Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 28, 2016 - Issue 13
589
Views
44
CrossRef citations to date
0
Altmetric
Review Article

Foam cell formation by particulate matter (PM) exposure: a review

, , , , , & show all
Pages 583-590 | Received 24 Jun 2016, Accepted 09 Sep 2016, Published online: 06 Oct 2016

References

  • Allahverdian S, Chehroudi AC, McManus BM, et al. (2014). Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129:1551–9
  • Araujo JA, Barajas B, Kleinman M, et al. (2008). Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res 102:589–96
  • Bai N, Kido T, Suzuki H, et al. (2011). Changes in atherosclerotic plaques induced by inhalation of diesel exhaust. Atherosclerosis 216:299–306
  • Bakand S, Hayes A, Dechsakulthorn F. (2012). Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol 24:125–35
  • Beddoes CM, Case CP, Briscoe WH. (2015). Understanding nanoparticle cellular entry: a physicochemical perspective. Adv Colloid Interface Sci 218:48–68
  • Bennett MR, Sinha S, Owens GK. (2016). Vascular smooth muscle cells in atherosclerosis. Circ Res 118:692–702
  • Brook RD, Rajagopalan S, Pope CA III, et al. (2010). Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–78
  • Cao Y, Jacobsen NR, Danielsen PH, et al. (2014a). Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE-/- mice and cultured endothelial cells. Toxicol Sci 138:104–16
  • Cao Y, Jantzen K, Gouveia AC, et al. (2015). Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro. Environ Toxicol Pharmacol 40:164–71
  • Cao Y, Roursgaard M, Danielsen PH, Moller P, Loft S. (2014b). Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production. PLoS One 9:e106711
  • Chaudhuri N, Jary H, Lea S, et al. (2012). Diesel exhaust particle exposure in vitro alters monocyte differentiation and function. PLoS One 7:e51107
  • Chellan B, Reardon CA, Getz GS, et al. (2016). Enzymatically modified low-density lipoprotein promotes foam cell formation in smooth muscle cells via macropinocytosis and enhances receptor-mediated uptake of oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol 36:1101–13
  • Donaldson K, Duffin R, Langrish JP, et al. (2013). Nanoparticles and the cardiovascular system: a critical review. Nanomedicine (Lond) 8:403–23
  • Ema M, Gamo M, Honda K. (2016). A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regul Toxicol Pharmacol 74:42–63
  • Emanuel R, Sergin I, Bhattacharya S, et al. (2014). Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler Thromb Vasc Biol 34:1942–52
  • Franklin BA, Brook R, Arden PC. III (2015). Air pollution and cardiovascular disease. Curr Probl Cardiol 40:207–38
  • Fujita K, Fukuda M, Endoh S, et al. (2015). Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity. Inhal Toxicol 27:207–23
  • Gimbrone MA, Jr, Garcia-Cardena G. (2016). Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118:620–36
  • Hiraiwa K, van Eeden SF. (2013). Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants. Mediators Inflamm 2013:619523
  • Kang GS, Gillespie PA, Gunnison A, et al. (2011). Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model. Environ Health Perspect 119:176–81
  • Kobayashi N, Naya M, Mizuno K, et al. (2011). Pulmonary and systemic responses of highly pure and well-dispersed single-wall carbon nanotubes after intratracheal instillation in rats. Inhal Toxicol 23:814–28
  • Lawal AO, Davids LM, Marnewick JL. (2016). Diesel exhaust particles and endothelial cells dysfunction: an update. Toxicol in Vitro 32:92–104
  • Li BH, Yin YW, Liu Y, et al. (2014). TRPV1 activation impedes foam cell formation by inducing autophagy in oxLDL-treated vascular smooth muscle cells. Cell Death Dis 5:e1182
  • Mikkelsen L, Sheykhzade M, Jensen KA, et al. (2011). Modest effect on plaque progression and vasodilatory function in atherosclerosis-prone mice exposed to nanosized TiO(2). Part Fibre Toxicol 8:32
  • Miller MR, McLean SG, Duffin R, et al. (2013). Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice. Part Fibre Toxicol 10:61
  • Miller MR, Shaw CA, Langrish JP. (2012). From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol 8:577–602
  • Miyata R, Hiraiwa K, Cheng JC, et al. (2013). Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM10). Toxicol Appl Pharmacol 272:1–11
  • Moller P, Christophersen DV, Jacobsen NR, et al. (2016). Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol 46:437–76
  • Moller P, Mikkelsen L, Vesterdal LK, et al. (2011). Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Crit Rev Toxicol 41:339–68
  • Moore KJ, Sheedy FJ, Fisher EA. (2013). Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–21
  • Mozaffarian D, Benjamin EJ, Go AS, et al. (2016a). Executive summary: heart Disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:447–54
  • Mozaffarian D, Benjamin EJ, Go AS, et al. (2016b). Heart disease and stroke statistics – 2016 update: a report from the American Heart Association. Circulation 133:e38–e360
  • Ouimet M, Franklin V, Mak E, et al. (2011). Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13:655–67
  • Petrick L, Rosenblat M, Paland N, Aviram M. (2016). Silicon dioxide nanoparticles increase macrophage atherogenicity: stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation. Environ Toxicol 31:713–23
  • Przybytkowski E, Behrendt M, Dubois D, Maysinger D. (2009). Nanoparticles can induce changes in the intracellular metabolism of lipids without compromising cellular viability. FEBS J 276:6204–17
  • Rao X, Zhong J, Maiseyeu A, et al. (2014). CD36-dependent 7-ketocholesterol accumulation in macrophages mediates progression of atherosclerosis in response to chronic air pollution exposure. Circ Res 115:770–80
  • Rohatgi A. (2015). High-density lipoprotein function measurement in human studies: focus on cholesterol efflux capacity. Prog Cardiovasc Dis 58:32–40
  • Rosenblat M, Volkova N, Aviram M. (2013). Pomegranate phytosterol (β-sitosterol) and polyphenolic antioxidant (punicalagin) addition to statin, significantly protected against macrophage foam cells formation. Atherosclerosis 226:110–7
  • Shankman LS, Gomez D, Cherepanova OA, et al. (2015). KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21:628–37
  • Shannahan JH, Kodavanti UP, Brown JM. (2012). Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 24:320–39
  • Shannahan JH, Sowrirajan H, Persaud I, et al. (2016). Impact of silver and iron nanoparticle exposure on cholesterol uptake by macrophages. J Nanomater 2015:127235
  • Sun Q, Wang A, Jin X, et al. (2005). Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 294:3003–10
  • Suzuki Y, Tada-Oikawa S, Ichihara G, et al. (2014). Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation. Toxicol Appl Pharmacol 278:16–25
  • Tabas I, Bornfeldt KE. (2016). Macrophage phenotype and function in different stages of atherosclerosis. Circ Res 118:653–67
  • Vance ME, Kuiken T, Vejerano EP, et al. (2015). Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–80
  • Vengrenyuk Y, Nishi H, Long X, et al. (2015). Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol 35:535–46
  • Vesterdal LK, Folkmann JK, Jacobsen NR, et al. (2010). Pulmonary exposure to carbon black nanoparticles and vascular effects. Part Fibre Toxicol 7:33
  • Vogel CF, Sciullo E, Wong P, et al. (2005). Induction of proinflammatory cytokines and C-reactive protein in human macrophage cell line U937 exposed to air pollution particulates. Environ Health Perspect 113:1536–41
  • Yanamala N, Hatfield MK, Farcas MT, et al. (2013). Biodiesel versus diesel exposure: enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung. Toxicol Appl Pharmacol 272:373–83
  • Yatera K, Morimoto Y, Kim HN, et al. (2011). Foam cell formation of alveolar macrophages in Clara cell ablated mice inhaling crystalline silica. Inhal Toxicol 23:736–44
  • Yin F, Lawal A, Ricks J, et al. (2013). Diesel exhaust induces systemic lipid peroxidation and development of dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arterioscler Thromb Vasc Biol 33:1153–61
  • Zernecke A. (2015). Dendritic cells in atherosclerosis: evidence in mice and humans. Arterioscler Thromb Vasc Biol 35:763–70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.