Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 31, 2019 - Issue 8
219
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Surface area- and mass-based comparison of fine and ultrafine nickel oxide lung toxicity and augmentation of allergic response in an ovalbumin asthma model

, , , , , & show all
Pages 299-324 | Received 30 Jul 2019, Accepted 04 Oct 2019, Published online: 11 Nov 2019

References

  • ASTM International. 2002. Standard test method for metal powder specific surface area by physical adsorption. ASTM B922-10.
  • Bai KJ, Chuang KJ, Chen JK, Hua HE, Shen YL, Liao WN, Lee CH, Chen KY, Lee KY, Hsiao TC, et al. 2018. Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice. Nanomedicine. 14(7):2329–2339.
  • Ban M, Langonne I, Huguet N, Guichard Y, Goutet M. 2013. Iron oxide particles modulate the ovalbumin-induced Th2 immune response in mice. Toxicol Lett. 216(1):31–39.
  • Bezemer G. 2009. Particle deposition and clearance from the respiratory tract [master’s thesis]. Utrecht University.
  • Bogaert P, Tournoy KG, Naessens T, Grooten J. 2009. Where asthma and hypersensitivity pneumonitis meet and differ: noneosinophilic severe asthma. Am J Pathol. 174(1):3–13.
  • Brandenberger C, Rowley NL, Jackson-Humbles DN, Zhang Q, Bramble LA, Lewandowski RP, Wagner JG, Chen W, Kaplan BL, Kaminski NE, et al. 2013. Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Part Fibre Toxicol. 10(1):26.
  • Brown DM, Dickson C, Duncan P, Al-Attili F, Stone V. 2010. Interaction between nanoparticles and cytokine proteins: impact on protein and particle functionality. Nanotechnology. 21(21):215104.
  • Cao Z, Fang Y, Lu Y, Qian F, Ma Q, He M, Pi H, Yu Z, Zhou Z. 2016. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats. Int J Nanomedicine. 11:3331–3346.
  • Chang X, Zhu A, Liu F, Zou L, Su L, Li S, Sun Y. 2017. Role of NF-kappaB activation and Th1/Th2 imbalance in pulmonary toxicity induced by nano NiO. Environ Toxicol. 32(4):1354–1362.
  • Cho WS, Duffin R, Bradley M, Megson IL, MacNee W, Howie SEM, Donaldson K. 2012a. NiO and Co3O4 nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis. Eur Respir J. 39(3):546–557.
  • Cho WS, Duffin R, Poland CA, Duschl A, Oostingh GJ, Macnee W, Bradley M, Megson IL, Donaldson K. 2012b. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology. 6(1):22–35.
  • Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, Megson IL, Donaldson K. 2010. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect. 118(12):1699
  • Cockcroft DW, Davis B. 2006. Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol. 118(3):551–559.
  • de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. 2006. Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy. 36(11):1469–1479.
  • De Jong WH, Van Der Ven LT, Sleijffers A, Park MV, Jansen EH, Van Loveren H, Vandebriel RJ. 2013. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. 34(33):8333–8343.
  • Glista-Baker EE, Taylor AJ, Sayers BC, Thompson EA, Bonner JC. 2014. Nickel nanoparticles cause exaggerated lung and airway remodeling in mice lacking the T-box transcription factor, TBX21 (T-bet). Part Fibre Toxicol. 11(1):7.
  • Gonzalez C, Salazar-Garcia S, Palestino G, Martinez-Cuevas PP, Ramirez-Lee MA, Jurado-Manzano BB, Rosas-Hernandez H, Gaytan-Pacheco N, Martel G, Espinosa-Tanguma R, et al. 2011. Effect of 45 nm silver nanoparticles (AgNPs) upon the smooth muscle of rat trachea: role of nitric oxide. Toxicol Lett. 207(3):306–313.
  • Han B, Guo J, Abrahaley T, Qin L, Wang L, Zheng Y, Li B, Liu D, Yao H, Yang J, et al. 2011. Adverse Effect of Nano-Silicon Dioxide on Lung Function of Rats with or without Ovalbumin Immunization. PLoS One. 6(2):e17236.
  • Han H, Park YH, Park HJ, Lee K, Um K, Park JW, Lee JH. 2016. Toxic and adjuvant effects of silica nanoparticles on ovalbumin-induced allergic airway inflammation in mice. Respir Res. 17(1):60.
  • Hirai T, Yoshikawa T, Nabeshi H, Yoshida T, Tochigi S, Ichihashi KI, Uji M, Akase T, Nagano K, Abe Y, et al. 2012. Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Part Fibre Toxicol. 9(1):3.
  • Ho M, Wu KY, Chein HM, Chen LC, Cheng TJ. 2011. Pulmonary toxicity of inhaled nanoscale and fine zinc oxide particles: mass and surface area as an exposure metric. Inhalation Toxicology. 23(14):947–956.
  • Horie M, Stowe M, Tabei M, Kuroda E. 2016. Metal ion release of manufactured metal oxide nanoparticles is involved in the allergic response to inhaled ovalbumin in mice. ODEM. 04(02):17.
  • Horie M, Fukui H, Endoh S, Maru J, Miyauchi A, Shichiri M, Fujita K, Niki E, Hagihara Y, Yoshida Y, et al. 2012. Comparison of acute oxidative stress on rat lung induced by nano and fine-scale, soluble and insoluble metal oxide particles: NiO and TiO2. Inhalation Toxicology. 24(7):391–400.
  • Horie M, Fukui H, Nishio K, Endoh S, Kato H, Fujita K, Miyauchi A, Nakamura A, Shichiri M, Ishida N, et al. 2011. Evaluation of acute oxidative stress induced by NiO nanoparticles in vivo and in vitro. J Occup Health. 53(2):64–74.
  • Hsiao YP, Shen CC, Huang CH, Lin YC, Jan TR. 2018. Iron oxide nanoparticles attenuate T helper 17 cell responses in vitro and in vivo. Int Immunopharmacol. 58:32–39.
  • Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TA, Gaston B. 2000. Endogenous airway acidification: implications for asthma pathophysiology. Am J Respir Crit Care Med. 161(3):694–699.
  • Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon JC, et al. 2009. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 260(1–3):142–149.
  • ICRP. 1994. Human respiratory tract model for radiological protection. ICRP Publication 66. Ann ICRP. 24(1–3).
  • Ilves M, PalomäKi J, Vippola M, Lehto M, Savolainen K, Savinko T, Alenius H. 2014. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model. Part Fibre Toxicol. 11(1):38.
  • Ingham E, Fisher J. 2000. Biological reactions to wear debris in total joint replacement. Proc Inst Mech Eng H. 214(1):21–37.
  • Jeong J, Han Y, Poland CA, Cho WS. 2015. Response-metrics for acute lung inflammation pattern by cobalt-based nanoparticles. Part Fibre Toxicol. 12(1):13.
  • Jeong J, Kim J, Seok SH, Cho WS. 2016a. Indium oxide (In 2 O 3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles. Arch Toxicol. 90(4):817–828.
  • Jeong J, Lee S, Kim SH, Han Y, Lee DK, Yang JY, Jeong J, Roh C, Huh YS, Cho WS. 2016b. Evaluation of the dose metric for acute lung inflammogenicity of fast-dissolving metal oxide nanoparticles. Nanotoxicology. 10(10):1448–1457.
  • Jonasson S, Gustafsson A, Koch B, Bucht A. 2013. Inhalation exposure of nano-scaled titanium dioxide (TiO2) particles alters the inflammatory responses in asthmatic mice. Inhal Toxicol. 25(4):179–191.
  • Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, Bo T, Napier ME, Ting JPY, DeSimone JM, et al. 2013. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest. 123(7):3061–3073.
  • Kapilevich LV, Zaĭtseva TN, Nosarev AV, D'iakova EI, Petlina ZR, Ogorodova LM, Ageev BG, Magaeva AA, Itin VI, Terekhova OG, et al. 2012. Influence of nanosize particles of cobalt ferrite on contractile responses of smooth muscle segment of airways. Ross Fiziol Zh Im I M Sechenova. 98(2):228–235.
  • Kato M, Suzuki M, Hayashi Y, Kimura H. 2006. Role of eosinophils and their clinical significance in allergic inflammation. Expert Rev Clin Immunol. 2(1):121–133.
  • Klink K, Meade B. 2003. Dermal exposure to 3-amino-5-mercapto-1, 2, 4-triazole (AMT) induces sensitization and airway hyperreactivity in BALB/c mice. Toxicol Sci. 75(1):89–98.
  • Kuempel E, Castranova V, Geraci C, Schulte P. 2012. Development of risk-based nanomaterial groups for occupational exposure control. J Nanopart Res. 14(9):1029.
  • Lee S, Hwang SH, Jeong J, Han Y, Kim SH, Lee DK, Lee HS, Chung ST, Jeong J, Roh C, et al. 2016. Nickel oxide nanoparticles can recruit eosinophils in the lungs of rats by the direct release of intracellular eotaxin. Part Fibre Toxicol. 13(1):30.
  • Lee S, Yun HS, Kim SH. 2011. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials. 32(35):9434–9443.
  • Lehmann S, Gilbert B, Maffeis T, Grichine A, Pignot-Paintrand I, Clavaguera S, Rachidi W, Seve M, Charlet L. 2018. In Vitro Dermal Safety Assessment of Silver Nanowires after Acute Exposure: Tissue vs. Cell Models. 8(4):232.
  • Li X, Aldayel AM, Cui Z. 2014. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J Control Release. 173:148–157.
  • Lin F, Zhang H, Huang J, Xiong C. 2018. Contractility of Airway Smooth Muscle Cell in Response to Zinc Oxide Nanoparticles by Traction Force Microscopy. Ann Biomed Eng. 46(12):2000–2011.
  • Marques MR, Loebenberg R, Almukainzi M. 2011. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 18(3):15–28.
  • McBrien CN, Menzies-Gow A. 2017. The Biology of Eosinophils and Their Role in Asthma. Front Med. 4:93–93.
  • Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. 2017. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol. 14(1):45.
  • Meldrum K, Robertson SB, Römer I, Marczylo T, Dean LSN, Rogers A, Gant TW, Smith R, Tetley TD, Leonard MO. 2018. Cerium dioxide nanoparticles exacerbate house dust mite induced type II airway inflammation. Part Fibre Toxicol. 15(1):24.
  • Misharin AV, Morales-Nebreda L, Mutlu GM, Budinger GRS, Perlman H. 2013. Flow Cytometric Analysis of Macrophages and Dendritic Cell Subsets in the Mouse Lung. Am J Respir Cell Mol Biol. 49(4):503–510.
  • Mizuguchi Y, Myojo T, Oyabu T, Hashiba M, Lee BW, Yamamoto M, Todoroki M, Nishi K, Kadoya C, Ogami A, et al. 2013. Comparison of dose-response relations between 4-week inhalation and intratracheal instillation of NiO nanoparticles using polimorphonuclear neutrophils in bronchoalveolar lavage fluid as a biomarker of pulmonary inflammation. Inhal Toxicol. 25(1):29–36.
  • Mo Y, Jiang M, Zhang Y, Wan R, Li J, Zhong CJ, Li H, Tang S, Zhang Q. 2019. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J Nanobiotechnology. 17(1):2.
  • Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Hashiba M, Mizuguchi Y, Kambara T, Lee BW, Kuroda E, Tanaka I. 2011. Pulmonary toxicity following an intratracheal instillation of nickel oxide nanoparticle agglomerates. J Occup Health. 53(4):293–295.
  • Morimoto Y, Ogami A, Todoroki M, Yamamoto M, Murakami M, Hirohashi M, Oyabu T, Myojo T, Nishi KI, Kadoya C, et al. 2010. Expression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles. Nanotoxicology. 4(2):161–176.
  • Oberdorster G, Ferin J, Morrow PE. 1992. Volumetric loading of alveolar macrophages (AM): a possible basis for diminished AM-mediated particle clearance. Exp Lung Res. 18(1):87–104.
  • Ogami A, Morimoto Y, Murakami M, Myojo T, Oyabu T, Tanaka I. 2009a. Biological effects of nano-nickel in rat lungs after administration by inhalation and by intratracheal instillation. J Phys Conf Ser. 151(1):012032.
  • Ogami A, Morimoto Y, Myojo T, Oyabu T, Murakami M, Todoroki M, Nishi K, Kadoya C, Yamamoto M, Tanaka I. 2009b. Pathological features of different sizes of nickel oxide following intratracheal instillation in rats. Inhal Toxicol. 21(10):812–818.
  • Ortega VA, Ede JD, Boyle D, Stafford JL, Goss GG. 2015. Polymer-coated metal-oxide nanoparticles inhibit IgE receptor binding, cellular signaling, and degranulation in a mast cell-like cell line. Adv Sci. 2(11):1500104.
  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K. 2010. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol. 30(2):162–168.
  • Poland CA, Byrne F, Cho WS, Prina-Mello A, Murphy FA, Davies GL, Coey JM, Gounko Y, Duffin R, Volkov Y, et al. 2012. Length-dependent pathogenic effects of nickel nanowires in the lungs and the peritoneal cavity. Nanotoxicology. 6(8):899–911.
  • Porter D, Sriram K, Wolfarth M, Jefferson S, Schwegler-Berry D, Andrew ME, Castranova V. 2008. A biocompatible medium for nanoparticle dispersion. Nanotoxicology. (3):144. 2
  • Radauer-Preiml I, Andosch A, Hawranek T, Luetz-Meindl U, Wiederstein M, Horejs-Hoeck J, Himly M, Boyles M, Duschl A. 2016. Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses. Part Fibre Toxicol. 13(1):3.
  • Rankin SM, Conroy DM, Williams T. 2000. Eotaxin and eosinophil recruitment: implications for human disease. Mol Med Today. 6(1):20–27.
  • Roach KA, Stefaniak AB, Roberts JR. 2019. Metal nanomaterials: immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol. 16(1):87–124.
  • Rossi EM, Pylkkanen L, Koivisto AJ, Nykasenoja H, Wolff H, Savolainen K, Alenius H. 2010. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part Fibre Toxicol. 7(1):35.
  • Roy R, Kumar S, Verma AK, Sharma A, Chaudhari BP, Tripathi A, Das M, Dwivedi PD. 2014. Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a Th2 response in Balb/c mice. Int Immunol. 26(3):159–172.
  • Sager TM, Castranova V. 2009. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part Fibre Toxicol. 6(1):15.
  • Sager T, Kommineni C, Castranova V. 2008. Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: Role of surface area. Part Fibre Toxicol. 5(1):17.
  • Sager T, Wolfarth M, Keane M, Porter D, Castranova V, Holian A. 2016a. Effects of nickel-oxide nanoparticle pre-exposure dispersion status on bioactivity in the mouse lung. Nanotoxicology. 10(2):151–161.
  • Sager TM, Wolfarth M, Leonard SS, Morris AM, Porter DW, Castranova V, Holian A. 2016b. Role of engineered metal oxide nanoparticle agglomeration in reactive oxygen species generation and cathepsin B release in NLRP3 inflammasome activation and pulmonary toxicity. Inhal Toxicol. 28(14):686–697.
  • Scarino A, Noel A, Renzi P, Cloutier Y, Vincent R, Truchon G, Tardif R, Charbonneau M. 2012. Impact of emerging pollutants on pulmonary inflammation in asthmatic rats: ethanol vapors and agglomerated TiO2 nanoparticles. Inhal Toxicol. 24(8):528–538.
  • Schinwald A, Chernova T, Donaldson KJP, Toxicology F. 2012. Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol. 9(1):47.
  • Schinwald A, Donaldson K. 2012. Use of back-scatter electron signals to visualise cell/nanowires interactions in vitro and in vivo; frustrated phagocytosis of long fibres in macrophages and compartmentalisation in mesothelial cells in vivo. Part Fibre Toxicol. 9(1):34–34.
  • Schmid O, Stoeger T. 2016. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci. 99:133–143.
  • Schneider L, Hanifin J, Boguniewicz M, Eichenfield LF, Spergel JM, Dakovic R, Paller AS. 2016. Study of the atopic march: development of atopic comorbidities. Pediatr Dermatol. 33(4):388–398.
  • Shen CC, Liang HJ, Wang CC, Liao MH, Jan TR. 2012. Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomedicine. 7:2729–2737.
  • Shen CC, Wang CC, Liao MH, Jan TR. 2011. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int J Nanomedicine. 6:1229.
  • Shurin MR, Yanamala N, Kisin ER, Tkach AV, Shurin GV, Murray AR, Leonard HD, Reynolds JS, Gutkin DW, Star A, et al. 2014. Graphene oxide attenuates Th2-type immune responses, but augments airway remodeling and hyperresponsiveness in a murine model of asthma. ACS Nano. 8(6):5585–5599.
  • Smith DM, Simon JK, Baker JR Jr. 2013. Applications of nanotechnology for immunology. Nat Rev Immunol. 13(8):592–605.
  • Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect. 114(3):328–333.
  • Toda T, Yoshino S. 2016. Enhancement of ovalbumin-specific Th1, Th2, and Th17 immune responses by amorphous silica nanoparticles. Int J Immunopathol Pharmacol. 29(3):408–420.
  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS. 2015. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 6:1769–1780.
  • Vandebriel RJ, Vermeulen JP, van Engelen LB, de Jong B, Verhagen LM, de la Fonteyne-Blankestijn LJ, Hoonakker ME, de Jong WH. 2018. The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo. Part Fibre Toxicol. 15(1):9.
  • VanOs R, Lildhar LL, Lehoux EA, Beaule PE, Catelas I. 2014. In vitro macrophage response to nanometer-size chromium oxide particles. J Biomed Mater Res Part B Appl Biomater. 102(1):149–159.
  • Woolhiser MR, Munson AE, Meade BJ. 2000. Comparison of mouse strains using the local lymph node assay. Toxicology. 146(2–3):221–227.
  • Wyman AE, Hines SE. 2018. Update on metal-induced occupational lung disease. Curr Opin Allergy Clin Immunol. 18(2):73–79.
  • Yoshida T, Yoshioka Y, Fujimura M, Yamashita K, Higashisaka K, Morishita Y, Kayamuro H, Nabeshi H, Nagano K, Abe Y, et al. 2011. Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice. Nanoscale Res Lett. 6(1):195.
  • Zhang Q, Kusaka Y, Zhu X, Sato K, Mo Y, Kluz T, Donaldson K. 2003. Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. Jrnl of Occup Health. 45(1):23–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.