354
Views
14
CrossRef citations to date
0
Altmetric
Review

Toxicological effects of trichloroethylene exposure on immune disorders

, &
Pages 305-317 | Received 25 Jan 2017, Accepted 31 Jul 2017, Published online: 22 Aug 2017

References

  • Smith G. Trichlorethylene: a review. Br J Industr Med 1966;23:249–262.
  • ASTDR. Toxicological profile for trichloroethylene. 2015 [cited 1 December 2015]. Available from: https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=173&tid=30
  • Federal Register. Trichloroethylene (TCE); significant new use rule; TCE in certain consumer products; 2015. [cited 1 December 2015]. Available from: https://www.federalregister.gov/documents/2015/08/07/2015-19348/trichloroethylene-tce-significant-new-use-rule-tce-in-certain-consumer-products
  • Chiu W, Jinot J, Scott C, et al. Human health effects of trichloroethylene: key findings and scientific issues. Environ Health Perspect. 2013;121:303–311.
  • Rusyn I, Chiu WA, Lash LH, et al. Trichloroethylene: mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard. Pharmacol Ther 2014;141:55–68.
  • Jollow DJ, Bruckner JV, McMillan DC, et al. Trichloroethylene risk assessment: a review and commentary. Crit Rev Toxicol 2009;39:782–797.
  • The National Institute for Occupational Safety and Health (NIOSH). Occupational cancer: carcinogen list. 2012 [cited 1 December 2015]. Available from: https://www.cdc.gov/niosh/topics/cancer/npotocca.html
  • Kauffmann BM, White KL, Sanders VM, et al. Humoral and cell-mediated immune status in mice exposed to chloral hydrate. Environ Health Perspect 1982;44:147–151.
  • Waters EM, Gerstner HB, Huff JE. Trichloroethylene. I. An overview. J Toxicol Environ Health 1977;2:671–707.
  • Wright PF, Thomas WD, Stacey NH. Effects of trichloroethylene on hepatic and splenic lymphocytotoxic activities in rodents. Toxicology 1991;70:231–242.
  • Herren-Freund SL, Pereira MA, Khoury MD, Olson G. The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid, in mouse liver. Toxicol Appl Pharmacol 1987;90:183–189.
  • Kiessling R, Haller O. Natural killer cells in the mouse: an alternative immune surveillance mechanism? Contemp Top Immunobiol 1978;8:171–201.
  • Kaneko T, Saegusa M, Tasaka K, Sato A. Immunotoxicity of trichloroethylene: a study with MRL-lpr/lpr mice. J Appl Toxicol 2000;20:471–475.
  • Lagakos S, Wessen B, Zelen M. An analysis of contaminated well water and health-effects in Wobburn, Massachusetts: Rejoinder; 1986.
  • Byers V, Levin A, Ozonoff D, Baldwin R. Association between clinical symptoms and lymphocyte abnormalities in a population with chronic domestic exposure to industrial solvent-contaminated domestic water supply and a high incidence of leukaemia. Cancer Immunol Immunother 1988;27:77–81.
  • Iavicoli L, Marrinaccio A, Carelli G. Effects of occupational trichloroethylene exposure on cytokine levels in workers. J Occupat Environ Med 2005;47:453–457.
  • Lan Q, Zhang L, Tang X, et al. Occupational exposure to trichloroethylene is associated with a decline in lymphocyte subsets and soluble CD27 and CD30 markers. Carcinogenesis 2010;31:1592–1596.
  • Zhang L, Bassig BA, Mora JL, et al. Alterations in serum immunoglobulin levels in workers occupationally exposed to trichloroethylene. Carcinogenesis 2013;34:799–802.
  • Bassig BA, Zhang L, Tang X, et al. Occupational exposure to trichloroethylene and serum concentrations of IL-6, IL-10, and TNF-alpha. Environ Mol Mutagen 2013;54:450–454.
  • Bailey DP, Kashyap M, Bouton LA, et al. Interleukin-10 induces apoptosis in developing mast cells and macrophages. J Leukoc Biol 2006;80:581–589.
  • Reinl W. Scleroderma caused by trichloroethylene in workers. Bull Hyg 1957;32:678–679.
  • Saihan E, Burton J, Heaton K. A new syndrome with pigmentation, scleroderma, gynaecomastia, Raynaud’s phenomenon and peripheral neuropathy. Br J Dermatol 1978;99:437–440.
  • Hachulla E, Launay D. Diagnosis and classification of systemic sclerosis. Clin Rev Allergy Immunol 2011;40:78–83.
  • Gilbert K. Trichloroethylene and autoimmunity in human and animal models. In: Gilbert KM, Blossom SJ, editors. Trichloroethylene: toxicity and health risks. Series: molecular and integrative toxicology: London: Springer; 2014: 15–35.
  • Czirjak L, Pocs E, Szegedi G. Localized scleroderma after exposure to organic solvent. Dermatology 1994;189:399–401.
  • Karamfilov T, Buslau M, Durr C, Weyers W. [Pansclerotic porphyria cutanea tarda after chronic exposure to organic solvents]. Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete 2003;54:448–452.
  • Flindthansen H, Isager H. Scleroderma after occupational exposure to trichlorethylene and trichlorethane. Acta Derm Venereol 1987;67:263–264.
  • Lockey JE, Kelly CR, Cannon GW, et al. Progressive systemic sclerosis associated with exposure to trichloroethylene. J Occupat Med 1987;29:493–496.
  • Pralong P, Cavailhes A, Balme B, et al. Diffuse systemic sclerosis after occupational exposure to trichloroethylene and perchloroethylene. Ann Derm Venereol 2009;136:713–717.
  • Waller PA, Clauw D, Cupps T, et al. Fasciitis (not scleroderma) following prolonged exposure to an organic solvent (trichloroethylene). J Rheumatol 1994;21:1567–1570.
  • Diot E, Lesire V, Guilmot JL, et al. Systemic sclerosis and occupational risk factors: a case-control study. Occup Environ Med 2002;59:545–549.
  • Nietert PJ, Sutherland SE, Silver RM, et al. Is occupational organic solvent exposure a risk factor for scleroderma? Arthr Rheumat 1998;41:1111–1118.
  • Garabrant DH, Lacey JV Jr., Laing TJ, et al. Scleroderma and solvent exposure among women. Am J Epidemiol 2003;157:493–500.
  • Reveille JD, Durban E, MacLeod-St Clair MJ, et al. Association of amino acid sequences in the HLA-DQB1 first domain with antitopoisomerase I autoantibody response in scleroderma (progressive systemic sclerosis). J Clin Invest 1992;90:973–980.
  • Black CM. The aetiopathogenesis of systemic sclerosis: thick skin–thin hypotheses. The Parkes Weber Lecture 1994. J R Coll Physicians London 1995;29:119–130.
  • Borchers AT, Leibushor N, Naguwa SM, et al. Lupus nephritis: a critical review. Autoimmun Rev 2012;12:174–194.
  • Hoffmann MH, Trembleau S, Muller S, Steiner G. Nucleic acid-associated autoantigens: pathogenic involvement and therapeutic potential. J Autoimmun 2010;34:J178–J206.
  • Erdener D, Aksu K, Bicer I, et al. Urinary N-acetyl-beta-D-glucosaminidase (NAG) in lupus nephritis and rheumatoid arthritis. J Clin Lab Anal 2005;19:172–176.
  • Brogren CH, Christensen JM, Rasmussen K. Occupational exposure to chlorinated organic solvents and its effect on the renal excretion of N-acetyl-beta-D-glucosaminidase. Arch Toxicol Suppl 1986;9:460–464.
  • Selden A, Hultberg B, Ulander A, Ahlborg G Jr. Trichloroethylene exposure in vapour degreasing and the urinary excretion of N-acetyl-beta-D-glucosaminidase. Arch Toxicol 1993;67:224–226.
  • Kilburn KH, Warshaw RH. Prevalence of symptoms of systemic lupus erythematosus (SLE) and of fluorescent antinuclear antibodies associated with chronic exposure to trichloroethylene and other chemicals in well water. Environ Res 1992;57:1–9.
  • Makol A, Watt KD, Chowdhary VR. Autoimmune hepatitis: a review of current diagnosis and treatment. Hepat Res Treat 2011;2011:390916.
  • Joron GE, Cameron DG, Halpenny GW. Massive necrosis of the liver due to trichlorethylene. Can Med Assoc J 1955;73:890–891.
  • McCunney R. Diverse manifestations of trichloroethylene. Br J Industr Med 1988;45:122–126.
  • Pantucharoensri S, Boontee P, Likhitsan P, et al. Generalized eruption accompanied by hepatitis in two Thai metal cleaners exposed to trichloroethylene. Industr Health 2004;42:385–388.
  • Schattner A, Malnick SD. Anicteric hepatitis and uveitis in a worker exposed to trichloroethylene. Postgrad Med J 1990;66:730–731.
  • Anagnostopoulos G, Sakorafas GH, Grigoriadis K, et al. Hepatitis caused by occupational chronic exposure to trichloroethylene. Acta Gastroenterol Belg 2004;67:355–357.
  • Lacey J, Garabrant D, Laing T, et al. Petroleum distillate solvents as risk factors for Undifferentiated Connective Tissue Disease (UCTD). Am J Epidemiol 1999;149:761–770.
  • Mosca M, Tani C, Vagnani S, et al. The diagnosis and classification of undifferentiated connective tissue diseases. J Autoimmun 2014;48-49:50–52.
  • Watanabe H. Hypersensitivity syndrome due to trichloroethylene exposure: A severe generalized skin reaction resembling drug-induced hypersensitivity syndrome. J Dermatol 2011;38:229–235.
  • Kamijima M, Hisanaga N, Wang H, Nakajima T. Occupational trichloroethylene exposure as a cause of idiosyncratic generalized skin disorders and accompanying hepatitis similar to drug hypersensitivities. Int Arch Occupat Environ Health 2007;80:357–370.
  • Xu X, Yang R, Wu N, et al. Severe hypersensitivity dermatitis and liver dysfunction induced by occupational exposure to trichloroethylene. Industr Health 2009;47:107–112.
  • Phoon WH, Chan MO, Rajan VS, et al. Stevens-Johnson syndrome associated with occupational exposure to trichloroethylene. Contact Dermatitis 1984;10:270–276.
  • Jung HG, Kim HH, Song BG, Kim EJ. Trichloroethylene hypersensitivity syndrome: a disease of fatal outcome. Yonsei Med J 2012;53:231–235.
  • Watanabe H, Tohyama M, Kamijima M, et al. Occupational trichloroethylene hypersensitivity syndrome with human herpesvirus-6 and cytomegalovirus reactivation. Dermatology (Basel) 2010;221:17–22.
  • Huang Y-S, Huang H-L, Wu Q-F, et al. Follow-up assessment of two cases of trichloroethylene hypersensitivity syndrome: a case report. Exp Ther Med 2016;12:895–900.
  • Huang Y, Qifeng W, Xia L, et al. Trichloroethylene-induced hypersensitivity syndrome: a disease caused by metabolites. Occupat Med Health Affairs 2014;2:150.
  • Huang Y, Xia L, Wu Q, et al. Trichloroethylene hypersensitivity syndrome is potentially mediated through its metabolite chloral hydrate. PLoS One 2015;10:e0127101.
  • Tohyama M, Yahata Y, Yasukawa M, et al. Severe hypersensitivity syndrome due to sulfasalazine associated with reactivation of human herpesvirus 6. Arch Dermatol 1998;134:1113–1117.
  • Suzuki Y, Inagi R, Aono T, et al. Human herpesvirus 6 infection as a risk factor for the development of severe drug-induced hypersensitivity syndrome. Arch Dermatol 1998;134:1108–1112.
  • Dai Y, Leng S, Li L, et al. Effects of genetic polymorphisms of N-Acetyltransferase on trichloroethylene-induced hypersensitivity dermatitis among exposed workers. Industr Health 2009;47:479–486.
  • Criado PR, Criado RFJ, Avancini JM, Santi CG. Drug reaction with Eosinophilia and Systemic Symptoms (DRESS)/Drug-induced Hypersensitivity Syndrome (DIHS): a review of current concepts. An Bras Dermatol 2012;87:435–449.
  • Huang H, Kamijima M, Wang H, et al. Human herpesvirus 6 reactivation in trichloroethylene-exposed workers suffering from generalized skin disorders accompanied by hepatic dysfunction. J Occupat Health 2006;48:417–423.
  • Li H, Dai Y, Huang H, et al. HLA-B*1301 as a biomarker for genetic susceptibility to hypersensitivity dermatitis induced by trichloroethylene among workers in China. Environ Health Perspect 2007;115:1553–1556.
  • Dai Y, Chen Y, Huang H, et al. Performance of genetic risk factors in prediction of trichloroethylene induced hypersensitivity syndrome. Sci Rep 2015;5:12169.
  • Nakajima T, Yamanoshita O, Kamijima M, et al. Generalized skin reactions in relation to trichloroethylene exposure: a review from the viewpoint of drug-metabolizing enzymes. J Occupat Health 2003;45:8–14.
  • Wolkenstein P, Carriere V, Charue D, et al. A slow acetylator genotype is a risk factor for sulphonamide-induced toxic epidermal necrolysis and Stevens-Johnson syndrome. Pharmacogenetics 1995;5:255–258.
  • Dietrich A, Kawakubo Y, Rzany B, et al. Low N-acetylating capacity in patients with Stevens-Johnson syndrome and toxic epidermal necrolysis. Exp Dermatol 1995;4:313–316.
  • Dai Y, Leng S, Li L, et al. Genetic polymorphisms of cytokine genes and risk for trichloroethylene-induced severe generalized dermatitis: a case-control study. Biomarkers 2004;9:470–478.
  • Laham S. Studies on placental transfer. Trichlorethylene. IMS 1970;39:46–49.
  • Pellizzari ED, Hartwell TD, Harris BS, III, et al. Purgeable organic compounds in mother’s milk. Bull Environ Contam Toxicol 1982;28:322–328.
  • Dietert RR. Developmental immunotoxicology (DIT): windows of vulnerability, immune dysfunction and safety assessment. J Immunotoxicol 2008;5:401–412.
  • Dietert RR, Piepenbrink MS. Perinatal immunotoxicity: why adult exposure assessment fails to predict risk. Environ Health Perspect 2006;114:477–483.
  • DeWitt J, Peden-Adams M, Keil D, Dietert R. Current status of developmental immunotoxicity: early-life patterns and testing. Toxicol Pathol 2012;40:230–236.
  • Blossom SJ, Doss JC. Trichloroethylene alters central and peripheral immune function in autoimmune-prone MRL+/+ mice following continuous developmental and early life exposure. J Immunotoxicol 2007;4:129–141.
  • Blossom SJ, Doss JC, Hennings LJ, et al. Developmental exposure to trichloroethylene promotes CD4+ T cell differentiation and hyperactivity in association with oxidative stress and neurobehavioral deficits in MRL+/+ mice. Toxicol Appl Pharmacol 2008;231:344–353.
  • Boulanger LM, Shatz CJ. Immune signalling in neural development, synaptic plasticity and disease. Nat Rev Neurosci 2004;5:521–531.
  • Peden-Adams MM, Eudaly JG, Heesemann LM, et al. Developmental immunotoxicity of trichloroethylene (TCE): studies in B6C3F1 mice. J Environ Sci Health A Tox Hazard Subst Environ Eng 2006;41:249–271.
  • Gilbert KM, Woodruff W, Blossom SJ. Differential immunotoxicity induced by two different windows of developmental trichloroethylene exposure. Autoimmune Dis 2014;2014:982073.
  • Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 2012;26:383–392.
  • Gupta S, Aggarwal S, Rashanravan B, Lee T. Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J Neuroimmunol 1998;85:106–109.
  • Molloy CA, Morrow AL, Meinzen-Derr J, et al. Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 2006;172:198–205.
  • Song Y-H, Li Y, Maclaren NK. The nature of autoantigens targeted in autoimmune endocrine diseases. Immunol Today 1996;17:232–238.
  • Ashwood P, Wakefield AJ. Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. J Neuroimmunol 2006;173:126–134.
  • Ashwood P, Krakowiak P, Hertz-Picciotto I, et al. Altered T cell responses in children with autism. Brain Behav Immun 2011;25:840–849.
  • Ashwood P, Krakowiak P, Hertz-Picciotto I, et al. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 2011;25:40–45.
  • Suzuki K, Matsuzaki H, Iwata K, et al. Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS One 2011;6:e20470.
  • Blossom SJ, Cooney CA, Melnyk SB, et al. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally. Toxicol Appl Pharmacol 2013;269:263–269.
  • Malkova NV, Yu CZ, Hsiao EY, et al. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun 2012;26:607–616.
  • Windham GC, Zhang L, Gunier R, et al. Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay area. Environ Health Perspect 2006;114:1438–1444.
  • Blossom S. Neuroimmune effects of developmental TCE exposure. In: Gilbert KM, Blossom SJ, editors. Trichloroethylene: toxicity and health risks. Series: molecular and integrative toxicology. London: Springer; 2014: 131–151.
  • Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004;16:1–13.
  • Taylor DH, Lagory KE, Zaccaro DJ, et al. Effect of trichloroethylene on the exploratory and locomotor activity of rats exposed during development. Sci Total Environ 1985;47:415–420.
  • Isaacson LG, Spohler SA, Taylor DH. Trichloroethylene affects learning and decreases myelin in the rat hippocampus. Neurotoxicol Teratol 1990;12:375–381.
  • Blossom SJ, Melnyk S, Cooney CA, et al. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus. Neurotoxicology 2012;33:1518–1527.
  • Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease. Nat Med 2012;18:1194–1204.
  • Blossom SJ, Melnyk SB, Li M, et al. Inflammatory and oxidative stress-related effects associated with neurotoxicity are maintained after exclusively prenatal trichloroethylene exposure. Neurotoxicology 2017;59:164–174.
  • Knuesel I, Chicha L, Britschgi M, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 2014;10:643–660.
  • Cooper GS, Makris SL, Nietert PJ, Jinot J. Evidence of autoimmune-related effects of trichloroethylene exposure from studies in mice and humans. Environ Health Perspect 2009;117:696–702.
  • Buben JA, O'Flaherty EJ. Delineation of the role of metabolism in the hepatotoxicity of trichloroethylene and perchloroethylene: a dose-effect study. Toxicol Appl Pharmacol 1985;78:105–122.
  • Chiu WA, Okino MS, Lipscomb JC, Evans MV. Issues in the pharmacokinetics of trichloroethylene and its metabolites. Environ Health Perspect 2006;114:1450–1456.
  • Lash L, Fisher J, Lipscomb J, Parker J. Metabolism of trichloroethylene. Environ Health Perspect 2000;108:177–200.
  • Caldwell JC, Keshava N. Key issues in the modes of action and effects of trichloroethylene metabolites for liver and lidney tumorigenesis. Environ Health Perspect 2006;114:1457–1463.
  • Hu C, Jiang L, Geng C, et al. Possible involvement of oxidative stress in trichloroethylene-induced genotoxicity in human HepG2 cells. Mutat Res 2008;652:88–94.
  • Wang G, Wang J, Ma H, et al. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress. Toxicol Appl Pharmacol 2013;273:189–195.
  • Wang G, Cai P, Ansari GAS, Khan MF. Oxidative and nitrosative stress in trichloroethene-mediated autoimmune response. Toxicology 2007;229:186–193.
  • Griffin JM, Gilbert KM, Pumford NR. Inhibition of CYP2E1 reverses CD4+ T-cell alterations in trichloroethylene-treated MRL+/+ mice. Toxicol Sci 2000;54:384–389.
  • Gilbert KM, Pumford NR, Blossom SJ. Environmental contaminant trichloroethylene promotes autoimmune disease and inhibits T-cell apoptosis in MRL(+/+) mice. J Immunotoxicol 2006;3:263–267.
  • Blossom S, Gilbert K. Exposure to a metabolite of the environmental toxicant, trichloroethylene, attenuates CD4+ T cell activation-induced cell death by metalloproteinase-dependent FasL shedding. Toxicol. Sci 2006;92:103–114.
  • Gilbert KM, Griffin JM, Pumford NR. Trichloroethylene activates cd4+ T cells: potential role in an autoimmune response. Drug Metab Rev 1999;31:901–916.
  • Griffin JM, Blossom SJ, Jackson SK, et al. Trichloroethylene accelerates an autoimmune response by Th1 T cell activation in MRL +/+ mice. Immunopharmacology 2000;46:123–137.
  • Khan MF, Kaphalia BS, Prabhakar BS, et al. Trichloroethene-induced autoimmune response in female MRL +/+ mice. Toxicol Appl Pharmacol 1995;134:155–160.
  • Bolt HM, Filser JG. Irreversible binding of chlorinated ethylenes to macromolecules. Environ Health Perspect 1977;21:107–112.
  • Stott WT, Quast JF, Watanabe PG. The pharmacokinetics and macromolecular interactions of trichloroethylene in mice and rats. Toxicol Appl Pharmacol 1982;62:137–151.
  • Uehleke H, Poplawski-Tabarelli S. Irreversible binding of 14C-labelled trichloroethylene to mice liver constituents in vivo and in vitro. Arch Toxicol 1977;37:289–294.
  • Miller RE, Guengerich FP. Metabolism of trichloroethylene in isolated hepatocytes, microsomes, and reconstituted enzyme systems containing cytochrome P-450. Cancer Res 1983;43:1145–1152.
  • Cai P, König R, Khan MF, et al. Differential immune responses to albumin adducts of reactive intermediates of trichloroethene in MRL +/+ mice. Toxicol Appl Pharmacol 2007;220:278–283.
  • Gilbert KM, Przybyla B, Pumford NR, et al. Delineating liver events in trichloroethylene-induced autoimmune hepatitis. Chem Res Toxicol 2009;22:626–632.
  • Kopec A, Sullivan B, Kassel K, et al. Toxicogenomic analysis reveals profibrogenic effects of trichloroethylene in autoimmune-mediated cholangitis in mice. Toxicol Sci 2014;141:515–523.
  • Sullivan BP, Cui W, Copple BL, Luyendyk JP. Early growth response factor-1 limits biliary fibrosis in a model of xenobiotic-induced cholestasis in mice. Toxicol Sci 2012;126:267–274.
  • Bagavant H, Fu SM. Pathogenesis of kidney disease in systemic lupus erythematosus. Curr Opin Rheumatol 2009;21:489–494.
  • Keil DE, Peden-Adams MM, Wallace S, et al. Assessment of trichloroethylene (TCE) exposure in murine strains genetically-prone and non-prone to develop autoimmune disease. J Environ Sci Health A Tox Hazard Subst Environ Eng 2009;44:443–453.
  • Mazzullo M, Bartoli S, Bonora B, et al. In vivo and in vitro interaction of trichloroethylene with macromolecules from various organs of rat and mouse. Res Commun Chem Pathol Pharmacol 1992;76:192–208.
  • Reveille JD, Solomon DH. Evidence-based guidelines for the use of immunologic tests: anticentromere, Scl-70, and nucleolar antibodies. Arthrit Rheumat 2003;49:399–412.
  • Gilbert K, Whitlow A, Pumford N. Environmental contaminant and disinfection by-product trichloroacetaldehyde stimulates T cells in vitro. Int Immunopharmacol 2004;4:25–36.
  • Gilbert KM, Nelson AR, Cooney CA, et al. Epigenetic alterations may regulate temporary reversal of CD4(+) T cell activation caused by trichloroethylene exposure. Toxicol Sci 2012;127:169–178.
  • Perl A, Fernandez D, Telarico T, Phillips PE. Endogenous retroviral pathogenesis in lupus. Curr Opin Rheumatol 2010;22:483–492.
  • Gorelik G, Richardson B. Key role of ERK pathway signaling in lupus. Autoimmunity 2010;43:17.
  • Mi XB, Zeng FQ. Hypomethylation of interleukin-4 and -6 promoters in T cells from systemic lupus erythematosus patients. Acta Pharmacol Sin 2008;29:105–112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.