124
Views
1
CrossRef citations to date
0
Altmetric
Articles

Computer simulation of fullerene polymers interacting with DPPC membrane: patchy functionalised modification and sequence effect

, , &
Pages 889-897 | Received 24 Sep 2019, Accepted 15 Jun 2020, Published online: 09 Jul 2020

References

  • Bosi S, Da Ros T, Spalluto G, et al. Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem. 2003;38(11–12):913–923.
  • Cusan C, Da Ros T, Spalluto G, et al. A new multi-charged C-60 derivative: Synthesis and biological properties. Eur J Org Chem. 2002;17:2928–2934.
  • Bakry R, Vallant RM, Najam-Ul-Haq M, et al. Medicinal applications of fullerenes. Int J Nanomed. 2007;2(4):639–649.
  • Da Ros T, Prato M. Medicinal chemistry with fullerenes and fullerene derivatives. Chem Commun. 1999;8:663–669.
  • Partha R, Conyers JL. Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomed. 2009;4:261–275.
  • Li Q, Hong L, Li H, et al. Graphene oxide-fullerene C-60 (GO-C-60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens Bioelectron. 2017;89:477–482.
  • Shi J, Yu X, Wang L, et al. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials. 2013;34(37):9666–9677.
  • Pantarotto D, Bianco A, Pellarini F, et al. Solid-phase synthesis of fullerene-peptides. J Am Chem Soc. 2002;124(42):12543–12549.
  • Woo SY, Lee H. Effect of lipid shape on toroidal pore formation and peptide orientation in lipid bilayers. Phys Chem Chem Phys. 2017;19(32):21340–21349.
  • Wu Q-Y, Tian W-d, Ma Y-q. Nanopatterns of phospholipid assemblies on carbon nanotubes: a molecular dynamics simulation study. J Phys Chem C. 2018;122(13):7455–7463.
  • Kavyani S, Dadvar M, Modarress H, et al. A coarse grained molecular dynamics simulation study on the structural properties of carbon nanotube-dendrimer composites. Soft Matter. 2018;14(16):3151–3163.
  • Qiao R, Roberts AP, Mount AS, et al. Translocation of C-60 and its derivatives across a lipid bilayer. Nano Lett. 2007;7(3):614–619.
  • Bedrov D, Smith GD, Davande H, et al. Passive transport of C-60 fullerenes through a lipid membrane: a molecular dynamics simulation study. J Phys Chem B. 2008;112(7):2078–2084.
  • Bozdaganyan ME, Orekhov PS, Shaytan AK, et al. Comparative computational study of interaction of C-60-fullerene and Tris-Malonyl-C-60-fullerene isomers with lipid bilayer: relation to their antioxidant effect. PLoS One. 2014;9(7):e102487.
  • Yesylevskyy SO, Kraszewski S, Picaud F, et al. Efficiency of the monofunctionalized C-60 fullerenes as membrane targeting agents studied by all-atom molecular dynamics simulations. Mol Membr Biol. 2013;30(5–6):338–345.
  • Tian F, Lin X, Valle RP, et al. Poly(amidoamine) dendrimer as a respiratory nanocarrier: insights from experiments and molecular dynamics simulations. Langmuir. 2019;35(15):5364–5371.
  • Gupta R, Rai B. Molecular dynamics simulation study of translocation of fullerene C-60 through skin bilayer: effect of concentration on barrier properties. Nanoscale. 2017;9(12):4114–4127.
  • D'Rozario RSG, Wee CL, Wallace EJ, et al. The interaction of C-60 and its derivatives with a lipid bilayer via molecular dynamics simulations. Nanotechnology. 2009;20(11):115102.
  • Liang L, Kang Z, Shen J-W. Translocation mechanism of C-60 and C-60 derivations across a cell membrane. J Nanopart Res. 2016;18(11):333.
  • Marrink SJ, de Vries AH, Mark AE. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B. 2004;108(2):750–760.
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111(27):7812–7824.
  • Sayes CM, Fortner JD, Guo W, et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004;4(10):1881–1887.
  • Monticelli L. On atomistic and coarse-grained models for C-60 fullerene. J Chemical Theory Comput. 2012;8(4):1370–1378.
  • Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys. 1977;23(2):187–199.
  • Kumar S, Rosenberg JM, Bouzida D, et al. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13(8):1011–1021.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–3690.
  • Van der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph Model. 1996;14(1):33–38.
  • Tu C-k, Chen K, Tian W-d, et al. Computational investigations of a peptide-modified dendrimer interacting with lipid membranes. Macromol Rapid Commun. 2013;34(15):1237–1242.
  • Fortner JD, Lyon DY, Sayes CM, et al. C 60 in water: nanocrystal formation and microbial response. Environ Sci Technol. 2005;39(11):4307–4316.
  • Marrink SJ, Berendsen HJC. Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J Phys Chem. 1996;100(41):16729–16738.
  • Jeng US, Hsu C-H, Lin T-L, et al. Dispersion of fullerenes in phospholipid bilayers and the subsequent phase changes in the host bilayers. Physica B. 2005;357(1):193–198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.