Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 33, 2021 - Issue 3
3,559
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Risk assessment of components in tobacco smoke and e-cigarette aerosols: a pragmatic choice of dose metrics

, &
Pages 81-95 | Received 20 Aug 2020, Accepted 19 Mar 2021, Published online: 20 Apr 2021

References

  • Al-Hamdani M, Hopkins DB, Park T. 2020. Vaping among youth and young adults: a “red alert” state. J Public Health Policy. 41(1):63–69.
  • Appelman LM, Woutersen RA, Feron VJ, Hooftman RN, Notten WR. 1986. Effect of variable versus fixed exposure levels on the toxicity of acetaldehyde in rats. J Appl Toxicol. 6(5):331–336.
  • Arts JH, Muijser H, Appel MJ, Kuper CF, Bessems JG, Woutersen RA. 2004. Subacute (28-day) toxicity of furfural in Fischer 344 rats: a comparison of the oral and inhalation route. Food Chem Toxicol. 42(9):1389–1399.
  • Atherley G. 1985. A critical review of time-weighted average as an index of exposure and dose, and of its key elements. Am Ind Hyg Assoc J. 46(9):481–487.
  • Belkebir E, Rousselle C, Duboudin C, Bodin L, Bonvallot N. 2011. Haber's rule duration adjustments should not be used systematically for risk assessment in public health decision-making. Toxicol Lett. 204(2-3):148–155.
  • Bos PMJ, Baars BJ, Van Raaij MT. 2004. Risk assessment of peak exposure to genotoxic carcinogens: a pragmatic approach. Toxicol Lett. 151(1):43–50.
  • Bos PMJ, Gosens I, Geraets L, Delmaar C, Cassee FR. 2019. Pulmonary toxicity in rats following inhalation exposure to poorly soluble particles: the issue of impaired clearance and the relevance for human health hazard and risk assessment. Regul Toxicol Pharmacol. 109:104498.
  • Bunce NJ, Remillard RBJ. 2003. Haber's Rule: The Search for Quantitative Relationships in Toxicology. Hum Ecol Risk Assessment. 9(4):973–985.
  • Burns DM, Dybing E, Gray N, Hecht S, Anderson C, Sanner T, O'Connor R, Djordjevic M, Dresler C, Hainaut P, et al. 2008. Mandated lowering of toxicants in cigarette smoke: a description of the World Health Organization TobReg proposal. Tob Control. 17(2):132–141.
  • Camacho OM, Eldridge A, Proctor CJ, McAdam K. 2015. Empirical characterisation of ranges of mainstream smoke toxicant yields from contemporary cigarette products using quantile regression methodology. Regul Toxicol Pharmacol. 72(3):458–472.
  • CEPA. 1993. Canadian Environmental Protection Act (CEPA) Priority Substances List Assessment Report: Benzene. Available from: http://www.hc-sc.gc.ca/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/contaminants/psl1-lsp1/benzene/benzene-eng.pdf.
  • Chen J, Bullen C, Dirks K. 2017. A comparative health risk assessment of electronic cigarettes and conventional cigarettes. IJERPH. 14(4):382.
  • Chortyk OT, Schlotzhauer WS. 1973. Studies on the pyrogenesis of tobacco smoke constituents (a review). Beitr Zur Tobackforsch. 7:165–178.
  • Chortyk OT, Schlotzhauer WS. 1975. Comparison of pyrolytic products from flue-cured tobacco leaf and a reconstituted tobacco sheet. Beitr Zur Tobackforsch. 8:84–88.
  • Connell DW, Yu QJ, Verma V. 2016. Influence of exposure time on toxicity - An overview. Toxicology. 355-356:49–53.
  • Counts ME, Morton MJ, Laffoon SW, Cox RH, Lipowicz PJ. 2005. Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regul Toxicol Pharmacol. 41(3):185–227.
  • Cunningham FH, Fiebelkorn S, Johnson M, Meredith C. 2011. A novel application of the Margin of Exposure approach: segregation of tobacco smoke toxicants. Food Chem Toxicol. 49(11):2921–2933.
  • Djordjevic MV, Fan J, Ferguson S, Hoffmann D. 1995. Self-regulation of smoking intensity. Smoke yields of the low-nicotine, low-'tar' cigarettes. Carcinogenesis. 16(9):2015–2021.
  • Djordjevic MV, Stellman SD, Zang E. 2000. Doses of nicotine and lung carcinogens delivered to cigarette smokers. J Natl Cancer Inst. 92(2):106–111.
  • Doull J, Rozman KK. 2000. Using Haber's law to define the margin of exposure. Toxicology. 149(1):1–2.
  • ECHA. 2012. European Chemical Agency (ECHA). Guidance on the information requirements and chemical safety assessment. Chapter R.8: Characterisation of dose [concentration]-response for human health. Available from: http://echa.europa.eu/documents/10162/3632/information_requirements_r8_en.pdf
  • EFSA. 2005. European Food Safety Authority (EFSA) Opinion of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. (Request No. EFSA-Q-2004-2020). Adopted on 2018 October 2005. Available from: http://www.efsa.europa.eu/en/efsajournal/doc/2282.pdf
  • FDA. 1999. US Food and Drug Administration (FDA): Benzene Support Documents: Response to the peer review comments. II. Extrapolation of the Benzene Inhalation Unit Risk Estimate to the Oral Route of Exposure (EPA/NCEA-W-0517, July 1999) http://www.epa.gov/iris/supdocs/benzpr2.html
  • FDA. 2012. US Food and Drug Administration (FDA): Harmfull and potentially harmful constituents in tobacco products and tobacco smoke; established list. Available from: http://www.fda.gov/downloads/TobaccoProducts/GuidanceComplianceRegulatoryInformation/UCM297981.pdf
  • Felter SP, Conolly RB, Bercu JP, Bolger PM, Boobis AR, Bos PMJ, Carthew P, Doerrer NG, Goodman JI, Harrouk WA, et al. 2011. A proposed framework for assessing risk from less-than-lifetime exposures to carcinogens. Crit Rev Toxicol. 41(6):507–544.
  • Feron VJ, Kruysse A, Til HP, Immel HR. 1978. Repeated exposure to acrolein vapour: subacute studies in hamsters, rats and rabbits. Toxicology. 9(1-2):47–57.
  • Fowles J, Dybing E. 2003. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob Control. 12(4):424–430.
  • Gaylor DW. 2000. The use of Haber's law in standard setting and risk assessment. Toxicology. 149(1):17–19.
  • Geraets L, Zeilmaker MJ, Bos PMJ. 2018. The importance of inclusion of kinetic information in the extrapolation of high-to-low concentrations for human limit setting. Toxicol Lett. 282:81–92.
  • Gordon SM, Wallace LA, Brinkman MC, Callahan PJ, Kenny DV. 2002. Volatile organic compounds as breath biomarkers for active and passive smoking. Environ Health Perspect. 110(7):689–698.
  • Gust SW, Pickens RW, Pechacek TF. 1983. Relation of puff volume to other topographical measures of smoking. Addict Behav. 8(2):115–119.
  • Haber F. 1924. Zur Geschichte des Gaskrieges. In: Fünf Vorträge aus den Jahren 1920–1923. Berlin, Heidelberg: Springer. p. 76–92. https://doi.org/10.1007/978-3-662-33987-9_5
  • HCN. 2014. The Health Council of The Netherlands (HCN). Benzene. Health-based recommended occupational exposure limits. Available from: https://www.healthcouncil.nl/documents/advisory-reports/2014/02/21/benzene-health-based-recommended-occupational-exposure-limit.
  • Health-Canada. 2009. Guidelines for Canadian Drinking Water Quality Guideline Technical Document Benzene. http://www.hc-sc.gc.ca/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/water-eau/benzene/benzene-eng.pdf.
  • HPA. 2007. Health Protection Agency (HPA) in the United Kingdom. Benzene Toxicological Review. http://www.hpa.org.uk/webc/hpawebfile/hpaweb_c/1194947391801.
  • Jarabek AM. 1995. Consideration of temporal toxicity challenges current default assumptions. Inhalation Toxicol. 7(6):927–946.
  • Kuempel ED, Sweeney LM, Morris JB, Jarabek AM. 2015. Advances in inhalation dosimetry models and methods for occupational risk assessment and exposure limit derivation. Journal of Occupational and Environmental Hygiene. 12(sup1):S18–S40.
  • Lachenmeier DW, Rehm J. 2015. Comparative risk assessment of alcohol, tobacco, cannabis and other illicit drugs using the margin of exposure approach. Sci Rep. 5(1):8126.
  • Nomiyama K, Nomiyama H. 1974. Respiratory elimination of organic solvents in man. Benzene, toluene, n-hexane, trichloroethylene, acetone, ethyl acetate and ethyl alcohol. Int Arch Arbeitsmed. 32(1):85–91.
  • O'Connor RJ, Hurley PJ. 2008. Existing technologies to reduce specific toxicant emissions in cigarette smoke. Tob Control. 17(Suppl 1):i39–48.
  • Pack EC, Jang DY, Kim HS, Lee SH, Kim HY, Song SH, Cho HS, Kwon KH, Park KH, Lim KM, et al. 2018. Mixture risk assessment of selected mainstream cigarette smoke constituents generated from low-yield cigarettes in South Korean smokers. Regul Toxicol Pharmacol. 94:152–162.
  • Pack EC, Kim HS, Jang DY, Koo YJ, Yu HH, Lee SH, Lim KM, Choi DW. 2019. Risk assessment of toxicants on WHO TobReg priority list in mainstream cigarette smoke using human-smoked yields of Korean smokers. Environ Res. 169:206–219.
  • Pankow JF, Watanabe KH, Toccalino PL, Luo W, Austin DF. 2007. Calculated cancer risks for conventional and “potentially reduced exposure product” cigarettes. Cancer Epidemiol Biomarkers Prev. 16(3):584–592.
  • Paschke T, Scherer G, Heller WD. 2002. Effects of ingredients on cigarette smoke composition and biological activity: a literature overview. Contributions Tobacco Res. 20(3):107–244.
  • Pauwels CGGM, Boots AW, Visser WF, Pennings JLA, Talhout R, Schooten FV, Opperhuizen A. 2020. Characteristic human individual puffing profiles can generate more tnco than iso and health canada regimes on smoking machine when the same brand is smoked. IJERPH. 17(9):3225.
  • Pennings JLA, Cremers JWJM, Becker MJA, Klerx WNM, Talhout R. 2019. Aldehyde and VOC yields in commercial cigarette mainstream smoke are mutually related and depend on the sugar and humectant content in tobacco. Nicotine Tob Res. 22:1748–1756.
  • Renne RA, Wehner AP, Greenspan BJ, Deford HS, Ragan HA, Westerberg RB, Buschbom RL, Burger GT, Hayes AW, Suber RL, et al. 1992. 2-Week and 13-Week Inhalation Studies of Aerosolized Glycerol in Rats. Inhal Toxicol. 4(2):95–111.
  • Rodgman A, Perfetti TA. 2013. The chemical components of tobacco and tobacco smoke. Second edition. Boca Raton, FL: CRC Press. p. 33487–32742.
  • Rozman KK, Doull J. 2000. Dose and time as variables of toxicity. Toxicology. 144(1-3):169–178.
  • Rozman KK, Doull J. 2001. The role of time as a quantifiable variable of toxicity and the experimental conditions whn Haber's c x t product can be observed: implications for therapeutics. J Pharmacol Exp Ther. 296(3):663–668.
  • Slob W, Soeteman-Hernández L, Bil W, Staal YCM, Stephens WE, Talhout R. 2020. A Method for Comparing the Impact on Carcinogenicity of Tobacco Products: A Case Study on Heated Tobacco Versus Cigarettes. Risk Anal. 40(7):1355–1366.
  • Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Parry Howells G, Tipton IH. 1974. Report of the task group on reference man. International commission on radiological protection, No. 23. Pergamon Press. p 344.
  • Talhout R, Schulz T, Florek E, Van Benthem J, Wester P, Opperhuizen A. 2011. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 8(2):613–628.
  • Verhagen H, Feron VJ, Van Vliet PW. 1994. Risk assessment of peak exposure to genotoxic carcinogens. The Hague: Health Council of The Netherlands.(Publication no. A94/04).
  • WHO. 2012a. World Health Organization (WHO) (Cardiovascular Diseases (CVD) Fact Sheet No. 317). http://www.who.int/mediacentre/factsheets/fs317/en/
  • WHO. 2012b. World Health Organization (WHO) (Chronic Obstructive Pulmonary Disease (COPD) Fact Sheet No. 315). http://www.who.int/mediacentre/factsheets/fs315/en/
  • WHO. 2016. World Health Organization (Tobacco Fact Sheet No. 339, May 2012). http://www.who.int/mediacentre/factsheets/fs339/en/
  • Wilmer JW, Woutersen RA, Appelman LM, Leeman WR, Feron VJ. 1987. Subacute (4-week) inhalation toxicity study of formaldehyde in male rats: 8-hour intermittent versus 8-hour continuous exposures. J Appl Toxicol. 7(1):15–16.
  • Wilmer JW, Woutersen RA, Appelman LM, Leeman WR, Feron VJ. 1989. Subchronic (13-week) inhalation toxicity study of formaldehyde in male rats: 8-hour intermittent versus 8-hour continuous exposures. Toxicol Lett. 47(3):287–293.
  • Xie J, Marano KM, Wilson CL, Liu H, Gan H, Xie F, Naufal ZS. 2012. A probabilistic risk assessment approach used to prioritize chemical constituents in mainstream smoke of cigarettes sold in China. Regul Toxicol Pharmacol. 62(2):355–362.