375
Views
7
CrossRef citations to date
0
Altmetric
Review Article

The Hemisection Approach in Large Animal Models of Spinal Cord Injury: Overview of Methods and Applications

, , ORCID Icon, , , ORCID Icon & show all

References

  • Dalm BD, Viljoen SV, Dahdaleh NS, et al. Revisiting spinal cord stimulation: an introduction to a novel intradural spinal cord stimulation device. Innov Neurosurg. 2014;2(1–4):13–20.
  • Nagel SJ, Wilson S, Johnson MD, et al. Spinal cord stimulation for spasticity: historical approaches, current status and future directions. Neuromodulation 2017;20(4):307–321.
  • Flouty OE, Oya H, Kawasaki H, et al. A new device concept for directly modulating spinal cord pathways: initial in vivo experimental results. Physiol Measure. 2012;33(12):2003–2015.
  • Flouty OE, Oya H, Kawasaki H, et al. Intracranial somatosensory responses with direct spinal cord stimulation in anesthetized sheep. PLoS One 2013;8(2):e56266.
  • Oya H, Safayi S, Jeffery ND, et al. Soft-coupling suspension system for an intradural spinal cord stimulator: biophysical performance characteristics. J Appl Phys. 2013;114(16):164701. DOI: 10.1063/1.4827195
  • Safayi S, Jeffery ND, Fredericks DC, et al. Biomechanical performance of an ovine model of intradural spinal cord stimulation. J Med Eng Technol. 2014;38(5):269–273.
  • Safayi S, Jeffery ND, Shivapour SK, et al. Kinematic analysis of the gait of adult sheep during treadmill locomotion: parameter values, allowable total error, and potential for use in evaluating spinal cord injury. J Neurol Sci. 2015;358(1–2):107–112.
  • Wilson S, Abode-Iyamah KO, Miller JW, et al. An ovine model of spinal cord injury. J Spinal Cord Med. 2017;40(3):346–360.
  • Koozekanani SH, Vise WM, Hashemi RZ, McGhee RB. Possible mechanisms for observed pathophysiological variability in experimental spinal cord injury by the method of Allen. J Neurosurg. 1976;44(4):429–434.
  • Molt JT, Nelson LR, Poulos DA, Bourke RS. Analysis and measurement of some sources of variability in experimental spinal cord trauma. J Neurosurg. 1979;50(6):784–791.
  • De La Torre JC. Spinal cord injury models. Prog Neurobiol. 1984;22(4):289–344.
  • Cheriyan T, Ryan DJ, Weinreb JH, et al. Spinal cord injury models: a review. Spinal Cord 2014;52(8):588–595.
  • Kwon BK, Streijger F, Hill CE, et al. Large animal and primate models of spinal cord injury for the testing of novel therapies. Exp Neurol. 2015;269:154–168.
  • Sharif-Alhoseini M, Khormali M, Rezaei M, et al. Animal models of spinal cord injury: a systematic review. Spinal Cord 2017;55(8):714–721.
  • Williams DF. A paradigm for the evaluation of tissue-engineering biomaterials and templates. Tissue Eng: Part C – Methods 2017;23(12):926–937.
  • Anwar MA, Al Shehabi S, Eid AH. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci. 2016;10:98.
  • Talac R, Friedman JA, Moore MJ, et al. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials 2004;25(9):1501–1510.
  • Dlouhy BJ, Dahdaleh NS, Howard III MA. Radiographic and intraoperative imaging of a hemisection of the spinal cord resulting in a pure Brown–Sequard syndrome: case report and review of the literature. J Neurosurg Sci. 2013;57(1):81–86.
  • Teasdall RD, Magladery JW, Ramey EH. Changes in reflex patterns following spinal cord hemisection in cats. Bull Johns Hopkins Hospital 1958;103(5):223–225.
  • Murray M, Goldberger ME. Restitution of function and collateral sprouting in the cat spinal cord: the partially hemisected animal. J Comp Neurol. 1974;158(1):19–36.
  • Brenowitz GL, Pubols LM. Increased receptive field size of dorsal horn neurons following chronic spinal-cord hemisections in cats. Brain Res. 1981;216(1):45–59.
  • Hultborn H, Malmsten J. Changes in segmental reflexes following chronic spinal cord hemisection in the cat. I. Increased monosynaptic and polysynaptic ventral root discharges. Acta Physiol Scand. 1983;119(4):405–422.
  • Hultborn H, Malmsten J. Changes in segmental reflexes following chronic spinal cord hemisection in the cat. II. Conditioned monosynaptic test reflexes. Acta Physiol Scand. 1983;119(4):423–433.
  • Helgren ME, Goldberger ME. The recovery of postural reflexes and locomotion following low thoracic hemisection in adult cats involves compensation by undamaged primary afferent pathways. Exp Neurol. 1993;123(1):17–34.
  • Kuhtz-Buschbeck JP, Boczek-Funcke A, Mautes A, Nacimiento W, Weinhardt C. Recovery of locomotion after spinal cord hemisection: an x-ray study of the cat hindlimb. Exp Neurol. 1996;137(2):212–224.
  • Thibaudier Y, Hurteau M-F, Dambreville C, Chraibi A, Goetz L, Frigon A. Interlimb coordination during tied-belt and transverse split-belt location before and after an incomplete spinal cord injury. J Neurotrauma 2017;34(9):1751–1765.
  • Côté M-P, Hanna A, Lemay MA, et al. Peripheral nerve grafts after cervical spinal cord injury in adult cats. Exp Neurol. 2010;225(1):173–182.
  • Hanna AS, Côté M-P, Houlé J, Dempsey R. Nerve grafting for spinal cord injury in cats: are we closer to translational research? Neurosurgery 2011;68(4):N14–N15.
  • Lyalka VF, Zelenin PV, Karayannidou A, Orlovsky GN, Grillner S, Deliagina TG. Impairment and recovery of postural control in rabbits with spinal cord lesions. J Neurophysiol. 2005;94(6):3677–3690.
  • Lyalka VF, Orlovsky GN, Deliagina TG. Impairment of postural control in rabbits with extensive spinal lesions. J Neurophysiol. 2009;101(4):1932–1940.
  • Zelenin PV, Lyalka VF, Orlovsky GN, Deliagina TG. Effect of acute lateral hemisection of the spinal cord on spinal neurons of postural networks. Neuroscience 2016;339:235–253.
  • Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med. 1998;4(7):814–821.
  • Assina R, Sankar T, Theodore N, et al. Activated autologous macrophage implantation in a large-animal model of spinal cord injury. Neurosurg Focus 2008;25(5):E3.
  • Lee SH, Chung YN, Kim YH, et al. Effects of human neural stem cell transplantation in canine spinal cord hemisection. Neurol Res. 2009;31(9):996–1002.
  • Kim BG, Kang YM, Phi JH, et al. Implantation of polymer scaffolds seeded with neural stem cells in a canine spinal cord injury model. Cytotherapy 2010;12(6):841–845.
  • McMahill BG, Borjesson DL, Sieber-Blum M, Nolta JA, Sturgis BK. Stem cells in canine spinal cord injury – promise for regenerative therapy in a large animal model of human disease. Stem Cell Rev Rep. 2015;11(1):180–193.
  • Mehler WR, Feferman ME, Nauta WJH. Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain 1960;83(4):718–750.
  • Denny-Brown D, Gilman S. Behavioral effects of dorsal column lesions. Trans Am Neurol Assoc. 1963;88:95–98.
  • Bernstein ME, Bernstein JJ. Regeneration of axons and synaptic complex-formation rostral to site of hemisection in spinal-cord of monkey. Int J Neurosci. 1973;5(1):15–26.
  • Aoki M, Mori S, Fujimori B. Exaggeration of knee-jerk following spinal hemisection in monkeys. Brain Res. 1976;107(3):471–485.
  • Wells MR, Bernstein JJ. Early changes in protein synthesis following spinal cord hemi section in the cebu monkey (cebus apella). Brain Res. 1976;111(1):31–40.
  • Vierck Jr. CJ, Greenspan JD, Ritz LA. Long-term changes in purposive and reflexive responses to nociceptive stimulation following anterolateral chordotomy. J Neurosci. 1990;10(7):2077–2095.
  • Rangasamy SB, Muthusamy R, Namasivayam A. Behavioural assessment of functional recovery after spinal cord hemisection in the bonnet monkey (Macaca radiata). J Neurol Sci. 2000;178(2):136–152.
  • Rangasamy SB. Locomotor recovery after spinal cord hemisection/contusion injuries in bonnet monkeys: footprint testing a minireview. Synapse 2013;67(7):427–453.
  • Rosenzweig ES, Courtine G, Jindrich DL, et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci. 2010;13(2):1505–1510.
  • Rosenzweig ES, Brock JH, Lu P, et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med. 2018;24(4):484–490.
  • Pritchard CD, Slotkin JR, Yu D, et al. Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells. J Neurosci Methods 2010:188(2):258–269.
  • Nout YS, Ferguson AR, Strand SC, et al. Methods for functional assessment after C7 spinal cord hemisecting in the rhesus monkey. Neurorehabilit Neural Repair 2012;26(6):556–569.
  • Nout YS, Rosenzweig ES, Brock JH, et al. Animal models of neurologic disorders: a nonhuman primate model of spinal cord injury. Neurotherapeutics 2012;9(2):380–392.
  • Rao JS, Liu Z, Zhao C, Wei RH, et al. Longitudinal evaluation of functional connectivity variation in the monkey sensorimotor network induced by spinal cord injury. Acta Physiol. 2016;217(2):164–173.
  • Slotkin JR, Pritchard CD, Luque B, et al. Biodegradable scaffolds promote tissue remodeling and functional improvement in hon-human primates with acute spinal cord injury. Biomaterials 2017;123:63–76.
  • Tohyama T, Kinoshita M, Kobayashi K, et al. Contribution of propriospinal neurons to recovery of hand dexterity after corticospinal tract lesions in monkeys. PNAS 2017;14(3):604–609.
  • Zhao C, Song W, Rao J-S, et al. Combination of kinematic analyses and diffusion tensor tractography to evaluate the residual motor functions in spinal-cord hemisected monkeys. J Med Primatol. 2017;46(5):239–247.
  • Dolezalova D, Hruska-Plochan M, Bjarkam C, et al. Pig models of neurodegenerative disorders: utilization in cell replacement-based preclinical safety and efficacy studies. J Comparative Neurol. 2014;522(12):2784–2801.
  • Schomberg DT, Miranpuri GS, Chopra A, et al. Translational relevance of swine models of spinal cord injury. J Neurotrauma 2017;34(3):541–551.
  • Lim J-H, Piedrahita JA, Jackson L, Ghashghaei T, Olby NJ. Development of a model of sacrocaudal spinal cord injury in cloned Yucatan minipigs for cellular transplantation research. Cell Reprogramming 2010;12(6):689–697.
  • Tietz WJ. The effects of parenteral trypsin therapy for spinal cord hemisection in sheep [Ph.D. Dissertation]. Purdue University; 1961. (Dissertation Abstracts 1961;22(1):305–306.)
  • Tietz WJ. Motor function in sheep after partial chordotomy. Am J Veterinary Med. 1964;25(108):1500–1507.
  • Vialle R, Lozeron P, Loureiro M-C, Tadié M. Multiple lumbar roots neurotizations with the lower intercostal nerves. Preliminary clinical and electrophysiological results in a sheep model. J Surg Res. 2008;149(2):199–205.
  • Vialle R, Lacroix C, Harding I, Loureiro MC, Tadié M. Motor and sensitive axonal regrowth after multiple intercosto-lumbar neurotizations in a sheep model. Spinal Cord 2010;48(5):367–374.
  • Yang X, Gao Y, Qin Z, Cao X, Gu X. Biotinylated dextran amine is an ideal anterograde tracer for the corticospinal tract in a goat model of ischemic corticospinal tract injury. Neural Regenerat Res. 2011;6(25):1960–1964. DOI: 10.3969/j.issn.1673-5374.2011.25.007
  • Cash WC, Leipold HW, Blauch BS. Clinical findings in experimental lesions of the bovine spinal-cord and dorsal rootlets. J Veterinary Med Ser A – Physiol Pathol Clin Med. 1986;33(7):491–503. DOI: 10.1111/j.1439-0442.1986.tb00560.x
  • Troyer DL, Cash WC, Akbar T, Ross CR. Histopathologic and immunocytochemical findings in the injured bovine spinal-cord. Prog Veterinary Neurol. 1994;5(3):98–104.
  • Kato H, Wanaka A, Tohyama M. Colocalization of basic fibroblast growth factor-like immunoreactivity and its receptor messenger-rna in the rat spinal-cord and the dorsal-root ganglion. Brain Res. 1992;576(2):351–354.
  • Frautschy SA, Walicke PA, Baird A. Localization of basic fibroblast growth-factor and its messenger-rna after CNS injury. Brain Res. 1991;553(2):291–299.
  • Blight AR. Morphometric analysis of a model of spinal cord injury in guinea pigs, with behavior evidence of delayed secondary pathology. J Neurol Sci. 1991;103(2):156–171.
  • Bohnert DM, Purvines S, Shapiro S, Borgens RB. Simultaneous application of two neurotrophic factors after spinal cord injury. J Neurotrauma 2007;24(5):846–863.
  • Le Corre M, Noristani HN, Mestre-Frances N, et al. A novel translational model of spinal cord injury in nonhuman primate. Neurotherapeutics 2017. doi: 10.1007/s13311-017-0589-9
  • Balasubramanian S, Peters JR, Robinson LF, Singh A, Kent RW. Thoracic spine morphology of a pseudo-biped animal model (kangaroo) and comparisons with human and quadruped animals. Eur Spine J. 2016;25(12):4140–4154.
  • Carter RL, Ritz LA, Shank CP, Scott EW, Sypert GW. Correlative electrophysiological and behavioral evaluation following L5 lesions in the cat: a model of spasticity. Exp Neurol. 1991;114(2):206–215.
  • Ritz LA, Friedman RM, Rhoton EL, Sparkes ML, Vierck Jr CJ. Lesions of cat sacrocaudal spinal cord: a minimally disruptive model of injury. J Neurotrauma 1992;9(3):219–230.
  • Kitzman PH. Animal models of spasticity. In: Brashear A, Elovic E (eds.) Spasticity: diagnosis and management. New York: Demos Medical Publications; 2011: 419–437, Ch. 27. ISBN: 978-1-933864-51-8.
  • Konrad P. Dorsal root entry zone lesion, midline myelotomy and anterolateral cordotomy. Neurosurg Clin North Am. 2014;25(4):699–722.
  • Nagel SJ, Reddy CG, Frizon LA, et al. Howard 3rd MA, Wilson S. Spinal dura mater: biophysical characteristics relevant to medical device development. J Med Eng Technol. 2018;42(2):128–139.
  • Gibson-Corley KN, Oya H, Flouty O, et al. Ovine tests of a novel spinal cord neuromodulator and dentate ligament fixation method. J Investigat Surg. 2012;25(6):366–374.
  • Fredericks DC, Gandhi AA, Grosland NM, Smucker JD. Assessment of BioPlex interbody fusion device in a sheep lumbar fusion model. Iowa Orthopaedic J. 2013;33:33–39.
  • DeVries NA, Gandhi AA, Fredericks DC, Grosland NM, Smucker JD. Biomechanical analysis of the intact and destabilized sheep cervical spine. Spine 2012;37(16):E957–E963.
  • Friedli L, Rosenzweig S, Barraud Q, et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Translat Med. 2015;7(302):302ra124.
  • Courtine G, Roy RR, Raven J, Hodgson J, et al. Performance of locomotion and foot grasping following a unilateraql thoracic corticospinal tract lesion in monkeys (macaca mulatta). Brain 2005;128(Part 10):2338–2358.
  • Fouad K, Hurd C, Magnuson DSK. Functional testing in animal models of spinal cord injury: not as straight forward as one would think. Front Integrat Neurosci. 2013;7(85):1–8
  • Iwanami A, Yamane J, Katoh H, et al. Establishment of a graded spinal cord injury model in a nonhuman primate: the common marmoset. J Neurosci Res. 2005;80(2):172–181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.