Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 34, 2018 - Issue 6
462
Views
3
CrossRef citations to date
0
Altmetric
Original Paper

Response surface modeling of reductions in uropathogenic Escherichia coli biofilms on silicone by cranberry extract, caprylic acid, and thymol

& ORCID Icon
Pages 710-717 | Received 26 Mar 2018, Accepted 08 Jun 2018, Published online: 06 Sep 2018

References

  • Amalaradjou MAR, Narayanan A, Baskaran SA, Venkitanarayanan K. 2010. Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli. J Urol. 184:358–363. doi:10.1016/j.juro.2010.03.006
  • Azevedo AS, Almeida C, Melo LF, Azevedo NF. 2014. Interaction between atypical microorganisms and E. coli in catheter-associated urinary tract biofilms. Biofouling. 30:893–902. doi:10.1080/08927014.2014.944173
  • Azevedo AS, Almeida C, Pereira B, Melo LF, Azevedo NF. 2016. Impact of Delftia tsuruhatensis and Achromobacter xylosoxidans on Escherichia coli dual-species biofilms treated with antibiotic agents. Biofouling.32:227–241. doi:10.1080/08927014.2015.1124096
  • Box GE, Draper NR. 2007. Response surfaces, mixtures, and ridge analyses. Hoboken (NJ): John Wiley & Sons.
  • Butler CC, Hawking MK, Quigley A, McNulty CA. 2015. Incidence, severity, help seeking, and management of uncomplicated urinary tract infection: a population-based survey. Br J Gen Pract. 65:e702–e707. doi:10.3399/bjgp15X686965
  • Chien S-Y, Sheen S, Sommers CH, Sheen L-Y. 2016. Modeling the inactivation of intestinal pathogenic Escherichia coli O157: H7 and uropathogenic E. coli in ground chicken by high pressure processing and thymol. Front Microbiol. 7: 920.
  • Desbois AP, Smith VJ. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 85:1629–1642. doi:10.1007/s00253-009-2355-3
  • Ferrara P, Romaniello L, Vitelli O, Gatto A, Serva M, Cataldi L. 2009. Cranberry juice for the prevention of recurrent urinary tract infections: a randomized controlled trial in children. Scand J Urol Nephrol. 43:369–372. doi:10.3109/00365590902936698
  • Ferreira SC, Bruns R, Ferreira H, Matos G, David J, Brandao G, da Silva EP, Portugal L, Dos Reis P, Souza A. 2007. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 597:179–186. doi:10.1016/j.aca.2007.07.011
  • Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. 2015. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 13:269–284. doi:10.1038/nrmicro3432
  • Foxman B. 2010. The epidemiology of urinary tract infection. Nat Rev Urol. 7:653–660. doi:10.1038/nrurol.2010.190
  • Foxman B, Barlow R, D'Arcy H, Gillespie B, Sobel JD. 2000. Urinary tract infection: self-reported incidence and associated costs. Ann Epidemiol. 10:509–515. doi:10.1016/S1047-2797(00)00072-7
  • Ganjali Dashti M, Abdeshahian P, Sudesh K, Phua K. 2016. Optimization of Salmonella Typhi biofilm assay on polypropylene microtiter plates using response surface methodology. Biofouling. 32:477–487. doi:10.1080/08927014.2015.1135328
  • Gao Y-L, Jiang H-H. 2005. Optimization of process conditions to inactivate Bacillus subtilis by high hydrostatic pressure and mild heat using response surface methodology. Biochem Eng J. 24:43–48. doi:10.1016/j.bej.2005.01.023
  • González de Llano D, Esteban-Fernández A, Sánchez-Patán F, Martínlvarez PJ, Moreno-Arribas M, Bartolomé B. 2015. Anti-adhesive activity of cranberry phenolic compounds and their microbial-derived metabolites against uropathogenic Escherichia coli in bladder epithelial cell cultures. Int J Mol Sci. 16:12119–12130. doi:10.3390/ijms160612119
  • Gupta S, Chatterjee S, Vaishnav J, Kumar V, Variyar PS, Sharma A. 2012. Hurdle technology for shelf stable minimally processed French beans (Phaseolus vulgaris): a response surface methodology approach. LWT-Food Sci Technol. 48:182–189. doi:10.1016/j.lwt.2012.03.010
  • Kim HW, Chung DH, Rhee MS. 2017. Combined treatment of natural-borne plant antimicrobials induced 6-log reduction of uropathogenic Escherichia coli biofilms formed on the silicone coupons in artificial urine medium within 1 min. Biofouling. (revision)
  • Kim SA, Rhee MS. 2013. Marked synergistic bactericidal effects and mode of action of medium-chain fatty acids in combination with organic acids against Escherichia coli O157:H7. Appl. Environ. Microbiol.79:6552–6560. doi:10.1128/AEM.02164-13
  • Kim SA, Rhee MS. 2016. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157: H7. Food Control. 60:447–454. doi:10.1016/j.foodcont.2015.08.022
  • Kostakioti M, Hultgren SJ, Hadjifrangiskou M. 2012. Molecular blueprint of uropathogenic Escherichia coli virulence provides clues toward the development of anti-virulence therapeutics. Virulence. 3:592–593. doi:10.4161/viru.22364
  • Leydon G, Turner S, Smith H, Little P. 2010. Women’s views about management and cause of urinary tract infection: qualitative interview study. Brit Med J. 340:c279. doi:10.1136/bmj.c279
  • Maki DG, Tambyah PA. 2001. Engineering out the risk for infection with urinary catheters. Emerging Infect Dis. 7:342. doi:10.3201/eid0702.010240
  • Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, Gortzi O, Izadi M, Nabavi SM. 2016. Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem. 210:402–414. doi:10.1016/j.foodchem.2016.04.111
  • Muhamad MH, Abdullah SRS, Mohamad AB, Rahman RA, Kadhum AAH. 2013. Application of response surface methodology (RSM) for optimisation of COD, NH3–N and 2, 4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR). J Environ Manage. 121:179–190. doi:10.1016/j.jenvman.2013.02.016
  • Nwabueze TU. 2010. Review article: Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimisation in the food systems. Int J Food Sci Tech. 45:1768–1776. doi:10.1111/j.1365-2621.2010.02256.x
  • Onyiah LC. 2009. Design and analysis of experiments: classical and regression approaches with SAS. Boca Raton (FL): Chapman & Hall/CRC.
  • Peña WEL, de Andrade NJ, Soares NF, Alvarenga VO, Junior SR, Granato D, Zuniga ADG, de Souza Sant'Ana A. 2014. Modelling Bacillus cereus adhesion on stainless steel surface as affected by temperature, pH and time. Int Dairy J. 34:153–158. doi:10.1016/j.idairyj.2013.08.006
  • Rodrigues L, Banat IM, Teixeira J, Oliveira R. 2007. Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses. J Biomed Mater Res Part B Appl Biomater. 81:358–370. doi:10.1002/jbm.b.3067310.1002/jbm.b.30673
  • Sambucini V, Piccinato L. Ridge analysis through profile likelihoods. Proceedings of the 46th Scientific Meeting of the Italian Statistical Society; 2012.
  • Sommers CH, Scullen O, Sheen S. 2016. Inactivation of uropathogenic Escherichia coli in ground chicken meat using high pressure processing and gamma radiation, and in purge and chicken meat surfaces by ultraviolet light. Front Microbiol. 7:413. doi:10.3389/fmicb.2016.00413
  • Sprong RC, Hulstein MF, Van der Meer R. 2001. Bactericidal activities of milk lipids. Antimicrob. Agents Chemother. 45:1298–1301. doi:10.1128/AAC.45.4.1298-1301.2001
  • Stamm WE, Norrby SR. 2001. Urinary tract infections: disease panorama and challenges. J Infect Dis. 183:S1–S4. doi:10.1086/318850
  • Tanner RS, James SA. 1992. Rapid bactericidal effect of low pH against Pseudomonas aeruginosa. J Ind Microbiol Biot. 10:229–232. doi:10.1007/BF01569771
  • Ulett GC, Totsika M, Schaale K, Carey AJ, Sweet MJ, Schembri MA. 2013. Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr Opin Microbiol. 16:100–107. doi:10.1016/j.mib.2013.01.005
  • Zhang QQ, Ye KP, Juneja VK, Xu X. 2017. Response surface model for the reduction of Salmonella biofilm on stainless steel with lactic acid, ethanol, and chlorine as controlling factors. J Food Safety. 37:e12332. doi:10.1111/jfs.12332

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.