Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 28, 2016 - Issue 12
3,044
Views
13
CrossRef citations to date
0
Altmetric
Research Article

A scattering methodology for droplet sizing of e-cigarette aerosols

, &
Pages 537-545 | Received 08 Jun 2016, Accepted 11 Aug 2016, Published online: 19 Sep 2016

References

  • Alderman SL, Song C, Moldoveanu SC, Cole CK. (2014). Particle size distribution of e-cigarette aerosols and the relationship to Cambridge filter pad collection efficiency. Beiträge Zur Tabakforsch Intl/Contrib Tob Res 26:183–90
  • American Industrial Hygiene Association. (2014). White paper: Electronic cigarettes in the indoor environment. Falls Church, VA: Indoor Environmental Quality Committee and Risk Assessment Committee, 1–34
  • Baron P, Deye G, Martinez A, et al. (2008). Size shift in measurements of droplets with the aerodynamic particles sizer and aerosizer. Aerosol Sci Technol 42:201–9
  • Bernstein D. (2004). A review of the influence of particle size, puff volume, and inhalation pattern on the deposition of cigarette smoke particles in the respiratory tract. J Inhal Toxicol 16:675–89
  • Brown C, Cheng J. (2014). Electronic cigarettes: product characterization and design considerations. Tob Control 23:ii4–10
  • Cabot R, Koc A, Yurteri CU, McAughey J. (2013). Aerosol measurement of e-cigarettes. Poster. 32nd Annual Conference, American Association for Aerosol Research, Portland, OR
  • Cahn Z, Siegel M. (2011). Electronic cigarettes as a harm reduction strategy for tobacco control: a step forward or a repeat of past mistakes? J Publ Health Policy 32:16–31
  • Caponetto P, Russo C, Bruno C, et al. (2013). Electronic cigarette: a possible substitute for cigarette dependence. Monaldi Arch Chest Dis 79:12–19
  • Chen B, Cheng Y, Yeh H. (1990). A study of density effect of droplet deformation in the tsi aerodynamic particle sizer. Aerosol Sci Technol 12:287–5
  • Colard S, O’connel G, Verron T, Cahours X. (2015). Characteristics, perceived side effects and benefits of electronic cigarette use: a worldwide survey of more than 19,000 consumers. Int J Environ Res Public Health 11:282–99
  • Czogala J, Goniewicz ML, Fidelus B, et al. (2014). Secondhand exposure to vapors from electronic cigarettes. Nicotine Tob Res 16:655–62
  • Eidhammer T, Montague D, Deshler T. (2008). Determination of index of refraction and size of supermicrometer particles from light scattering measurements at two angles. J Geophys Res 113:1–19
  • Etter J. (2010). Electronic cigarettes: a survey of users. BMC Publ Health 10:231. doi: 10.1186/1471-2458-10-231
  • Farsalinos K, Romagna G, Tsiapras D, et al. (2014). Characteristics, perceived side effects and benefits of electronic cigarette use: a worldwide survey of more than 19 000 consumers. Intl J Environ Res Publ Health 11:4356–73
  • Fuoco F, Buonanno G, Stabile L, Vigo P. (2014). Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environ Pollution 184:523–9
  • Geiss O, Bianchi I, Barahona F, Barrero-Moreno J. (2015). Characterization of mainstream and passive vapors emitted by selected electronic cigarettes. Intl J Hyg Environ Health 218:169–80
  • Health Canada. (1999). Determination of “tar” and nicotine in sidestream tobacco smoke. T-212. Available from: http://www.hc-sc.gc.ca/hc-ps/alt_formats/hecs-sesc/pdf/tobac-tabac/legisla-tion/reg/indust/method/_side-second/nicotine-eng.pdf
  • Hinds WC. (2012). Aerosol technology: properties, behavior, and measurement of airborne particles. New York: John Wiley & Sons
  • Ingebrethsen B, Cole S, Alderman S. (2012). Electronic cigarette aerosol particle size distribution measurements. Inhal Toxicol 24:976–84
  • Ishizu Y, Ohta K, Okada T. (1977). Changes in the particle size and the concentration of cigarette smoke through the column of a cigarette. J Aerosol Sci 9:25–9
  • Kane D, Asgharian B, Price O, et al. (2010). Effect of smoking parameters on the particle size distribution and predicted airway deposition of mainstream cigarette smoke. Inhal Toxicol 22:199–209
  • Mcauley T, Hopke P, Zhao J, Babaian, S. (2012). Comparison of the effect of e-cigarette vapor and cigarette smoke on indoor air quality. Inhal Toxicol 24:850–7
  • Mikheev VB, Brinkman MC, Granville CA, et al. (2016). Real-time measurement of electronic cigarette aerosol size distribution and metals content analysis. Nicotine Tob Res. pii: ntw128. [Epub ahead of print]. doi: 10.1093/ntr/ntw128
  • Pepper J, Emery S, Ribisl K, Nt B. (2014). How U.S. Adults find out about electronic cigarettes: implications for public health messages. Nicotine Tob Res 16:1140–4
  • Robinson R, Yu C. (2001). Deposition of cigarette smoke particles in the human respiratory tract. Aerosol Sci Technol 34:202–15
  • Schripp T, Markewitz D, Uhde E, Salthammer T. (2013). Does e-cigarette consumption cause passive vaping? Indoor Air 23:25–31
  • Singh R, Jaiswal V, Jain V. (2006). Study of smoke aerosols under a controlled environment by using dynamic light scattering. Appl Optics 45:2217–21
  • Snedecor GW, Cochran WG. (1989). Statistical methods. 8th ed. Ames (IA): Iowa State University Press
  • Trehy M, Ye W, Hadwiger M, et al. (2011). Analysis of electronic cigarette cartridges, refill solutions, and smoke for nicotine and nicotine-related impurities. J Liquid Chromatog Related Technol 34:1442–58
  • Wagener T, Siegel M, Borrelli B. (2012). Electronic cigarettes: achieving a balanced perspective. Addiction 107:1545–8
  • Zhang Y, Summer W, Chen D. (2013). In vitro particle size distribution in electronic and conventional cigarette aerosols suggest comparable deposition pattern. Nicotine Tob Res 15:501–8
  • Zhang Z, Kleinstreuer C, Hyun S. (2012). Size-change and deposition of conventional and composite cigarette smoke particles during inhalation in a subject-specific airway model. J Aerosol Sci 46:34–52