Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 1
2,428
Views
73
CrossRef citations to date
0
Altmetric
Original Articles

Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa

, , , , , & show all
Pages 34-49 | Received 25 May 2018, Accepted 18 Dec 2018, Published online: 07 Feb 2019

References

  • Adonizio A, Kong K-F, Mathee K. 2008. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother. 52:198–203. doi: 10.1128/AAC.00612-07
  • Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J. 2015. Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One. 10:1–20.
  • Ali SG, Ansari MA, Sajid Jamal QM, Khan HM, Jalal M, Ahmad H, Mahdi AA. 2017. Antiquorum sensing activity of silver nanoparticles in Pseudomonas aeruginosa: an in silico study. Silico Pharmacol. 5:12. doi: 10.1007/s40203-017-0031-3
  • Anjugam M, Vaseeharan B, Iswarya A, Divya M, Prabhu NM, Sankaranarayanan K. 2018. Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential. Microb Pathog. 115:31–40. doi: 10.1016/j.micpath.2017.12.003
  • Atkinson S, Williams P. 2009. Quorum sensing and social networking in the microbial world. J R Soc Interface. 6:959–978. doi: 10.1098/rsif.2009.0203
  • Balasubramanian D, Schneper L, Kumari H, Mathee K. 2013. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res. 41:1–20. doi: 10.1093/nar/gks1039
  • Bhardwaj AK, Vinothkumar K, Rajpara N. 2013. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov. 8:68–83. doi: 10.2174/1574891X11308010012
  • Bhople S, Gaikwad S, Deshmukh S, Bonde S, Gade A, Sen S, Brezinska A, Dahm H, Rai M. 2016. Myxobacteria-mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples. IET Nanobiotechnol. 10:389–394. doi: 10.1049/iet-nbt.2015.0111
  • Bjarnsholt T, Jensen PØ, Jakobsen TH, Phipps R, Nielsen AK, Rybtke MT, Tolker-Nielsen T, Givskov M, Høiby N, Ciofu O. 2010. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One. 5:1–10.
  • Borges A, Abreu AC, Dias C, Saavedra MJ, Borges F, Simões M. 2016. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules. 21:1–41.
  • Bottomley MJ, Muraglia E, Bazzo R, Carfì A. 2007. Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem. 282:13592–13600. doi: 10.1074/jbc.M700556200
  • Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA. 2012. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One. 7:e38492. doi: 10.1371/journal.pone.0038492
  • Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, García-Contreras SJ, Wood TK, García-Contreras R. 2015. Role of quorum sensing in bacterial infections. World J Clin Cases. 3:575–598. doi: 10.12998/wjcc.v3.i7.575
  • ChemOffice, 7.0.1. 2002. CambridgeSoft, Corporation, Cambridge, MA.
  • Collins TJ. 2007. ImageJ for microscopy. BioTechniques. 43:25–30. URL: www.biotechniques.com/article/000112517
  • Datta S, Jana D, Maity TR, Samanta A, Banerjee R. 2016. Piper betle leaf extract affects the quorum sensing and hence virulence of Pseudomonas aeruginosa PAO1. 3 Biotech. 6:1–6.
  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The Involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 280:295–298. doi: 10.1126/science.280.5361.295
  • de Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg PD. 2006. Furanones. Prog Mol Subcell Biol. 42:55–86.
  • Defoirdt T, Brackman G, Coenye T. 2013. Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol. 21:619–624. doi: 10.1016/j.tim.2013.09.006
  • Déziel E, Gopalan S, Tampakaki AP, Lépine F, Padfield KE, Saucier M, Xiao G, Rahme LG. 2005. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol. 55:998–1014.
  • Donlan RM, Costerton JW. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 15:167–193. doi: 10.1128/CMR.15.2.167-193.2002
  • Dubern JF, Diggle SP. 2008. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst. 4:882–888. doi: 10.1039/b803796p
  • Dusane DH, Zinjarde SS, Venugopalan VP, McLean RJC, Weber MM, Rahman PKSM. 2010. Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev. 27:159–184. doi: 10.1080/02648725.2010.10648149
  • Dye C. 2014. After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc Lond, B, Biol Sci. 369:20130426.
  • Eberl L, Winson MK, Sternberg C, Stewart GSAB, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M. 1996. Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol. 20:127–136.
  • Fuente-Núñez C, Korolik V, Bains M, Nguyen U, Breidenstein EBM, Horsman S, Lewenza S, Burrows L, Hancock REW. 2012. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother. 56:2696–2704.
  • Gade A, Gaikwad S, Tiwari V, Yadav A, Ingle A, Rai M. 2010. Biofabrication of silver nanoparticles by Opuntia ficus-indica: in vitro antibacterial activity and study of the mechanism involved in the synthesis. CNANO. 6:370–375.
  • Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M. 2013. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine. 8:4303–4314.
  • Gellatly SL, Hancock REW. 2013. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 67:159–173.
  • Ghosh S, Jagtap S, More P, Shete UJ, Maheshwari NO, Rao SJ, Kitture R, Kale S, Bellare J, Patil S, et al. 2015. Dioscorea bulbifera mediated synthesis of novel AucoreAgshell nanoparticles with potent antibiofilm and antileishmanial activity. J Nanomater. 2015:1–12.
  • Guha P. 2006. Betel Leaf: the neglected green gold of India. J Hum Ecol. 19:87–93.
  • Imperi F, Massai F, Pillai CR, Longo F, Zennaro E, Rampioni G, Visc P, Leoni L. 2013. New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother. 57:996–1005.
  • Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, et al. 2012. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother. 56:2314–2325.
  • Jensen P, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Givskov M, Høiby N. 2007. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology. 153:1329–1338.
  • Kalia VC. 2013. Quorum sensing inhibitors: an overview. Biotechnol Adv. 31:224–245.
  • Kalia M, Yadav VK, Singh PK, Sharma D, Pandey H, Narvi SS, Agarwal V. 2015. Effect of cinnamon oil on quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas aeruginosa. PLoS One. 10:1–18.
  • Kohler T, Curty LK, Barja F, Van Delden C, Pechere JC. 2000. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol. 182:5990–5996.
  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T. 2007. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol. 128:648–653.
  • Kulshrestha S, Qayyum S, Khan AU. 2017. Antibiofilm efficacy of green synthesized graphene oxide-silver nanocomposite using Lagerstroemia speciosa floral extract: a comparative study on inhibition of gram-positive and gram-negative biofilms. Microb Pathog. 103:167–177.
  • Kumar L, Chhibber S, Kumar R, Kumar M, Harjai K. 2015. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia. 102:84–95.
  • Lau GW, Hassett DJ, Ran H, Kong F. 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med. 10:599–606.
  • Lee J, Zhang L. 2015. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 6:26–41.
  • Li N, Wang L, Yan H, Wang M, Shen D, Yin J, Shentu J. 2018. Effects of low-level engineered nanoparticles on the quorum sensing of Pseudomonas aeruginosa PAO1. Environ Sci Pollut Res Int. 25:7049–7058.
  • Loo CY, Rohanizadeh R, Young PM, Traini D, Cavaliere R, Whitchurch CB, Lee WH. 2016. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J Agric Food Chem. 64:2513–2522.
  • Maisuria VB, Los Santos YLD, Tufenkji N, Déziel E. 2016. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci Rep. 6:30169.
  • Masurkar SA, Chaudhari PR, Shidore VB, Kamble SP. 2012. Effect of biologically synthesised silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. IET Nanobiotechnol. 6:110–114.
  • McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, et al. 1997. Quorum sensing and Chrornobacteriurn violaceurn: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology. 143:3703–3711.
  • Moradali MF, Ghods S, Rehm BHA. 2017. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 7:1–29.
  • Murugan K, Sekar K, Sangeetha S, Ranjitha S, Sohaibani SA, Sekar K, Sangeetha S, Ranjitha S, Sohaibani SA. 2013. Antibiofilm and quorum sensing inhibitory activity of Achyranthes aspera on cariogenic Streptococcus mutans : an in vitro and in silico study. Pharm Biol. 51:728–736.
  • Nafee N, Husari A, Maurer CK, Lu C, De Rossi C, Steinbach A, Hartmann RW, Lehr CM, Schneider M. 2014. Antibiotic-free nanotherapeutics: Ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release. 192:131–140.
  • O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. 2013. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci USA. 110:17981–17986.
  • Parai D, Banerjee M, Dey P, Chakraborty A. 2018. Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling. 7014:1–15.
  • Pattnaik S, Ahmed T, Ranganathan SK, Ampasala DR, Sarma VV, Busi S. 2018. Aspergillus ochraceopetaliformis SSP13 modulates quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa PAO1. Biofouling. 34:410–425.
  • Pattnaik S, Barik S, Macha C, Chiranjeevi PV, Siddhardha B. 2018. Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. LWT: Food Sci Technol. 97:752–759.
  • Pawar S, Kalyankar V, Dhamangaonkar B, Dagade S. 2017. Biochemical profiling of antifungal activity of betel leaf (Piper betle L.) extract and its significance in traditional medicine. J Adv Res Biotechnol. 2:1–4.
  • Pawar SV, Messina M, Rinaldo S, Cutruzzolà F, Kaever V, Rampioni G, Leoni L. 2016. Novel genetic tools to tackle c-di-GMP-dependent signalling in Pseudomonas aeruginosa. J Appl Microbiol. 120:205–217.
  • Pearson JP, Pesci EC, Iglewski BH. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol. 179:5756–5767.
  • Pradhan D, Suri KA, Pradhan DK, Biswasroy P. 2013. Golden heart of the nature: Piper betle L. J Pharmacogn Phytochem. 1:147–167.
  • Prateeksha Singh BR, Shoeb M, Sharma S, Naqvi AH, Gupta VK. 2017. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front Cell Infect Microbiol. 7:1–14.
  • Preethi R, Padma PR. 2016. Anticancer activity of silver nanobioconjugates synthesised from Piper betle leaves extract and its active compound eugenol. Int J Pharm Pharm Sci. 8:201–205.
  • Rada B, Leto TL. 2013. Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol. 21:73–81.
  • Rafique M, Sadaf I, Rafique MS, Tahir MB. 2017. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomedicine Biotechnol. 45:1272–1291.
  • Rajasekharreddy P, Rani PU. 2014. Biosynthesis and characterization of Pd and Pt nanoparticles using Piper betle L. plant in a photoreduction method. J Clust Sci. 25:1377–1388.
  • Rajesh PS, Rai VR. 2014. Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1. Microbiol Res. 169:561–569.
  • Ramachandran K, Kalpana D, Sathishkumar Y, Lee YS, Ravichandran K, Kumar GG. 2015. A facile green synthesis of silver nanoparticles using Piper betle biomass and its catalytic activity toward sensitive and selective nitrite detection. J Ind Eng Chem. 35:29–35.
  • Rampioni G, Falcone M, Heeb S, Frangipani E, Fletcher MP, Dubern JF, Visca P, Leoni L, Cámara M, Williams P. 2016. Unravelling the genome-wide contributions of specific 2-Alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa. PLoS Pathog. 12:1–25.
  • Rampioni G, Leoni L, Williams P. 2014. The art of antibacterial warfare: deception through interference with quorum sensing-mediated communication. Bioorg Chem. 55:60–68.
  • Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. 2015. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015:1–17.
  • Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Ko M, Nielsen J, Eberl L, Givskov M. 2005. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol. 187:1799–1814.
  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M. 2005. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology. 151:1325–1340.
  • Rathinam P, Vijay Kumar HS, Viswanathan P. 2017. Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors. Biofouling. 33:624–639.
  • Ravindran D, Ramanathan S, Arunachalam K, Jeyaraj GP, Shunmugiah KP, Arumugam VR. 2018. Phytosynthesized silver nanoparticles as antiquorum sensing and antibiofilm agent against the nosocomial pathogen Serratia marcescens: an in vitro study. J Appl Microbiol. 124:1425–1440.
  • Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2:1–25.
  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. 2005. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33:363–367.
  • Schuster M, Greenberg EP. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol. 296:73–81.
  • Shanmuga Prabha P, Jeya Sundari J, Brightson Arul Jacob Y. 2014. Synthesis of silver nano particles using Piper betle and its antibacterial activity. Eur Chem Bull. 3:1014–1016.
  • Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR. 2006. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol. 62:1264–1277.
  • Singh P, Kim YJ, Zhang D, Yang DC. 2016. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34:588–599.
  • Singh BN, Prateeksha Upreti DK, Singh BR, Defoirdt T, Gupta VK, De Souza AO, Singh HB, Barreira JCM, Ferreira ICFR, Vahabi K. 2017. Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Crit Rev Biotechnol. 37:525–540.
  • Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB. 2015. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep. 5:13719.
  • Srinivasan R, Vigneshwari L, Rajavel T, Durgadevi R. 2017. Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. Env Sci Pollut Res. 25:10538–10554.
  • Strateva T, Mitov I. 2011. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann Microbiol. 61:717–732.
  • Taglietti A, Arciola CR, D’Agostino A, Dacarro G, Montanaro L, Campoccia D, Cucca L, Vercellino M, Poggi A, Pallavicini P, Visai L. 2014. Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials. 35:1779–1788.
  • Tan LY, Yin WF, Chan KG. 2013. Piper nigrum, Piper betle and Gnetum gnemon-natural food sources with anti-quorum sensing properties. Sensors (Basel). 13:3975–3985.
  • Van Gennip M, Christensen LD, Alhede M, Phipps R, Jensen PØ, Christophersen L, Pamp SJ, Moser C, Mikkelsen PJ, Koh AY, et al. 2009. Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS. 117:537–546.
  • Vasavi HS, Arun AB, Rekha PD. 2016. Anti-quorum sensing activity of flavonoid-rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1. J Microbiol Immunol Infect. 49:8–15.
  • Vyshnava SS, Kanderi DK, Panjala SP, Pandian K, Bontha RR, Goukanapalle PKR, Banaganapalli B. 2016. Effect of silver nanoparticles against the formation of biofilm by Pseudomonas aeruginosa an in silico approach. Appl Biochem Biotechnol. 180:426–437.
  • Wagh MS, Patil RH, Thombre DK, Kulkarni MV, Gade WN, Kale BB. 2013. Evaluation of anti-quorum sensing activity of silver nanowires. Appl Microbiol Biotechnol. 97:3593–3601.
  • Willner I, Baron R, Willner B. 2006. Growing metal nanoparticles by enzymes. Adv Mater. 18:1109–1120.
  • Wu H, Moser C, Wang H, Høiby N, Song Z. 2015. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 7:1–7.
  • Zhang X, Liu Z, Shen W, Gurunathan S. 2016. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 17:1–34.
  • Zhang M, Zhang K, Gusseme B, De Verstraete W, Field R. 2014. The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Biofouling. 30:347–357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.