Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 31, 2019 - Issue 8
1,737
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of the physicochemical properties of chrysotile-containing brake debris pertaining to toxicity

, , &
Pages 325-342 | Received 09 May 2019, Accepted 17 Oct 2019, Published online: 05 Nov 2019

References

  • Andreozzi GB, Pacella A, Corazzari I, Tomatis M, Turci F. 2017. Surface reactivity of amphibole asbestos: a comparison between crocidolite and tremolite. Sci Rep. 7(1):14696.
  • Anjilvel S, Asgharian B. 1995. A multiple-path model of particle deposition in the rat lung. Fund Appl Toxicol. 28(1):41–50.
  • Becklake MR, Bagatin E, Neder JA. 2007. Asbestos-related diseases of the lungs and pleura: uses, trends and management over the last century. Int J Tuberc Lung Dis. 11(4):356–369.
  • Berman DW, Crump KS. 2008. A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type [Meta-Analysis Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. Crit Rev Toxicol. 38(sup1):49–73.
  • Bernstein DM, Chevalier J, Smith P. 2005. Comparison of Calidria chrysotile asbestos to pure tremolite: final results of the inhalation biopersistence and histopathology examination following short-term exposure. Inhal Toxicol. 17(9):427–449.
  • Bernstein DM, Riego Sintes JM. 1999. Methods for the determination of the hazardous properties for human health of man made mineral fibres (MMMF). EUR18748 EN. European Commission Joint Research Centre, Institute for Health and Consumer Protection, Unit: Toxicology and Chemical Substances, European Chemicals Bureau.
  • Bernstein DM, Rogers RA, Sepulveda R, Kunzendorf P, Bellmann B, Ernst H, Creutzenberg O, Phillips JI. 2015. Evaluation of the fate and pathological response in the lung and pleura of brake dust alone and in combination with added chrysotile compared to crocidolite asbestos following short-term inhalation exposure. Toxicol Appl Pharmacol. 283(1):20–34.
  • Bernstein DM, Rogers R, Sepulveda R, Kunzendorf P, Bellmann B, Ernst H, Phillips JI. 2014. Evaluation of the deposition, translocation and pathological response of brake dust with and without added chrysotile in comparison to crocidolite asbestos following short-term inhalation: interim results. Toxicol Appl Pharmacol. 276(1):28–46.
  • Bernstein D, Rogers R, Smith P. 2005. The biopersistence of Canadian chrysotile asbestos following inhalation: final results through 1 year after cessation of exposure. Inhal Toxicol. 17(1):1–14.
  • Bernstein DM, Rogers R, Smith P. 2004. The biopersistence of Brazilian chrysotile asbestos following inhalation. Inhal Toxicol. 16(11-12):745–761.
  • Braakhuis HM, Park MV, Gosens I, De Jong WH, Cassee FR. 2014. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol. 11(1):18.
  • Cho WS, Duffin R, Thielbeer F, Bradley M, Megson IL, Macnee W, Poland CA, Tran CL, Donaldson K. 2012. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal-oxide nanoparticles. Toxicol Sci. 126(2):469–477.
  • Coin PG, Roggli VL, Brody AR. 1992. Deposition, clearance, and translocation of chrysotile asbestos from peripheral and central regions of the rat lung. Environ Res. 58(1-2):97–116.
  • Davis J, Addison J, Bolton R, Donaldson K, Jones A, Smith T. 1986. The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br J Exp Pathol. 67(3):415–430.
  • Ding Y, Stahlmecke B, Jiménez AS, Tuinman IL, Kaminski H, Kuhlbusch TAJ, van Tongeren M, Riediker M. 2015. Dustiness and deagglomeration testing: interlaboratory comparison of systems for nanoparticle powders. Aerosol Sci Technol. 49(12):1222–1231.
  • Donaldson K, Murphy FA, Duffin R, Poland CA. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review and the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 7(1):5.
  • Duffin R, Gilmour PS, Schins RP, Clouter A, Guy K, Brown DM, MacNee W, Borm PJ, Donaldson K, Stone V. 2001. Aluminium lactate treatment of DQ12 quartz inhibits its ability to cause inflammation, chemokine expression, and nuclear factor-kappaB activation [Research Support, Non-U.S. Gov't]. Toxicol Appl Pharmacol. 176(1):10–17.
  • Egilman DS, Billings MA. 2005. Abuse of epidemiology: automobile manufacturers manufacture a defense to asbestos liability. Int J Occup Environ Health. 11(4):360–371.
  • Finkelstein MM. 2015. Asbestos fibres in the lungs of an American mechanic who drilled, riveted, and ground brake linings: a case report and discussion. Ann Occup Hyg. 59(4):525–527.
  • Finley BL, Richter RO, Mowat FS, Mlynarek S, Paustenbach DJ, Warmerdam JM, Sheehan PJ. 2007. Cumulative asbestos exposure for US automobile mechanics involved in brake repair (circa 1950s-2000). J Expo Sci Environ Epidemiol. 17(7):644–655.
  • Fubini B. 1997. Surface reactivity in the pathogenic response to particulates. Environ Health Perspect. 105(Suppl 5):1013–1020.
  • Garabrant DH, Alexander DD, Miller PE, Fryzek JP, Boffetta P, Teta MJ, Hessel PA, Craven VA, Kelsh MA, Goodman M. 2016. Mesothelioma among motor vehicle mechanics: an updated review and meta-analysis. ANNHYG. 60(8):1036–1026.
  • Goodman M, Teta MJ, Hessel PA, Garabrant DH, Craven VA, Scrafford CG, Kelsh MA. 2004. Mesothelioma and lung cancer among motor vehicle mechanics: a meta-analysis. Ann Occup Hyg. 48(4):309–326.
  • Grigoratos T, Martini G. 2015. Brake wear particle emissions: a review. Environ Sci Pollut Res. 22(4):2491–2504.
  • Gualtieri AF. 2018. Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers. Toxicol Appl Pharmacol. 361:89.
  • Gualtieri AF, Pollastri S, Bursi Gandolfi N, Gualtieri ML. 2018. In vitro acellular dissolution of mineral fibres: a comparative study. Sci Rep. 8(1):7071.
  • Gualtieri AF, Tartaglia A. 2000. Thermal decomposition of asbestos and recycling in traditional ceramics. J Eur Ceram Soc. 20(9):1409–1418.
  • Gualtieri AF, Viani A, Sgarbi G, Lusvardi G. 2012. In vitro biodurability of the product of thermal transformation of cement-asbestos. J Hazard Mater. 205-206:63–71.
  • Gustavsson P, Plato N, Lidstrom EB, Hogstedt C. 1990. Lung cancer and exposure to diesel exhaust among bus garage workers. Scand J Work Environ Health. 16(5):348–354.
  • Haka AS, Grosheva I, Chiang E, Buxbaum AR, Baird BA, Pierini LM, Maxfield FR. 2009. Macrophages create an acidic extracellular hydrolytic compartment to digest aggregated lipoproteins. MBoC. 20(23):4932–4940.
  • Hatch D. 1970. Possible alternatives to asbestos as a friction material. Ann Occup Hyg. 13(1):25–29.
  • Hesterberg TW, Anderson R, Bernstein DM, Bunn WB, Chase GA, Jankousky AL, Marsh GM, McClellan RO. 2012. Product stewardship and science: safe manufacture and use of fiber glass. Regulatory toxicology and pharmacology. RTP. 62(2):257–277.
  • Hesterberg TW, Miiller WC, McConnell EE, Chevalier J, Hadley JG, Bernstein DM, Thevenaz P, Anderson R. 1993. Chronic inhalation toxicity of size-separated glass fibers in Fischer 344 rats. Fundam Appl Toxicol. 20(4):464–476.
  • Hodgson JT, Darnton A. 2010. Mesothelioma risk from chrysotile. Occup Environ Med. 67(6):432.
  • Kelsh MA, Craven VA, Teta MJ, Mowat FS, Goodman M. 2007. Mesothelioma in vehicle mechanics: is the risk different for Australians?. Occup Med (Lond). 57(8):581–589.
  • Kim J, Chankeshwara SV, Thielbeer F, Jeong J, Donaldson K, Bradley M, Cho WS. 2016. Surface charge determines the lung inflammogenicity: a study with polystyrene nanoparticles. Nanotoxicology. 10(1):94–101.
  • Laden F, Stampfer MJ, Walker AM. 2004. Lung cancer and mesothelioma among male automobile mechanics: a review. Rev Environ Health. 19(1):39–61.
  • Langer AM. 2003. Reduction of the biological potential of chrysotile asbestos arising from conditions of service on brake pads. Regulatory toxicology and pharmacology. RTP. 38(1):71–77.
  • Langer AM, McCaughey WT. 1982. Mesothelioma in a brake repair worker. Lancet (London, England). 2(8307):1101–1103.
  • Li N, Xia T, Nel AE. 2008. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biol Med. 44(9):1689–1699.
  • Light WG, Wei ET. 1977. Surface charge and asbestos toxicity [Research Support, U.S. Gov't, Non-P.H.S.]. Nature. 265(5594):537–539.
  • Luoto K, Holopainen M, Kangas J, Kalliokoski P, Savolainen K. 1998. Dissolution of short and long rockwool and glasswool fibers by macrophages in flow through cell culture. Environ Res. 78(1):25–37.
  • Lynch JR. 1968. Brake lining decomposition products. J Air Poll Control Assoc. 18(12):824–826.
  • Committee on Hazardous Substances (AGS) 2014. TRGS 910 Risk-related concept of measures for activities involving carcinogenic hazardous substances. Dortmund, DE: Federal Institute for Occupational Safety and Health.
  • Marques MR, Loebenberg R, Almukainzi M. 2011. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 18(3):15–28.
  • McConnell EE, Kamstrup O, Musselman R, Hesterberg TW, Chevalier J, Miiller WC, Thevenaz P. 1994. Chronic inhalation study of size-separated rock and slag wool insulation fibers in Fischer 344/n rats. Inhal Toxicol. 6(6):571–614.
  • HSE 2005. EH 40/2005 workplace exposure limits. Sudbury (UK): HSE Books.
  • IARC 2012. IARC monographs on the evaluation of carcinogenic risks to humans. Volume 100C: arsenic, metals, fibres and dusts. Lyon: IARC.
  • ISO 2002. ISO 14966:2002: Ambient air – determination of numerical concentration of inorganic fibrous particles – scanning electron microscopy method. Geneva: International Organization for Standardization (ISO).
  • Mossman BT, Bignon J, Corn M, Seaton A, Gee JB. 1990. Asbestos: scientific developments and implications for public policy. Science. 247(4940):294–301.
  • Oberdorster G, Graham U. 2018. Predicting EMP hazard: lessons from studies with inhaled fibrous and non-fibrous nano- and micro-particles. Toxicol Appl Pharmacol. 361:50–61.
  • Paustenbach DJ, Finley BL, Lu ET, Brorby GP, Sheehan PJ. 2004. Environmental and occupational health hazards associated with the presence of asbestos in brake linings and pads (1900 to present): a “state-of-the-art” review. J Toxicol Environ Health Part B Crit Rev. 7(1):25–80.
  • Paustenbach DJ, Richter RO, Finley BL, Sheehan PJ. 2003. An evaluation of the historical exposures of mechanics to asbestos in brake dust. Appl Occup Environ Hyg. 18(10):786–804.
  • Poland C, Duffin R. 2019. The toxicology of chrysotile-containing brake debris: implications for mesothelioma. Crit Rev Toxicol. 49(1):11–35.
  • Poland CA, Schinwald A, Duffin R, Donaldson K, Cherrie JW. 2018. What makes a fibre, a fibre? The asbestos origins of the fibre length threshold and its verification with nanotechnology. Occup Health. 15(4):21–26.
  • Price O, Asgharian B, Miller F, Cassee F, de Winter-Sorkina R. 2002. Multiple Path Particle Dosimetry model (MPPD v1.0): A model for human and rat airway particle dosimetry. RIVM rapport 650010030. Bilthoven: RIVM.
  • Rasmuson JO, Roggli VL, Boelter FW, Rasmuson EJ, Redinger CF. 2014. Cumulative retrospective exposure assessment (REA) as a predictor of amphibole asbestos lung burden: validation procedures and results for industrial hygiene and pathology estimates. Inhal Toxicol. 26(1):1–13.
  • Rodelsperger K, Jahn H, Bruckel B, Manke J, Paur R, Woitowitz HJ. 1986. Asbestos dust exposure during brake repair. Am J Ind Med. 10(1):63–72.
  • Roggli VL, Vollmer RT, Butnor KJ, Sporn TA. 2002. Tremolite and mesothelioma. Ann Occup Hyg. 46(5):447–453.
  • Rohl AN, Langer AM, Wolff MS, Weisman I. 1976. Asbestos exposure during brake lining maintenance and repair. Environ Res. 12(1):110–128.
  • Salazar N, Cely-Garcia MF, Breysse PN, Ramos-Bonilla JP. 2015. Asbestos exposure among transmission mechanics in automotive repair shops. Ann Occup Hyg. 59(3):292–306.
  • Schinwald A, Murphy FA, Prina-Mello A, Poland CA, Byrne F, Movia D, Glass JR, Dickerson JC, Schultz DA, Jeffree CE, et al. 2012. The threshold length for fiber-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol Sci. 128(2):461–470.
  • Searl A. 1997. A comparative study of the clearance of respirable para-aramid, chrysotile and glass fibres from rat lungs. Ann Occup Hyg. 41(2):217–233.
  • Searl A, Buchanan D, Cullen R, Jones A, Miller B, Soutar C. 1999. Biopersistence and durability of nine mineral fibre types in rat lungs over 12 months. Ann Occup Hyg. 43(3):143–153.
  • Stanton MF, Layard M, Tegeris A, Miller E, May M, Kent E. 1977. Carcinogenicity of fibrous glass: pleural response in the rat in relation to fiber dimension. J Natl Cancer Inst. 58(3):587–603.
  • Vallyathan V, Mega JF, Shi X, Dalal NS. 1992. Enhanced generation of free radicals from phagocytes induced by mineral dusts. Am J Respir Cell Mol Biol. 6(4):404–413.
  • Van Orden DR. 1964. 2 – Asbestos. In: Morrison RD, Murphy BL, editors. Environmental forensics. Burlington: Academic Press; p. 19–33.
  • Virta RL. 2002. Asbestos geology, mineralogy, mining, and uses. Version 1.0. Reston, VA: U.S. Department of the Interior, U.S. Geological Survey (US Geological Survey open-file report).
  • Weir FW, Meraz LB. 2001. Morphological characteristics of asbestos fibers released during grinding and drilling of friction products. Appl Occup Environ Hyg. 16(12):1147–1149.
  • WHO 1997. Determination of airborne fibre number concentrations. A recommended method, by phase-contrast optical microscopy membrane filter method. World Health Organization. https://apps.who.int/iris/handle/10665/41904
  • Wong O. 2001. Malignant mesothelioma and asbestos exposure among auto mechanics: appraisal of scientific evidence. Regulatory toxicology and pharmacology. RTP. 34(2):170–177.
  • Zaremba T, Krząkała A, Piotrowski J, Garczorz D. 2010. Study on the thermal decomposition of chrysotile asbestos. J Therm Anal Calorim. 101(2):479–485.