808
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Posttranscriptional Regulation of Intestinal Mucosal Growth and Adaptation by Noncoding RNAs in Critical Surgical Disorders

ORCID Icon, & ORCID Icon
Article: 2308809 | Received 03 Jun 2023, Accepted 12 Jan 2024, Published online: 07 Feb 2024

References

  • Wang J-Y, Xiao L, Wang J-Y. Posttranscriptional regulation of intestinal epithelial integrity by noncoding RNAs. Wiley Interdiscip Rev RNA. 2017;8(2):1. doi:10.1002/wrna.1399.
  • Yu T-X, Kalakonda S, Liu X, et al. Long noncoding RNA uc.230/CUG-binding protein 1 axis sustains intestinal epithelial homeostasis and response to tissue injury. JCI Insight. 2022;7(19):e156612. doi:10.1172/jci.insight.156612.
  • Ma X, Xiao L, Wen S, et al. Small noncoding vault RNA2-1 disrupts gut epithelial barrier function via interaction with HuR. EMBO Rep. 2022;24(2):e54925. doi:10.15252/embr.202254925.
  • Zhuang M, Deng Y, Zhang W, et al. LncRNA Bmp1 promotes the healing of intestinal mucosal lesions via the miR-128-3p/PHF6/PI3K/AKT pathway. Cell Death Dis. 2021;12(6):595. doi:10.1038/s41419-021-03879-2.
  • Xiao L, Gorospe M, Wang J-Y. Long noncoding RNAs in intestinal epithelium homeostasis. Am J Physiol Cell Physiol. 2019;317(1):C93–12. doi:10.1152/ajpcell.00092.2019.
  • Chung HK, Rao JN, Wang J-Y.5.11. Regulation of gut barrier function by RNA-binding proteins and noncoding RNAs. In: Kenakin T, ed. Comprehensive Pharmacology. Elsevier; 2022:194–213. doi:10.1016/b978-0-12-820472-6.00059-1.
  • Le Beyec J, Billiauws L, Bado A, et al. Short bowel syndrome: a paradigm for intestinal adaptation to nutrition? Annu Rev Nutr. 2020;40(1):299–321. doi:10.1146/annurev-nutr-011720-122203.
  • Takahashi T, Fujishima K, Kengaku M. Modeling intestinal stem cell function with organoids. Int J Mol Sci. 2021;22(20):10912. doi:10.3390/ijms222010912.
  • Zeve D, Stas E, de Sousa Casal J, et al. Robust differentiation of human enteroendocrine cells from intestinal stem cells. Nat Commun. 2022;13(1):261. doi:10.1038/s41467-021-27901-5.
  • Courtney CM, Onufer EJ, Seiler KM, Warner BW. An anatomic approach to understanding mechanisms of intestinal adaptation. Semin Pediatr Surg. 2018;27(4):229–236. doi:10.1053/j.sempedsurg.2018.07.00.
  • Drozdowski LA, Clandinin T, Thomson ABR. Ontogeny, growth and development of the small intestine: understanding pediatric gastroenterology. World J Gastroenterol. 2010;16(7):787–799. doi:10.3748/wjg.v16.i7.787.
  • Rao JN, Xiao L, Wang J-Y. Polyamines in gut epithelial renewal and barrier function. Physiology (Bethesda). 2020;35(5):328–337. doi:10.1152/physiol.00011.2020.
  • Xiao L, Rao JN, Wang J-Y. RNA-binding proteins and long noncoding RNAs in intestinal epithelial autophagy and barrier function. Tissue Barriers. 2021;9(2):1895648. doi:10.1080/21688370.2021.1895648.
  • Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340(6137):1190–1194. doi:10.1126/science.1234852.
  • Beumer J, Clevers H. Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol. 2021;22(1):39–53. doi:10.1038/s41580-020-0278-0.
  • Dudhwala ZM, Hammond PD, Howarth GS, Cummins AG. Intestinal stem cells promote crypt fission during postnatal growth of the small intestine. BMJ Open Gastroenterol. 2020;7(1):e000388. doi:10.1136/bmjgast-2020-000388.
  • Tappenden KA. Intestinal adaptation following resection. JPEN J Parenter Enteral Nutr. 2014;38(1 Suppl):23S–31S. doi:10.1177/0148607114525210.
  • Tai CC, Curtis J, Sala F, et al. Induction of fibroblast growth factor 10 (FGF10) in the ileal crypt epithelium after massive small bowel resection suggests a role for FGF10 in gut adaptation. Dev Dyn. 2009;238(2):294–301. doi:10.1002/dvdy.21667.
  • Otterburn DM, Arthur LG, Timmapuri SJ, et al. Proteasome gene upregulation: a possible mechanism for intestinal adaptation. J Pediatr Surg. 2005;40(2):377–380. doi:10.1016/j.jpedsurg.2004.10.024.
  • Washizawa N, Gu L, Openo K, et al. Comparative effects of glucagon-like peptide-2 (GLP-2), growth hormone (GH), and keratinocyte growth factor (KGF) on markers of gut adaptation after massive small bowel resection in rats. JPEN J Parenter Enteral Nutr. 2004;28(6):399–409. doi:10.1177/0148607104028006399.
  • Balakrishnan A. Micromanaging the gut: unravelling the regulatory pathways that mediate the intestinal adaptive response. Ann R Coll Surg Engl. 2018;100(3):165–171. doi:10.1308/rcsann.2017.0174.
  • Erwin CR, Falcone J, Stern LE, et al. Analysis of intestinal adaptation gene expression by cDNA expression arrays. JPEN J Parenter Enteral Nutr. 2000;24(6):311–316. doi:10.1177/0148607100024006311.
  • Martin GR, Beck PL, Sigalet DL. Gut hormones, and short bowel syndrome: the enigmatic role of glucagon-like peptide-2 in the regulation of intestinal adaptation. World J Gastroenterol. 2006;12(26):4117–4129. doi:10.3748/wjg.v12.i26.4117.
  • Drucker DJ. Glucagon-like peptide 2. J Clin Endocrinol Metab. 2001;86(4):1759–1764. doi:10.1210/jcem.86.4.7386.
  • Le Roux CW, Borg C, Katharina W, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg. 2010;252(1):50–56. doi:10.1097/SLA.0b013e3181d3d21f.
  • Wildhaber BE, Lynn KN, Yang H, Teitelbaum DH. Total parenteral nutrition-induced apoptosis in mouse intestinal epithelium: regulation by the Bcl-2 protein family. Pediatr Surg Int. 2002;18(7):570–575. doi:10.1007/s00383-002-0869-1.
  • Pöyhönen M, Takala J, Pitkänen O, et al. Urinary excretion of polyamines in patients with surgical and accidental trauma: effect of total parenteral nutrition. Metabolism. 1997;42(1):44–51. doi:10.1016/0026-0495(93)90170-s.
  • Chung HK, Xiao L, Jaladanki KC, Wang J-Y. Regulation of paneth cell function by RNA-binding proteins and noncoding RNAs. Cells. 2021;10(8):2107. doi:10.3390/cells10082107.
  • Balakrishnan A, Stearns A, Park P, et al. Upregulation of proapoptotic microRNA mir-125a after massive small bowel resection in rats. Ann Surg. 2012;255(4):747–753. doi:10.1097/SLA.0b013e31824b485a.
  • Bajinting A, Seiler K, Kanke M, et al. Su1091 – subepithelial microRNA expression during adaptation to massive small bowel resection. Gastroenterology. 2019;156(6):S-1436–S-1437. doi:10.1016/S0016-5085(19)40642-2.
  • Langi G, Szczerbinski L, Kretowski A. Meta-analysis of differential miRNA expression after bariatric surgery. J Clin Med. 2019;8(8):1220. doi:10.3390/jcm8081220.
  • Galardi S, Mercatelli N, Giorda E, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007;282(32):23716–23724. doi:10.1074/jbc.M701805200.
  • Xiao L, Cui Y-H, Rao JN, et al. Regulation of cyclin-dependent kinase 4 translation through CUG-binding protein 1 and microRNA-222 by polyamines. Mol Biol Cell. 2011;22(17):3055–3069. doi:10.1091/mbc.E11-01-0069.
  • Jiang L-P, Wang S, Chung HK, et al. MiR-222 represses expression of zipcode binding protein-1 and phospholipase c-γ1 in intestinal epithelial cells. Am J Physiol Cell Physiol. 2019;316(3):C415–C423. doi:10.1152/ajpcell.00165.2018.
  • Chung HK, Chen Y, Rao JN, et al. Transgenic expression of miR-222 disrupts intestinal epithelial regeneration by targeting multiple genes including Frizzled-7. Mol Med. 2015;21(1):676–687. doi:10.2119/molmed.2015.00147.
  • Yan B, Guo Q, Fu F-j, et al. The role of miR-29b in cancer: regulation, function, and signaling. Onco Targets Ther. 2015;8:539–548. doi:10.2147/OTT.S75899.
  • Wang H, Guan X, Tu Y, et al. MicroRNA-29b attenuates non-small cell lung cancer metastasis by targeting matrix metalloproteinase 2 and PTEN. J Exp Clin Cancer Res. 2015;34(1):59. doi:10.1186/s13046-015-0169-y.
  • Ma F, Xu S, Liu X, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol. 2011;12(9):861–869. doi:10.1038/ni.2073.
  • Chapman CG, Pekow J. The emerging role of miRNAs in inflammatory bowel disease: a review. Therap Adv Gastroenterol. 2015;8(1):4–22. doi:10.1177/1756283X14547360.
  • Xiao L, Rao JN, Zou T, et al. miR-29b represses intestinal mucosal growth by inhibiting translation of cyclin-dependent kinase 2. Mol Biol Cell. 2013;24(19):3038–3046. doi:10.1091/mbc.e13-05-0287.
  • Zou T, Rao JN, Liu L, et al. JunD enhances miR-29b levels transcriptionally and posttranscriptionally to inhibit proliferation of intestinal epithelial cells. Am J Physiol Cell Physiol. 2015;308(10):C813–C824. doi:10.1152/ajpcell.00027.2015.
  • Wang J-Y, Cui Y-H, Xiao L, et al. Regulation of intestinal epithelial barrier function by long noncoding RNA uc.173 through interaction with microRNA 29b. Mol Cell Biol. 2018;38(13):e00010-18. doi:10.1128/MCB.00010-18.
  • Li Y, Chen G, Wang J-Y, et al. Post-transcriptional regulation of Wnt co-receptor LRP6 and RNA-binding protein HuR by miR-29b in intestinal epithelial cells. Biochem J. 2016;473(11):1641–1649. doi:10.1042/BCJ20160057.
  • Ouyang M, Su W, Xiao L, et al. Modulation by miR-29b of intestinal epithelium homoeostasis through the repression of menin translation. Biochem J. 2015;465(2):315–323. doi:10.1042/BJ20141028.
  • Zhuang R, Rao JN, Zou T, et al. miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Res. 2013;41(16):7905–7919. doi:10.1093/nar/gkt565.
  • Qi J, Yu J-Y, Shcherbata HR, et al. microRNAs regulate human embryonic stem cell division. Cell Cycle. 2009;8(22):3729–3741. doi:10.4161/cc.8.22.10033.
  • Xu T, Zhu Y, Xiong Y, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009;50(1):113–121. doi:10.1002/hep.22919.
  • Bhattacharya A, Schmitz U, Wolkenhauer O, et al. Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma. Oncogene. 2013;32(26):3175–3183. doi:10.1038/onc.2012.324.
  • Zhang Y, Zhang Y, Xiao L, et al. Cooperative repression of insulin-like growth factor type 2 receptor translation by MicroRNA 195 and RNA-binding protein CUGBP1. Mol Cell Biol. 2017;37(19) doi:10.1128/MCB.00225-17.
  • Wang SR, Rathor N, Kwon M, et al. miR-195 regulates intestinal epithelial restitution after wounding by altering actin-related protein-2 translation. Am J Physiol Cell Physiol. 2022;322(4):C712–C722. doi:10.1152/ajpcell.00001.2022.
  • Xiao L, Wang J-Y. RNA-binding proteins and microRNAs in gastrointestinal epithelial homeostasis and diseases. Curr Opin Pharmacol. 2014;19:46–53. doi:10.1016/j.coph.2014.07.006.
  • Tong Z, Liu N, Lin L, et al. miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1. Biomed Pharmacother. 2015;75:129–136. doi:10.1016/j.biopha.2015.07.036.
  • Bernal NP, Stehr W, Coyle R, et al. Epidermal growth factor receptor signaling regulates Bax and Bcl-w expression and apoptotic responses during intestinal adaptation in mice. Gastroenterology. 2006;130(2):412–423. doi:10.1053/j.gastro.2005.11.006.
  • Cheng W, Wang K, Zhao Z, et al. Exosomes-mediated transfer of miR-125a/b in cell-to-cell communication: a novel mechanism of genetic exchange in the intestinal microenvironment. Theranostics. 2020;10(17):7561–7580. doi:10.7150/thno.41802.
  • Griffiths-Jones S, Grocock RJ, van Dongen S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34(Database issue):D140–D144. doi:10.1093/nar/gkj112.
  • Cao S, Xiao L, Rao JN, et al. Inhibition of Smurf2 translation by miR-322/503 modulates TGF-β/Smad2 signaling and intestinal epithelial homeostasis. Mol Biol Cell. 2014;25(8):1234–1243. doi:10.1091/mbc.e13-09-0560.
  • He Y, Cai Y, Pai PM, et al. The causes and consequences of miR-503 dysregulation and its impact on cardiovascular disease and cancer. Front Pharmacol. 2021;12:629611. doi:10.3389/fphar.2021.629611.
  • Cui Y-H, Xiao L, Rao JN, et al. miR-503 represses CUG-binding protein 1 translation by recruiting CUGBP1 mRNA to processing bodies. Mol Biol Cell. 2012;23(1):151–162. doi:10.1091/mbc.E11-05-0456.
  • Chassin C, Kocur M, Pott J, et al. MiR-146a mediates protective innate immune tolerance in the neonate intestine. Cell Host Microbe. 2010;8(4):358–368. doi:10.1016/j.chom.2010.09.005.
  • MohanKumar K, Namachivayam K, Sivakumar N, et al. Severe neonatal anemia increases intestinal permeability by disrupting epithelial adherens junctions. Am J Physiol Gastrointest Liver Physiol. 2020;318(4):G705–G716. doi:10.1152/ajpgi.00324.2019.
  • Yu T, Lu X-J, Shan T-D, et al. Overexpression of miR-429 impairs intestinal barrier function in diabetic mice by down-regulating occludin expression. Cell Tissue Res. 2016;366(2):341–352. doi:10.1007/s00441-016-2435-5.
  • Shi C, Liang Y, Yang J, et al. MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury. PLoS One. 2013;8(6):e66814. doi:10.1371/journal.pone.0066814.
  • Zhou Q, Souba WW, Croce CM, Verne GN. MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut. 2010;59(6):775–784. doi:10.1136/gut.2009.181834.
  • Martínez C, Rodiño-Janeiro BK, Lobo B, et al. miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut. 2017;66(9):1537–1538. doi:10.1136/gutjnl-2016-311477.
  • Rawat M, Nighot M, Al-Sadi R, et al. IL1B increases intestinal tight junction permeability by up-regulation of MIR200C-3p, which degrades occludin mRNA. Gastroenterology. 2020;159(4):1375–1389. doi:10.1053/j.gastro.2020.06.038.
  • Hou Q, Huang Y, Zhu S, et al. MiR-144 increases intestinal permeability in IBS-D rats by targeting OCLN and ZO1. Cell Physiol Biochem. 2017;44(6):2256–2268. doi:10.1159/000486059.
  • Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118. doi:10.1038/s41580-020-00315-9.
  • Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199–208. doi:10.1038/ng.3192.
  • Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–1789. doi:10.1101/gr.132159.111.
  • Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407. doi:10.1016/j.cell.2018.01.011.
  • Bejerano G, Pheasant M, Makunin I, et al. Ultraconserved elements in the human genome. Science. 2004;304(5675):1321–1325. doi:10.1126/science.1098119.
  • Xiao L, Wu J, Wang J-Y, et al. Long noncoding RNA uc.173 promotes renewal of the intestinal mucosa by inducing degradation of microRNA 195. Gastroenterology. 2018;154(3):599–611. doi:10.1053/j.gastro.2017.10.009.
  • Kalakonda S, Xiao L, Chung HK, et al. 1015 - Novel long noncoding RNA UC.230 enhances growth of the intestinal epithelium by down-regulating microRNA 222. Gastroenterology. 2018;154(6):S-192. doi:10.1016/S0016-5085(18)31047-3.
  • Ota T, Suzuki Y, Nishikawa T, et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004;36(1):40–45. doi:10.1038/ng1285.
  • Khaitan D, Dinger M, Mazar J, et al. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res. 2011;71(11):3852–3862. doi:10.1158/0008-5472.CAN-10-4460.
  • Li J, Chen Y, Chen Z, et al. SPRY4-IT1: a novel oncogenic long non-coding RNA in human cancers. Tumour Biol. 2017;39(6):1010428317711406. doi:10.1177/1010428317711406.
  • Xiao L, Rao JN, Cao S, et al. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins. Mol Biol Cell. 2016;27(4):617–626. doi:10.1091/mbc.e15-10-0703.
  • Wu B, Zhang Y, Yu Y, et al. Long noncoding RNA H19: a novel therapeutic target emerging in oncology via regulating oncogenic signaling pathways. Front Cell Dev Biol. 2021;9:796740. doi:10.3389/fcell.2021.796740.
  • Geng H, Bu H-F, Liu F, et al. In inflamed intestinal tissues and epithelial cells, interleukin 22 signaling increases expression of H19 long noncoding RNA, which promotes mucosal regeneration. Gastroenterology. 2018;155(1):144–155. doi:10.1053/j.gastro.2018.03.058.
  • Yu T-X, Chung HK, Xiao L, et al. Long noncoding RNA H19 impairs the intestinal barrier by suppressing autophagy and lowering Paneth and goblet cell function. Cell Mol Gastroenterol Hepatol. 2020;9(4):611–625. doi:10.1016/j.jcmgh.2019.12.002.
  • Zou T, Jaladanki SJ, Liu L, et al. H19 long non-coding RNA regulates intestinal epithelial barrier function via microRNA 675 by interacting with RNA-binding protein HuR. Mol Cell Biol. 2016;36(9):1332–1341. doi:10.1128/MCB.01030-15.
  • Su Z, Zhi X, Zhang Q, et al. LncRNA H19 functions as a competing endogenous RNA to regulate AQP3 expression by sponging miR-874 in the intestinal barrier. FEBS Lett. 2016;590(9):1354–1364. doi:10.1002/1873-3468.12171.
  • Zhu P, Wu J, Wang Y, et al. LncGata6 maintains stemness of intestinal stem cells and promotes intestinal tumorigenesis. Nat Cell Biol. 2018;20(10):1134–1144. doi:10.1038/s41556-018-0194-0.
  • Chen T, Xue H, Lin R, Huang Z. MiR-34c and PlncRNA1 mediated the function of intestinal epithelial barrier by regulating tight junction proteins in inflammatory bowel disease. Biochem Biophys Res Commun. 2017;486(1):6–13. doi:10.1016/j.bbrc.2017.01.115.
  • Ma D, Cao Y, Wang Z, et al. CCAT1 lncRNA promotes inflammatory bowel disease malignancy by destroying intestinal barrier via downregulating miR-185-3p. Inflamm Bowel Dis. 2019;25(5):862–874. doi:10.1093/ibd/izy381.
  • Wu F, Huang Y, Dong F, Kwon JH. Ulcerative colitis-associated long noncoding RNA, BC012900, regulates intestinal epithelial cell apoptosis. Inflamm Bowel Dis. 2016;22(4):782–795. doi:10.1097/MIB.0000000000000691.
  • Akıncılar SC, Wu L, Ng QF, et al. NAIL: An evolutionarily conserved lncRNA essential for licensing coordinated activation of p38 and NFκB in colitis. Gut. 2021;70(10):1857–1871. doi:10.1136/gutjnl-2020-322980.
  • Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet. 2016;17(11):679–692. doi:10.1038/nrg.2016.114.
  • Zhou W-Y, Cai Z-R, Liu J, et al. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19(1):172. doi:10.1186/s12943-020-01286-3.
  • Liu C-X, Chen L-L. Circular RNAs: characterization, cellular roles, and applications. Cell. 2022;185(12):2016–2034. doi:10.1016/j.cell.2022.04.021.
  • Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. doi:10.1038/nature11928.
  • Li Y, Zheng F, Xiao X, et al. Circ-HIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 2017;18(9):1646–1659. doi:10.15252/embr.201643581.
  • Xiao L, Ma X-X, Luo J, et al. Circular RNA CircHIPK3 promotes homeostasis of the intestinal epithelium by reducing microRNA 29b function. Gastroenterology. 2021;161(4):1303–1317.e3. doi:10.1053/j.gastro.2021.05.060.
  • Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7(1):11215. doi:10.1038/ncomms11215.
  • Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14(3):361–369. doi:10.1080/15476286.2017.1279788.
  • Li X-X, Xiao L, Chung HK, et al. Interaction between HuR and circPABPN1 modulates autophagy in the intestinal epithelium by altering ATG16L1 translation. Mol Cell Biol. 2020;40(6):e00492–19. doi:10.1128/MCB.00492-19.
  • Chung HK, Xiao L, Han N, et al. Circular RNA Cdr1as inhibits proliferation and delays injury-induced regeneration of the intestinal epithelium. JCI Insight. 2024;e169716. doi:10.1172/jci.insight.169716.
  • Gallo S, Kong E, Ferro I, Polacek N. Small but powerful: the human vault RNAs as multifaceted modulators of pro-survival characteristics and tumorigenesis. Cancers (Basel). 2022;14(11):2787. doi:10.3390/cancers14112787.
  • Hahne JC, Lampis A, Valeri N. Vault RNAs: hidden gems in RNA and protein regulation. Cell Mol Life Sci. 2020;78(4):1487–1499. doi:10.1007/s00018-020-03675-9.
  • Horos R, Büscher M, Kleinendorst R, et al. The small non-coding vault RNA1-1 acts as a riboregulator of autophagy. Cell. 2019;176(5):1054–1067.e12. doi:10.1016/j.cell.2019.01.030.
  • Büscher M, Horos R, Hentze MW. ‘High vault-age’: non-coding RNA control of autophagy. Open Biol. 2020;10(2):190307. doi:10.1098/rsob.190307.
  • Büscher M, Horos R, Huppertz I, et al. Vault RNA1–1 riboregulates the autophagic function of p62 by binding to lysine 7 and arginine 21, both of which are critical for p62 oligomerization. RNA. 2022;28(5):742–755. doi:10.1261/rna.079129.122.
  • Wallis K, Walters JR, Gabe S. Short bowel syndrome: the role of GLP-2 on improving outcome. Curr Opin Clin Nutr Metab Care. 2009;12(5):526–532. doi:10.1097/MCO.0b013e32832d23cd.
  • Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics—challenges and potential solutions. Nat Rev Drug Discov. 2021;20(8):629–651. doi:10.1038/s41573-021-00219-z.
  • Huang CK, Kafert-Kasting S, Thum T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res. 2020;126(5):663–678. doi:10.1161/CIRCRESAHA.119.315856.
  • Shinn J, Lee K, Lee SA, et al. Oral nanomedicines for siRNA delivery to treat inflammatory bowel disease. Pharmaceutics. 2022;14(9):1969. doi:10.3390/pharmaceutics14091969.