M., Hojo K., Taniguchi T., Terashima A., Kawamata T., Hashimoto T., Maeda K., Tanaka C. PKC and tyrosine kinase involvement in amyloid beta (25–35)-induced chemotaxis of microglia. Neuroreport 1998; 9: 3467–3470, [CSA]
  • Scali C., Prosperi C., Giovannelli L., Bianchi L., Pepeu G., Casamenti F. β(1–40) amyloid peptide injection into the nucleus basalis of rats induces microglia reaction and enhances cortical gamma-aminobutyric acid release in vivo. Brain Res 1999; 831: 319–321, [CROSSREF], [CSA]
  • Combs C.K., Johnson D.E., Cannady S.B., Lehman T.M.; and Landreth, G.E. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of β-amyloid and prion proteins. J. Neurosci 1999; 19: 928–939, [CSA]
  • Kopec K.K., Carroll R.T. Alzheimer's β-amyloid peptide 1–42 induces a phagocytic response in murine microglia. J. Neurochem 1998; 71: 2123–2131, [CSA]
  • Bonaiuto C., McDonald P.P., Rossi F., Cassatella M.A. Activation of nuclear factor-κB by β-amyloid peptides and interferon-γ in murine microglia. J. Neuroimmunol 1997; 77: 51–56, [CROSSREF], [CSA]
  • Klegeris A., McGeer P.L. Beta-amyloid protein enhances macrophage production of oxygen free radicals and glutamate. J. Neurosci. Res 1997a; 49: 229–235, [CROSSREF], [CSA]
  • Klegeris A., Walker D.G., McGeer P.L. Interaction of Alzheimer β-amyloid peptide with the human monocytic cell line THP-1 results in a protein kinase C-dependent secretion of tumor necrosis factor-α. Brain Res 1997b; 747: 114–121, [CROSSREF], [CSA]
  • Fiala M., Zhang L., Gan X., Sherry B., Taub D., Graves M.C., Hama S., Way D., Weinand M., Witte M., Lorton D., Kuo Y.M., Roher A.E. Amyloid-beta induces chemokine secretion and monocyte migration across a human blood–brain barrier model. Mol. Med 1998; 4: 480–489, [CSA]
  • Zhang C., Qiu H.E., Krafft G.A., Klein W.L. Protein kinase C and F-actin are essential for stimulation of neuronal FAK tyrosine phosphorylation by G-proteins and amyloid beta protein. FEBS Lett 1996; 386: 185–188, [CROSSREF], [CSA]
  • McDonald D.R., Brunden K.R., Landreth G.E. Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J. Neurosci 1997; 17: 2284–2294, [CSA]
  • McDonald D.R., Bamberger M.E., Combs C.K., Landreth G.E. β-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J. Neurosci 1998; 18: 4451–4460, [CSA]
  • Yazawa H., Yu Z.X., Takeda K., Le Y., Gong W., Ferrans V.J., Oppenheim J.J., Li C.C.; and Wang, J.M. β amyloid peptide (Aβ42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J 2001; 15: 2454–2462, [CROSSREF], [CSA]
  • Peyrin J.M., Lasmezas C.I., Haik S., Tagliavini F., Salmona M., Williams A., Richie D., Deslys J.P., Dormont D. Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. Neuroreport 1999; 10: 723–729, [CSA]
  • Deng X., Ueda H., Su S.B., Gong W., Dunlop N.M., Gao J.L., Murphy P.M., Wang J.M. A synthetic peptide derived from human immunodeficiency virus type 1 gp120 downregulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the 7-transmembrane G-protein-coupled receptor FPRL1/LXA4R. Blood 1999; 94: 1165–1173, [CSA]
  • Wang J.M., Ueda H., Howard O.M., Grimm M.C., Chertov O., Gong X., Gong W., Resau J.H., Broder C.C., Evans G., Arthur L.O., Ruscetti F.W., Oppenheim J.J. HIV-1 envelope gp120 inhibits the monocyte response to chemokines through CD4 signal-dependent chemokine receptor down-regulation. J. Immunol 1998; 161: 4309–4317, [CSA]
  • Ueda H., Howard O.M., Grimm M.C., Su S.B., Gong W., Evans G., Ruscetti F.W., Oppenheim J.J., Wang J.M. HIV-1 envelope gp41 is a potent inhibitor of chemoattractant receptor expression and function in monocytes. J. Clin. Invest 1998; 102: 804–812, [CSA]
  • Le Y., Oppenheim J.J., Wang J.M. Pleiotropic roles of formyl peptide receptors. Cytokine Growth Factor Rev 2001c; 12: 91–105, [CROSSREF], [CSA]
  • Nara P.L., Garrity R.R., Goudsmit J. Neutralization of HIV-1: a paradox of humoral proportions. FASEB J 1991; 5: 2437–2455, [CSA]
  • Hattori T., Komoda H., Pahwa S., Tateyama M., Zhang X., Xu Y., Oguma S., Tamamura H., Fujii N., Fukutake K., Uchiyama T. Decline of anti-DP107 antibody associated with clinical progression. AIDS 1998; 12: 1557–1559, [CROSSREF], [CSA]
  • Kilby J.M., Hopkins S., Venetta T.M., DiMassimo B., Cloud G.A., Lee J.Y., Alldredge L., Hunter E., Lambert D., Bolognesi D., Matthews T., Johnson M.R., Nowak M.A., Shaw G.M., Saag M.S. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat. Med 1998; 4: 1302–1307, [PUBMED], [CROSSREF], [CSA]
  • Rimsky L.T., Shugars D.C., Matthews T.J. Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J. Virol 1998; 72: 986–993, [CSA]
  • Le Y., Yang Y., Cui Y., Yazawa H., Gong W., Qiu C., Wang J.M. Receptors for chemotactic formyl peptides as pharmacological targets. Int. Immunopharmacol 2002; 2: 1–13, [CROSSREF], [CSA]
  • Shen W., Li B., Wetzel M.A., Rogers T.J., Henderson E.E., Su S.B., Gong W., Le Y. Sargeant, R. Dimitrov, D.S., Oppenheim, J.J. and Wang, J.M. Down-regulation of the chemokine receptor CCR5 by activation of chemotactic formyl peptide receptor in human monocytes. Blood 2000a; 96: 2887–2894, [CSA]
  • Horuk R. Encyclopedic reference of molecular pharmacology, S. Offermanns, W. Rosenthal. Springer-Verlag, Berlin Heidelberg 2004; 237–241
  • Shen W., Proost P., Li B., Gong W., Le Y., Sargeant R., Murphy P.M., Van Damme J., Wang J.M. Activation of the chemotactic peptide receptor FPRL1 in monocytes phosphorylates the chemokine receptor CCR5 and attenuates cell responses to selected chemokines. Biochem. Biophys. Res. Commun 2000b; 272: 276–283, [CROSSREF], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.