300
Views
8
CrossRef citations to date
0
Altmetric
Articles

MP2, DFT and DFT-D study of the dimers of diazanaphthalenes: a comparative study of their structures, stabilisation and binding energies

&
Pages 1131-1146 | Received 21 Jun 2013, Accepted 27 Sep 2013, Published online: 13 Jan 2014

References

  • HusainA, MadhesiaD. Recent advances in pharmacological activities of quinoxaline derivatives. J Pharm Res. 2011;4:924–929.
  • RyuC-K, ParkR-E, MaM-Y, NhoJ-H. Synthesis and antifungal activity of 6-arylamino-phthalazine-5,8-diones and 6,7-bis(arylthio)-phthalazine-5,8-diones. Bioorg Med Chem Lett. 2007;17:2577–2580.
  • ShalabyAA, El-KhamryAMA, ShibaSA, AhmedAAAEA, HanafiAA. Synthesis and antifungal activity of some new quinazoline and benzoxazinone derivatives. Arch Pharm. 2000;333:365–372.
  • VikasS, DarbhamullaS. Synthesis, characterization and biological activities of substituted cinnoline culphonamides. Afr Health Sci. 2009;9:275–278.
  • BarrajaP, DianaP, LauriaA, PassannantiA, AlmericoAM, MinneiC, LonguS, CongiuD, MusiuC, La CollaP. Indolo[3,2-b]cinnolines with antiproliferative, antifungal and antibacterial activity. Bioorg Med Chem. 1999;7:1591–1596.
  • ZarranzB, JasoI AldanaA, MongeA. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Bioorg Med Chem. 2003;11:2149–2156.
  • InbarajJJ, MottenAG, ChignellCF. Photochemical and photobiological studies of tirapazamine (SR 4233) and related quinoxaline 1,4-di-N-oxide analogues. Chem Res Toxicol. 2003;16:164–170.
  • ButnariuRM, CaprosuMD, BejanV, MangalagiuII, UngureanuM, PoiataA, TuchilusC, FlorescuM. Pyridazine and phthalazine derivatives with potential antimicrobial activity. J Heterocyclic Chem. 2007;44:1149–1152.
  • RaghavendraNM, ThampiP, GurubasavarajaswamyPM, SriramD. Synthesis and antimicrobial activities of some novel substituted 2-imidazolyl-N-(4-oxo-quinazolin-3(4H)-yl) acetamides. Chem Pharm Bull. 2007;55:1615–1619.
  • LiJ, ZhaoY-F, YuanX-Y, XuJ-X, GongP. Synthesis and anticancer activities of novel 1,4-disubstituted phthalazines. Molecules. 2006;11:574–582.
  • KumarV, MadaanA, SannaVK, VishnoiM, JoshiN, SinghAT, JaggiM, SharmaPK, IrchhaiyaR, BurmanAC. Anticancer and immunomodulatory activities of novel Nptr derivatives. J Enzyme Inhib Med Chem. 2009;24:1169–1178.
  • MongeA, Martinez-CrespoFJ, CeraiAL, PalopJA, NarroS, SenadorV, MarinA, SainzY, GonzalezM, HamiltonE, BarkerAJ. Hypoxia-selective agents derived from 2-quinoxaline carbonitrile 1,2-di-N-oxides. J Med Chem. 1995;38:4488–4494.
  • SolomonEI, SundaramUM, MachonkinTE. Multicopper oxidases and oxygenases. Chem Rev. 1996;96:2563–2605.
  • KimYB, KimYH, ParkJY, KimSK. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. Bioorg Med Chem Lett. 2004;14:541–544.
  • ChangY-H, LiuZ-Y, LiuY-H, PengS-M, ChenJ-T, LiuS-T. Palladium(II) complexes based on 1,8-naphthyridine functionalized N-heterocyclic carbenes (NHC) and their catalytic activity. Dalton Trans. 2011;40:489–494.
  • Gonzalez-AlvarezM, AlzuetG, BorrasJ, PitieM, MeunierB. DNA cleavage studies of mononuclear and dinuclear copper(II) complexes with benzothiazolesulfonamide ligands. J Biol Inorg Chem. 2003;8:644–652.
  • LewgowdW, StańczakA, OchockiZ, KrajewskaU, RóżalskiM. Synthesis and cytotoxicity of new potential intercalators based on tricyclic systems of some pyrimido[5,4-c]cinnoline and pyrimido[5,4-c]quinoline derivatives: Part I. Acta Pol Pharm Drug Res. 2005;62:105–110.
  • GalisteoJ, NavarroP, CampayoL, YuntaMJ, Gomez-ContrerasF, Villa-PulgarinJA, SierraBG, MollinedoF, GonzalezJ, Garcia-EspanaE. Synthesis and cytotoxic activity of a new potential DNA bisintercalator: 1,4-bis{3-[N-(4-chlorobenzo[g]phthalazin-1-yl)aminopropyl]}piperazine. Bioorg Med Chem. 2010;18:5301–5309.
  • SzumilakM, Szulawska-MroczekA, KoprowskaK, StasiakM, LewgowdW, StanczakA, CzyzM. Synthesis and in vitro biological evaluation of new polyamine conjugates as potential anticancer drugs. Eur J Med Chem. 2010;45:5744–5751.
  • RegerDL, E, HorgerJJ, SmithMD, SemeniucRF. Supramolecular architectures of metal complexes controlled by a strong π–π stacking, 1,8-naphthalimide functionalized third generation tris(pyrazolyl)methane ligand. Crystal Growth Design. 2010;10:386–393.
  • BaronR, McCammonJA. Molecular recognition and ligand association. Annu Rev Phys Chem. 2013;64:151–175.
  • HunterCA, SinghJ, ThorntonJM. Pi–pi interactions: the geometry and energetics of phenylalanine–phenylalanine interactions in proteins. J Mol Biol. 1991;218:837–846.
  • KabandaMM, MamminoL, MurulanaLC, MwangiHM, MabuselaWT. Antioxidant radical scavenging properties of phenolic pent-4-en-1-yne derivatives isolated from Hypoxis rooperi. A DFT study in vacuo and in solution. Int J Food Prop. Accepted, 13 July2013.
  • MamminoL, KabandaMM. The role of additional O–H…O intramolecular hydrogen bonds for acylphloroglucinols' conformational preferences in vacuo and in solution. Mol Sim. 2013;39:1–13.
  • KabandaMM, MamminoL. A comparative study of the dimers of selected hydroxybenzenes. Int J Quant Chem. 2012;112:519–531.
  • MamminoL, KabandaMM. Interplay of intramolecular hydrogen bonds, OH orientations and symmetry factors in the stabilisation of polyhydroxybenzenes. Int J Quant Chem. 2011;111:3701–3716.
  • MamminoL, KabandaMM. Adducts of acylphloroglucinols with explicit water molecules: similarities and differences across a sufficiently representative number of structures. Int J Quant Chem. 2010;110:2378–2390.
  • MamminoL, KabandaMM. A computational study of the carboxylic acid of phloroglucinol in vacuo and in water solution. Int J Quant Chem. 2010;110:595–623.
  • MamminoL, KabandaMM. A study of the interactions of the caespitate molecule with water. Int J Quant Chem. 2008;108:1772–1791.
  • MamminoL, KabandaMM. A computational study of the interactions of the phloroglucinol molecule with water. J Mol Struct (Theochem). 2008;852:36–45.
  • ČernýJ, HobzaP. Non-covalent interactions in biomacromolecules. Phys Chem Chem Phys. 2007;9:5291–5303.
  • JanowskiT, PulayP. A benchmark comparison of σ/σ and π/π dispersion: the dimers of naphthalene and decalin, and coronene and perhydrocoronene. J Am Chem Soc. 2012;134:17520–17525.
  • GrimmeS. Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J Chem Phys. 2003;118:9095–9102.
  • GrimmeS. On the importance of electron correlation effects for the pi– pi interactions in cyclophanes. Chem Eur J. 2004;10:3423–3429.
  • PiacenzaM, GrimmeS. Van der Waals interactions in aromatic systems: structure and energetics of dimers and trimers of pyridine. ChemPhysChem. 2005;6:1554–1558.
  • PiacenzaM, GrimmeS. Van der Waals complexes of polar aromatic molecules: unexpected structures for dimers of azulene. J Am Chem Soc. 2005;127:14841–14848.
  • JungYS, LochanRC, DutoiAD, Head-GordonM. Scaled opposite-spin second order Møller–Plesset correlation energy: an economical electronic structure method. J Chem Phys. 2004:1219793–1219802.
  • DistasioRAJr, Head-GordonM. Optimized spin-component scaled second-order Møller–Plesset perturbation theory for intermolecular interaction energies. Mol Phys. 2007;105:1073–1083.
  • HillJG, PlattsJA, WernerH-J. Calculation of intermolecular interactions in the benzene dimer using coupled-cluster and local electron correlation methods. Phys Chem Chem Phys. 2006;8:4072–4078.
  • SamantaU, ChakrabartiP, ChandrasekharJ. Ab initio study of energetics of X–H…p (X = N, O, and C) interactions involving a heteroaromatic ring. J Phys Chem A. 1998;102:8964–8969.
  • PápaiI, JancóG. Hydrogen bonding in methyl-substituted pyridine–water complexes: a theoretical study. J Phys Chem A. 2000;104:2132–2137.
  • DkhissiA, AdamowiczL, MaesG. Density functional theory study of the hydrogen-bonded pyridine–H2O complex: a comparison with RHF and MP2 methods and experimental data. J Phys Chem A. 2000;104:2112–2119.
  • SchlückerS, SinghRK, AsthanaBP, PoppJ, KieferW. Hydrogen bonded pyridine–water complexes studied by density functional theory and Raman spectroscopy. J Phys Chem A. 2001;105:9983–9989.
  • SiciliaMC, NiñoA, Muñoz-CaroC. Mechanism of pyridine protonation in water clusters of increasing size. J Phys Chem A. 2005;109:8341–8347.
  • SharifS, ShenderovichIG, GonzálezL, DenisovGS, SilvermanDN, LimbachH-H. NMR and ab initio studies of small complexes formed between water and pyridine derivatives in solid and liquid phase. J Phys Chem A. 2007;111:6084–6093.
  • TsuzukiS, UchimaruT, MatsumuraK, MikamiM, TanabeK. Structure and electronic spectroscopy of naphthalene-acenaphthene van der Waals dimer: hole-burning, dispersed fluorescence, and quantum chemistry calculations. Chem Phys Lett. 2000;319:547–554.
  • ChakarovaSD, SchröderE. Van der Waals interactions of the benzene dimer: towards treatment of polycyclic aromatic hydrocarbon dimers. Mat Sci Eng C. 2005;25:787–792.
  • DkhissiA, AdamowiczL, MaesG. Theoretical investigation of the interaction between 2-pyridone/2-hydroxypyridine and ammonia. J Phys Chem A. 2000;104:5625–5630.
  • DkhissiA, BrosseyR. Performance of DFT/MPWB1K for stacking and H-bonding interactions. Chem Phys Lett. 2007;439:35–39.
  • DkhissiA, BrosseyR. Metahybrid density functional theory and correlated ab initio studies on microhydrated adenine–thymine base pairs. J Phys Chem B. 2008;112:9182–9186.
  • ZhaoY, TruhlarDG. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A. 2004;108:6908–6918.
  • ZhaoY, SchultzNE, TruhlarDG. Exchange-correlation functionals with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys. 2005;123:161103–161107.
  • ZhaoY, SchultzNE, TruhlarDG. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput. 2006;2:364–382.
  • ZhaoY, TruhlarDG. Density functionals with broad applicability in chemistry. Acc Chem Res. 2008;41:157–167.
  • AntonyJ, GrimmeS. Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Phys Chem Chem Phys. 2006;8:5287–5293.
  • RileyKE, VondrásěkJ, HobzaP. Performance of the DFT-D method, paired with the PCM implicit solvation model, for the computation of interaction energies of solvated complexes of biological interest. Phys Chem Chem Phys. 2007;9:5555–5560.
  • ChaiJ-D, Head-GordonM. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615–6620.
  • KabandaMM, EbensoEE. Structures, stabilisation energies, and binding energies of quinoxaline…(H2O)n, quinoxaline dimer, and quinoxaline…Cu complexes: a theoretical study. J Phys Chem A. 2013;117:1583–1595.
  • TsuzukiS. Interactions with aromatic rings. Struc Bond. 2005;115:149–193.
  • GonzalezC, LimEC. Electronic spectra and photophysics of the two stable conformers of anthracene dimer: evaluation of an ab initio structure prediction. Chem Phys Lett. 2000;322:382–388.
  • GonzalezC, LimEC. A quantum chemistry study of the van der Waals dimers of benzene, naphthalene, and anthracene: crossed (D2d) and parallel-displaced (C2h) dimers of very similar energies in the linear polyacenes. J Phys Chem A. 2000;104:2953–2957.
  • LeeNK, ParkS, KimSK. Naphthalene dimer and naphthalene–anthracene complex. J Chem Phys. 2002;116:7910–7918.
  • FugiwaraT, LimEC. Binding energies of the neutral and ionic clusters of naphthalene in their ground electronic states. J Phys Chem A. 2003;107:4381–4386.
  • GilliéronC, SharmaK NautaN, SchmidtTW. Structure of the naphthalene dimer from rare gas tagging. J Phys Chem A. 2007;111:4211–4214.
  • RubešM, BludskýO, NachtigallP. Investigation of the benzene–naphthalene and naphthalene–naphthalene potential energy surfaces: DFT/CCSD(T) correction scheme. ChemPhysChem. 2008;9:1702–1708.
  • WalshTR. An ab initio study of the low energy structures of the naphthalene dimer. Chem Phys Lett. 2002;363:45–51.
  • KabandaMM, EbensoEE. DFT study of the protonation and deprotonation enthalpies of benzoxazole 1,2-benzisoxazole and 2,1-benzisoxazole and implications for the structures and energies of their adducts with explicit water molecules. J Theory Comput Chem. 2013;12:1350070 16 pages. doi:101142/S0219633613500703.
  • SharmaS, LeeJK. Gas-phase acidity studies of multiple sites of adenine and adenine derivatives. J Org Chem. 2004;69:7018–7025.
  • MamminoL, KabandaMM. A study of the intramolecular hydrogen bond in acylphloroglucinols. J Mol Struct (Theochem). 2009;901:210–219.
  • MamminoL, KabandaMM. A computational study of the effects of different solvents on the characteristics of the intramolecular hydrogen bond in acylphloroglucinols. J Phys Chem A. 2009;113:15064–15077.
  • HohensteinEG, SherrillCD. Wavefunction methods for noncovalent interactions. WIREs Comput Mol Sci. 2012;2:304–326.
  • BoysSF, BernardiF. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. 1970;19:553–566.
  • FrischMJ, TrucksGW, SchlegelHB, ScuseriaGE, RobbMA, CheesemanJR, ScalmaniG, BaroneV, MennucciB, PeterssonGA, NakatsujiH, CaricatoM, LiX, HratchianHP, IzmaylovAF, BloinoJ, ZhengG, SonnenbergJL, HadaM, EharaM, ToyotaK, FukudaR, HasegawaJ, IshidaM, NakajimaT, HondaY, KitaoO, NakaiH, VrevenT, MontgomeryJA, PeraltaJEJr, OgliaroF, BearparkM, HeydJJ, BrothersE, KudinKN, StaroverovVN, KobayashiR, NormandJ, RaghavachariK, RendellA, BurantJC, IyengarSS, TomasiJ, CossiM, RegaN, MillamJM, KleneM, KnoxJE, CrossJB, BakkenV, AdamoC, JaramilloJ, GompertsR, StratmannRE, YazyevO, AustinAJ, CammiR, PomelliC, OchterskiJW, MartinRL, MorokumaK, ZakrzewskiVG, VothGA, SalvadorP, DannenbergJJ, DapprichS, DanielsAD, FarkasO, ForesmanJB, OrtizJV, CioslowskiJ, FoxDJ. Gaussian 09, Revision C.01. Wallingford, CT: Gaussian, Inc; 2009.
  • Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, O'Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M. MOLPRO, a package of ab initio programs, version 2009.1. Available from: http://www.molpro.net ; 2009.
  • MandadoM, OteroN, MosqueraRA. Local aromaticity study of heterocycles using n-center delocalization indices: the role of aromaticity on the relative stability of position isomers. Tetrahedron. 2006;62:12204–12210.
  • WangY, WuJI, LiQ, SchleyerPvR. Aromaticity and relative stabilities of azines. Org Lett. 2010;12:4824–4827.
  • SandersonRT. Polar covalence. New York: Academic Press; 1983.
  • SandersonRT. Chemical bonds and bond energy. New York, NY: Academic Press; 1976.
  • WangY, WuJI, LiQ, SchleyerPvR. Why are some (CH)4X6 and (CH2)6X4 polyheteroadamantanes so stable?. Org Lett. 2010;12:1320–1323.
  • HeardGL, BoydRJ. Density-functional theory studies of the quadrupole-moments of benzene and naphthalene. Chem Phys Lett. 1997;277:252–256.
  • CalvertRL, RitchieGLD. Molecular quadrupole moment of naphthalene. J Chem Soc Faraday Trans. 1980;2(76):1249–1253.
  • PérezEM, SierraM, SánchezL, TorresMR, ViruelaR, ViruelaPM, OrtíE, MartínN. Concave TTF-type donors as supramolecular partners for fullerenes. Angew Chem Int Ed. 2007;46:1847–1851.
  • DkhissiA, DucéréJM, BlosseyR, PouchanC. Can the hybrid meta GGA and DFT-D methods describe the stacking interactions in conjugated polymers?. J Comp Chem. 2009;30:1179–1184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.