Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 5
236
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Facile deposition of biogenic silver nanoparticles on porous alumina discs, an efficient antimicrobial, antibiofilm, and antifouling strategy for functional contact surfaces

, , , &
Pages 538-554 | Received 12 Feb 2021, Accepted 19 May 2021, Published online: 21 Jun 2021

References

  • Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H. 2015. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater. 2015:1–8. doi:10.1155/2015/720654
  • Ackerl N, Gysel J, Warhanek M, Wegener K. 2019. Ultra-short pulsed laser manufacturing of yttria stabilized alumina-toughened zirconia dental implants. 10857. SPIE. SPIE BiOS. International Society for Optics and Photonics.
  • Alam K, Sim Y, Yu JH, Gnanaprakasam J, Choi H, Chae Y, Sim U, Cho H. 2019. In-situ deposition of graphene oxide catalyst for efficient photoelectrochemical hydrogen evolution reaction using atmospheric plasma. Materials. 13:12. doi:10.3390/ma13010012
  • Alimohammadi F, Gashti MP, Shamei A, Kiumarsi A. 2012. Deposition of silver nanoparticles on carbon nanotube by chemical reduction method: evaluation of surface, thermal and optical properties. Superlattices Microstruct. 52:50–62. doi:10.1016/j.spmi.2012.04.015
  • Alvarez-Ordóñez A, Coughlan LM, Briandet R, Cotter PD. 2019. Biofilms in food processing environments: challenges and opportunities. Annu Rev Food Sci Technol. 10:173–195. doi:10.1146/annurev-food-032818-121805
  • Angelina JT, Ganesan S, Panicker T, Narayani R, Paul Korath M, Jagadeesan K. 2017. Pulsed laser deposition of silver nanoparticles on prosthetic heart valve material to prevent bacterial infection. Mater Technol. 32:148–155. doi:10.1080/10667857.2016.1160503
  • Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E. 2012. Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small. 8:3326–3337. doi:10.1002/smll.201200772
  • Aversa R, Perrotta V, Petrescu RV, Carlo M, Petrescu FI, Apicella A. 2017. From structural colors to super-hydrophobicity and achromatic transparent protective coatings: ion plating plasma assisted TiO2 and SiO2 nano-film deposition. AJEAS. 9:1037–1045.
  • Awad TS, Asker D, Hatton BD. 2018. Food-safe modification of stainless-steel food-processing surfaces to reduce bacterial biofilms. ACS Appl Mater Interfaces. 10:22902–22912. doi:10.1021/acsami.8b03788
  • Bakan E, Vaßen R. 2017. Ceramic topcoats of plasma-sprayed thermal barrier coatings: materials, processes, and properties. J Therm Spray Tech. 26:992–1010. doi:10.1007/s11666-017-0597-7
  • Cao P, Li WW, Morris AR, Horrocks PD, Yuan CQ, Yang Y. 2018. Investigation of the antibiofilm capacity of peptide-modified stainless steel. R Soc Open Sci. 5:172165. doi:10.1098/rsos.172165
  • Carvalho A, Grenho L, Fernandes MH, Daskalova A, Trifonov A, Buchvarov I, Monteiro FJ. 2020. Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants. Ceram Int. 46:1383–1389. doi:10.1016/j.ceramint.2019.09.101
  • Chang BM, Pan L, Lin H-H, Chang H-C. 2019. Nanodiamond-supported silver nanoparticles as potent and safe antibacterial agents. Sci Rep. 9:1–11. doi:10.1038/s41598-019-49675-z
  • Costa P, Lobo JMS. 2001. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 13:123–133. doi:10.1016/S0928-0987(01)00095-1
  • Daengngam C, Lethongkam S, Srisamran P, Paosen S, Wintachai P, Anantravanit B, Vattanavanit V, Voravuthikunchai S. 2019. Green fabrication of anti-bacterial biofilm layer on endotracheal tubing using silver nanoparticles embedded in polyelectrolyte multilayered film. Maters Sci Eng C. 101:53–63. doi:10.1016/j.msec.2019.03.061
  • de Morais LC, Bernardes-Filho R, Assis OB. 2009. Wettability and bacteria attachment evaluation of multilayer proteases films for biosensor application. World J Microbiol Biotechnol. 25:123–129. doi:10.1007/s11274-008-9873-5
  • Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. 2016. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine NBM. 12:789–799. doi:10.1016/j.nano.2015.11.016
  • Ferraris S, Miola M, Cochis A, Azzimonti B, Rimondini L, Prenesti E, Vernè E. 2017. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols. Appl Surf Sci. 396:461–470. doi:10.1016/j.apsusc.2016.10.177
  • Ghaemi M, Reichert S, Krupa A, Sawczak M, Zykova A, Lobach K, Sayenko S, Svitlychnyi Y. 2017. Zirconia ceramics with additions of alumina for advanced tribological and biomedical applications. Ceram Int. 43:9746–9752. doi:10.1016/j.ceramint.2017.04.150
  • Gunputh UF, Le H. 2020. A review of in-situ grown nanocomposite coatings for titanium alloy implants. J Compos Sci. 4:41. doi:10.3390/jcs4020041
  • Gunputh UF, Le H, Lawton K, Besinis A, Tredwin C, Handy RD. 2020. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology. 14:97–110. doi:10.1080/17435390.2019.1665727
  • Hu S, Lin Y, Teng J, Wong WL, Qiu B. 2020. In situ deposition of MOF-74 (Cu) nanosheet arrays onto carbon cloth to fabricate a sensitive and selective electrocatalytic biosensor and its application for the determination of glucose in human serum. Microchim Acta. 187:1–10. doi:10.1007/s00604-020-04634-8
  • Il’ves VG, Zuev MG, Sokovnin SY. 2015. 2015. Properties of silicon dioxide amorphous nanopowder produced by pulsed electron beam evaporation. J Nanotechnol. 2015:1–8. doi:10.1155/2015/417817
  • Ismail RA, Zaidan SA, Kadhim RM. 2017. Preparation and characterization of aluminum oxide nanoparticles by laser ablation in liquid as passivating and anti-reflection coating for silicon photodiodes. Appl Nanosci. 7:477–487. doi:10.1007/s13204-017-0580-0
  • Jeong Y, Lim DW, Choi J. 2014. Assessment of size-dependent antimicrobial and cytotoxic properties of silver nanoparticles. Adv Mater Sci Eng. 2014:1–6. doi:10.1155/2014/763807
  • Jia M, Zhang W, He T, Shu M, Deng J, Wang J, Li W, Bai J, Lin Q, Luo F, et al. 2020. Evaluation of the genotoxic and oxidative damage potential of silver nanoparticles in human NCM460 and HCT116 Cells. Int J Mol Sci. 21:1618. doi:10.3390/ijms21051618
  • Kanematsu H, Barry DM. 2020. Biofilm problems and environments. In: Formation and control of biofilm in various environments. Singapore: Springer; p. 173–200.
  • Katas H, Lim CS, Azlan AYHN, Buang F, Busra MFM. 2019. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm J. 27:283–292. doi:10.1016/j.jsps.2018.11.010
  • Khan Z, Al-Thabaiti SA. 2019. Biogenic silver nanoparticles: Green synthesis, encapsulation, thermal stability and antimicrobial activities. J Mol Liq. 289:111102. doi:10.1016/j.molliq.2019.111102
  • Khatoon N, Sharma Y, Sardar M, Manzoor N. 2019. Mode of action and anti-Candida activity of Artemisia annua mediated-synthesized silver nanoparticles. J Mycol Med. 29:201–209. doi:10.1016/j.mycmed.2019.07.005
  • Khoo YS, Lau WJ, Liang YY, Karaman M, Gürsoy M, Ismail AF. 2020. A green approach to modify surface properties of polyamide thin film composite membrane for improved antifouling resistance. Sep Purif Technol. 250:116976. doi:10.1016/j.seppur.2020.116976
  • Kratochvil MJ, Welsh MA, Manna U, Ortiz BJ, Blackwell HE, Lynn DM. 2016. Slippery liquid-infused porous surfaces that prevent bacterial surface fouling and inhibit virulence phenotypes in surrounding planktonic cells. ACS Infec Dis. 2:509–517. doi:10.1021/acsinfecdis.6b00065
  • Lethongkam S, Daengngam C, Tansakul C, Siri R, Chumpraman A, Phengmak M, Voravuthikunchai SP. 2020. Prolonged inhibitory effects against planktonic growth, adherence, and biofilm formation of pathogens causing ventilator-associated pneumonia using a novel polyamide/silver nanoparticle composite-coated endotracheal tube. Biofouling. 36:292–307. doi:10.1080/08927014.2020.1759041
  • Li J, Ma R, Lu Y, Wu Z, Su M, Jin K, Qin D, Zhang R, Bai R, He S, et al. 2020. A gravity-driven high-flux catalytic filter prepared using a naturally three-dimensional porous rattan biotemplate decorated with Ag nanoparticles. Green Chem. 22:6846–6854. doi:10.1039/D0GC01709D
  • Li M, Schlaich C, Kulka MW, Donskyi IS, Schwerdtle T, Unger WE, Haag R. 2019. Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion. J Mater Chem B. 7:3438–3445. doi:10.1039/C9TB00534J
  • Li Q, Zhang X, Yu H, Zhang H, Wang J. 2020. A facile surface modification strategy for improving the separation, antifouling and antimicrobial performances of the reverse osmosis membrane by hydrophilic and Schiff-base functionalizations. Colloids Surf A Physicochem Eng Asp. 587:124326. doi:10.1016/j.colsurfa.2019.124326
  • Liao S, Zhang Y, Pan X, Zhu F, Jiang C, Liu Q, Cheng Z, Dai G, Wu G, Wang L, et al. 2019. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomed. 14:1469–1487. doi:10.2147/IJN.S191340
  • Lim SK, Lee SK, Hwang SH, Kim H. 2006. Photocatalytic deposition of silver nanoparticles onto organic/inorganic composite nanofibers. Macromol Mater Eng. 291:1265–1270. doi:10.1002/mame.200600264
  • Liu J, Ren B, Zhu T, Yan S, Zhang X, Huo W, Chen Y, Yang J. 2018. Enhanced mechanical properties and decreased thermal conductivity of porous alumina ceramics by optimizing pore structure. Ceram Int. 44:13240–13246. doi:10.1016/j.ceramint.2018.04.151
  • Mao BH, Chen ZY, Wang YJ, Yan SJ. 2018. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 8:2445. doi:10.1038/s41598-018-20728-z
  • Nelson VV, Maria OT, Mamiè SV, Maritza PC. 2017. Microbiologically influenced corrosion in aluminium alloys 7075 and 2024 aluminium alloys-recent trends in processing, characterization, mechanical behavior and applications. IntechOpen.
  • Nwabor OF, Singh S, Syukri DM, Voravuthikunchai SP. 2021. Bioactive fractions of Eucalyptus camaldulensis inhibit important foodborne pathogens, reduce listeriolysin O-induced haemolysis, and ameliorate hydrogen peroxide-induced oxidative stress on human embryonic colon cells. Food Chem. 344:128571. doi:10.1016/j.foodchem.2020.128571
  • Nwabor OF, Singh S, Paosen S, Vongkamjan K, Voravuthikunchai SP. 2020a. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci. 36:100609. doi:10.1016/j.fbio.2020.100609
  • Nwabor OF, Singh S, Ontong JC, Vongkamjan K, Voravuthikunchai SP. 2020b. Valorization of wastepaper through antimicrobial functionalization with biogenic silver nanoparticles, a sustainable packaging composite. Waste Biomass Valor. 12:3287–3301. doi:10.1007/s12649-020-01237-5
  • Ogawa A, Takakura K, Hirai N, Kanematsu H, Kuroda D, Kougo T, Sano K, Terada S. 2020. Biofilm formation plays a crucial rule in the initial step of carbon steel corrosion in air and water environments. Materials. 13:923. doi:10.3390/ma13040923
  • Ontong JC, Singh S, Nwabor OF, Chusri S, Voravuthikunchai SP. 2020. Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnol Lett. 42:2653–2664. doi:10.1007/s10529-020-02971-5
  • Papi H, Jalali-Asadabadi S, Nourmohammadi A, Ahmad I, Nematollahi J, Yazdanmehr M. 2015. Optical properties of ideal γ-Al2O3 and with oxygen point defects: an ab initio study. RSC Adv. 5:55088–55099. doi:10.1039/C5RA06027C
  • Patil MP, Kim GD. 2017. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 101:79–92. doi:10.1007/s00253-016-8012-8
  • Peng L, Guo R, Lan J, Jiang S, Lin S. 2016. Microwave-assisted deposition of silver nanoparticles on bamboo pulp fabric through dopamine functionalization. Appl Surf Sci. 386:151–159. doi:10.1016/j.apsusc.2016.05.170
  • Pisarek M, Nowakowski R, Kudelski A, Holdynski M, Roguska A, Janik-Czachor M, Kurowska-Tabor E, Sulka GD. 2015. Surface modification of nanoporous alumina layers by deposition of Ag nanoparticles. Effect of alumina pore diameter on the morphology of silver deposit and its influence on SERS activity. Appl Surf Sci. 357:1736–1742. doi:10.1016/j.apsusc.2015.10.011
  • Qiao Z, Yao Y, Song S, Yin M, Luo J. 2019. Silver nanoparticles with pH induced surface charge switchable properties for antibacterial and antibiofilm applications. J Mater Chem B. 7:830–840. doi:10.1039/c8tb02917b
  • Radtke A, Grodzicka M, Ehlert M, Jędrzejewski T, Wypij M, Golińska P. 2019. “To be microbiocidal and not to be cytotoxic at the same time” silver nanoparticles and their main role on the surface of titanium alloy implants. J Clin Med. 8:334. doi:10.3390/jcm8030334
  • Razmjou A, Mansouri J, Chen V. 2011. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Membr Sci. 378:73–84. doi:10.1016/j.memsci.2010.10.019
  • Rodríguez-Campos D, Rodríguez-Melcón C, Alonso-Calleja C, Capita R. 2019. Persistent Listeria monocytogenes isolates from a poultry-processing facility form more biofilm but do not have a greater resistance to disinfectants than sporadic strains. Pathogens. 8:250. doi:10.3390/pathogens8040250
  • Saravanakumar K, Chelliah R, MubarakAli D, Oh D-H, Kathiresan K, Wang M-H. 2019. Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Sci Rep. 9:1–8. doi:10.1038/s41598-019-42112-1
  • Shebl RI, Farouk F, Azzazy H-S. 2017. Effect of Surface charge and hydrophobicity modulation on the antibacterial and antibiofilm potential of magnetic iron nanoparticles. J Nanomater. 2017:1–15. doi:10.1155/2017/3528295
  • Singh S, Nwabor OF, Ontong JC, Voravuthikunchai SP. 2020a. Characterization and assessment of compression and compactibility of novel spray-dried, co-processed bio-based polymer. J Drug Deliv Sci Technol. 56:101526. doi:10.1016/j.jddst.2020.101526
  • Singh S, Nwabor OF, Ontong JC, Kaewnopparat N, Voravuthikunchai SP. 2020b. Characterization of a novel, co-processed bio-based polymer, and its effect on mucoadhesive strength. Int J Biol Macromol. 145:865–875. doi:10.1016/j.ijbiomac.2019.11.198
  • Song Z, Wu Y, Wang H, Han H. 2019. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Mater Sci Eng C. 99:255–263. doi:10.1016/j.msec.2018.12.053
  • Srinivas S. 2020. Prebiotic-chemistry inspired polymeric coatings for the surface modification of hydrophobic polyethersulfone membranes for the enhancement of their antifouling and antibacterial properties. Alberta: University of Alberta.
  • Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu C-P. 2014. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf A Physicochem Eng Asp. 444:226–231. doi:10.1016/j.colsurfa.2013.12.065
  • Sun Z, Li B, Hu P, Ding F, Yuan F. 2016. Alumina ceramics with uniform grains prepared from Al2O3 nanospheres. J Alloys Compd. 688:933–938. doi:10.1016/j.jallcom.2016.07.122
  • Syukri DM, Nwabor OF, Singh S, Voravuthikunchai SP. 2021. Antibacterial functionalization of nylon monofilament surgical sutures through in situ deposition of biogenic silver nanoparticles. Surf Coat Tech. 413:127090. doi:10.1016/j.surfcoat.2021.127090
  • Thamaraiselvan C, Manderfeld E, Kleinberg MN, Rosenhahn A, Arnusch CJ. 2021. Superhydrophobic candle soot as a low fouling stable coating on water treatment membrane feed spacers. ACS Appl Bio Mater.4:4191–4200. doi:10.1021/acsabm.0c01677
  • Tudu BK, Sinhamahapatra A, Kumar A. 2020. Surface modification of cotton fabric using tio2 nanoparticles for self-cleaning, oil–water separation, antistain, anti-water absorption, and antibacterial properties. ACS Omega. 5:7850–7860. doi:10.1021/acsomega.9b04067
  • Valsalam S, Agastian P, Arasu MV, Al-Dhabi NA, Ghilan A-KM, Kaviyarasu K, Ravindran B, Chang SW, Arokiyaraj S. 2019. Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J Photochem Photobiol B Biol. 191:65–74. doi:10.1016/j.jphotobiol.2018.12.010
  • Von Moos N, Slaveykova VI. 2014. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–state of the art and knowledge gaps. Nanotoxicology. 8:605–630. doi:10.3109/17435390.2013.809810
  • Voravuthikunchai SP, Dolah S, Charernjiratrakul W. 2010. Control of Bacillus cereus in foods by Rhodomyrtus tomentosa (Ait.) hassk. leaf extract and its purified compound. J Food Prot. 73:1907–1912. doi:10.4315/0362-028x-73.10.1907
  • Voravuthikunchai SP, Suwalak S. 2008. Antibacterial activities of semipurified fractions of Quercus infectoria against enterohemorrhagic Escherichia coli O157: H7 and its verocytotoxin production. J Food Prot. 71:1223–1227. doi:10.4315/0362-028x-71.6.1223
  • Wallenhorst L, Gurău L, Gellerich A, Militz H, Ohms G, Viöl W. 2018. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure. Appl Surf Sci. 434:1183–1192. doi:10.1016/j.apsusc.2017.10.214
  • Wassmann T, Kreis S, Behr M, Buergers R. 2017. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int J Implant Dent. 3:1–11. doi:10.1186/s40729-017-0093-3
  • Yan X, He B, Liu L, Qu G, Shi J, Hu L, Jiang G. 2018. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics. 10:557–564. doi:10.1039/c7mt00328e
  • Yuan Y, Hays MP, Hardwidge PR, Kim J. 2017. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 7:14254–14261. doi:10.1039/C7RA01571B
  • Zakaria MA, Menazea A, Mostafa AM, Al-Ashkar EA. 2020. Ultra-thin silver nanoparticles film prepared via pulsed laser deposition: synthesis, characterization, and its catalytic activity on reduction of 4-nitrophenol. Surf Interfaces. 19:100438. doi:10.1016/j.surfin.2020.100438
  • Zeng Q, Zhu Y, Yu B, Sun Y, Ding X, Xu C, Wu YW, Tang Z, Xu FJ. 2018. Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromolecules. 19:2805–2811. doi:10.1021/acs.biomac.8b00399
  • Zhang HL, Gao YB, Gai JG. 2018. Guanidinium-functionalized nanofiltration membranes integrating anti-fouling and antimicrobial effects. J Mater Chem A. 6:6442–6454. doi:10.1039/C8TA00342D
  • Zhang L, Wu L, Si Y, Shu K. 2018. Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: growth inhibition, cell injury, oxidative stress and internalization. PLoS One. 13:e0209020. doi:10.1371/journal.pone.0209020
  • Zhang W, Liao Z, Meng X, Niwaer AEA, Wang H, Li X, Liu D, Zuo F. 2020. Fast coating of hydrophobic upconversion nanoparticles by NaIO4-induced polymerization of dopamine: positively charged surfaces and in situ deposition of Au nanoparticles. Appl Surf Sci. 527:146821. doi:10.1016/j.apsusc.2020.146821
  • Zou D, Chen X, Drioli E, Qiu M, Fan Y. 2019. Facile mixing process to fabricate fly-ash-enhanced alumina-based membrane supports for industrial microfiltration applications. Ind Eng Chem Res. 58:8712–8723.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.