364
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Public Acceptance of Foods Derived from Genome Editing Technology: A Review of The Technical, Social and Regulatory Aspects

, , , &

References

  • Abe, K., Araki, E., Suzuki, Y., Toki, S., & Saika, H. (2018). Plant Physiology and Biochemistry Production of high oleic/low linoleic rice by genome editing. Plant Physiology and Biochemistry, 131(March), 58–62. doi:10.1016/j.plaphy.2018.04.033
  • Aldemita, R. R., Reaño, I. M. E., Solis, R. O., & Hautea, R. A. (2015). Trends in global approvals of biotech crops (1992–2014). GM Crops & Food, 6(3), 150–166. doi:10.1080/21645698.2015.1056972
  • Allum, N., Boy, D., & Bauer, M. W. (2002). European regions and the knowledge deficit model. In M.W. Bauer and G. Gaskell, (Eds.), Biotechnology: The making of a global controversy, (pp. 224–243), Cambridge University Press.
  • Arias, A. G., Valdez, M., Griselda, M., Espinoza, A., & Albertazzi, F. J. (2019). Consumer attitudes toward food crops developed by CRISPR/Cas9 in Costa Rica. Plant Cell, Tissue and Organ Culture, 139(2), 417–427. doi:10.1007/s11240-019-01647-x
  • Ashokkumar, S., Jaganathan, D., Ramanathan, V., Rahman, H., Palaniswamy, R., Kambale, R., & Muthurajan, R. (2020). Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PLoS One, 15(8), e0237018.
  • Barman, H. N., Sheng, Z., Fiaz, S., Zhong, M., Wu, Y., Cai, Y., & Wang, W. (2019). Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system. BMC Plant Biology, 19, 1–11.
  • Batista, R., & Oliveira, M. M. (2009). Facts and fiction of genetically engineered food. Trends in Biotechnology, 27(5), 277–286.
  • Bøhn, T., Cuhra, M., Traavik, T., Sanden, M., Fagan, J., & Primicerio, R. (2014). Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans. Food Chemistry, 153, 207–215. doi:10.1016/j.foodchem.2013.12.054
  • Bredahl, L., Grunert, K. G., & Frewer, L. J. (1998). Consumer attitudes and decision-making with regard to genetically engineered food products–A review of the literature and a presentation of models for future research. Journal of Consumer Policy, 21(3), 251–277. doi:10.1023/A:1006940724167
  • Butt, H., Eid, A., Ali, Z., Atia, M. A. M., Mokhtar, M. M., Hassan, N., … Mahfouz, M. M. (2017). Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule. Frontiers in Plant Science, 8(August), 1441–1448. doi:10.3389/fpls.2017.01441
  • Byrne, P. (2010). Labeling of genetically engineered foods. Food and Nutrition Series. Health, (9), 371.
  • Carroll, D., & Charo, R. A. (2015). The societal opportunities and challenges of genome editing. Genome Biology, 16(1), 242.
  • Carter, C. A., & Gruère, G. P. (2003). Mandatory labeling of genetically modified foods: Does it really provide consumer choice? AgBioForum, 6(1&2), 68–70.
  • Colson, G. J., Huffman, W. E., & Rousu, M. C. (2011). Improving the nutrient content of food through genetic modification: Evidence from experimental auctions on consumer acceptance. Journal of Agricultural and Resource Economics, 36(2), 343–364. doi:10.22004/ag.econ.117201
  • Costa-Font, M., Gil, J. M., & Traill, W. B. (2008). Consumer acceptance, valuation of and attitudes towards genetically modified food: Review and implications for food policy. Food Policy., 33(2), 99–111. doi:10.1016/j.foodpol.2007.07.002
  • Davison, J., & Ammann, K. (2017). New GMO regulations for old: Determining a new future for EU crop biotechnology. GM Crops & Food, 8(1), 13–34.
  • De Steur, H., Liqun, G., Van Der Straeten, D., Lambert, W., & Gellynck, X. (2015). The potential market for GM rice with health benefits in a Chinese high-risk region. Journal of Food Products Marketing, 21(3), 231–243. doi:10.1080/10454446.2013.855993
  • Delwaide, A.-C., Nalley, L. L., Dixon, B. L., Danforth, D. M., Nayga, R. M., Jr, Van Loo, E. J., & Verbeke, W. (2015). Revisiting GMOs: Are there differences in European Consumers’ Acceptance and Valuation for Cisgenically vs Transgenically Bred Rice? PLoS One, 10(5), e0126060. doi:10.1371/journal.pone.0126060
  • Denyer, D., & Tranfield, D. (2009). The Sage handbook of organizational research methods. Reference and Research Book News, 24(3), 776.
  • Des Biotechnologies, H. C. (2016). Nouvelles techniques. New Plant Breeding Techniques». Première Étape de La Réflexion Du HCB, 20.
  • Directive, H. A. S. A. T. (1990). Council Directive 90/220/EEC of 23 April 1990 on the deliberate release into the environment of genetically modified organisms. Official Journal L, 117(08/05), 15–27.
  • Duan, Y.-B., Li, J., Qin, R.-Y., Xu, R.-F., Li, H., Yang, Y.-C., … Yang, J.-B. (2016). Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Molecular Biology, 90(1–2), 49–62. doi:10.1007/s11103-015-0393-z
  • Eriksson, D. (2018). The Swedish policy approach to directed mutagenesis in a European context. Physiologia Plantarum, 164(4), 385–395. doi:10.1111/ppl.12740
  • Eriksson, D., Kershen, D., Nepomuceno, A., Pogson, B. J., Prieto, H., Purnhagen, K., … Whelan, A. (2019). A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. The New Phytologist, 222(4), 1673–1684. doi:10.1111/nph.15627
  • Evans, G., & Durant, J. (1995). The relationship between knowledge and attitudes in the public understanding of science in Britain. Public Understanding of Science, 4(1), 57–74. doi:10.1088/0963-6625/4/1/004
  • Farid, M., Cao, J., Lim, Y., Arato, T., & Kodama, K. (2020). Exploring factors affecting the acceptance of genetically edited food among youth in Japan. International Journal of Environmental Research and Public Health 17(8), 2935; doi:10.3390/ijerph17082935
  • Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.-L., … Zhu, J.-K. (2014). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 111(12), 4632–4637. doi:10.1073/pnas.1400822111
  • Fernandez-Cornejo, J., Wechsler, S., Livingston, M., & Mitchell, L. (2014). Genetically engineered crops in the United States. USDA-ERS Economic Research Report, (162).
  • Fernbach, P. M., Light, N., Scott, S. E., Inbar, Y., & Rozin, P. (2019). Extreme opponents of genetically modified foods know the least but think they know the most. Nature Human Behaviour, 3(3), 251–256.
  • Frewer, L. J., van der Lans, I. A., Fischer, A. R.H., Reinders, M. J., Menozzi, D., Zhang, X., … Zimmermann, K. L. (2013). Public perceptions of agri-food applications of genetic modification–A systematic review and meta-analysis. Trends in Food Science & Technology, 30(2), 142–152. doi:10.1016/j.tifs.2013.01.003
  • Friedrichs, S., Takasu, Y., Kearns, P., Dagallier, B., Oshima, R., Schofield, J., & Moreddu, C. (2019). An overview of regulatory approaches to genome editing in agriculture. Biotechnology Research and Innovation, 3(2), 208–220. doi:10.1016/j.biori.2019.07.001
  • Fritsche, S., Poovaiah, C., MacRae, E., & Thorlby, G. (2018). A New Zealand perspective on the application and regulation of gene editing. Frontiers in Plant Science, 9, 1323.
  • Gao, Q., Li, G., Sun, H., Xu, M., Wang, H., Ji, J., … Zhao, X. (2020). Targeted mutagenesis of the rice FW 2.2-like gene family using the CRISPR/Cas9 system reveals OsFWL4 as a regulator of tiller number and plant yield in rice. International Journal of Molecular Sciences, 21(3), 809. doi:10.3390/ijms21030809
  • Gao, W., Xu, W., Huang, K., Guo, M., & Luo, Y. (2018). Risk analysis for genome editing-derived food safety in China. Food Control., 84, 128–137. doi:10.1016/j.foodcont.2017.07.032
  • Gaskell, G., Allum, N., & Stares, S. (2003). Europeans and biotechnology in 2002: Eurobarometer 58.0. Brussels: European Commission.
  • Georges, F., & Ray, H. (2017). Genome editing of crops: A renewed opportunity for food security. GM Crops & Food, 8(1), 1–12.
  • Ghoochani, O. M., Ghanian, M., Baradaran, M., Alimirzaei, E., & Azadi, H. (2018). Behavioral intentions toward genetically modified crops in Southwest Iran: A multi-stakeholder analysis. Environment, Development and Sustainability, 20(1), 233–253. doi:10.1007/s10668-016-9879-3
  • Grunert, K. G., Lähteenmäki, L., Asger Nielsen, N., Poulsen, J. B., Ueland, O., & Åström, A. (2001). Consumer perceptions of food products involving genetic modification—results from a qualitative study in four Nordic countries. Food Quality and Preference, 12(8), 527–542. doi:10.1016/S0950-3293(01)00049-0.
  • Guo, D., Ling, X., Zhou, X., Li, X., Wang, J., Qiu, S., … Zhang, B. (2020). Evaluation of the Quality of a High-Resistant Starch and Low-Glutelin Rice (Oryza sativa L.) Generated through CRISPR/Cas9-Mediated Targeted Mutagenesis. Journal of Agricultural and Food Chemistry, 68(36), 9733–9742.
  • Han, Y., Luo, D., Usman, B., Nawaz, G., Zhao, N., Liu, F., & Li, R. (2018). Development of high yielding glutinous cytoplasmic male sterile rice (Oryza sativa L.) Lines through and proteomic analysis of anther. Agronomy, 8(12), 290. doi:10.3390/agronomy8120290
  • Han, Y., Teng, K., Nawaz, G., Feng, X., Usman, B., Wang, X., … Li, R. (2019). Generation of semi-dwarf rice (Oryza sativa L.) lines by CRISPR/Cas9-directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations. 3 Biotech, 9(11), 387. doi:10.1007/s13205-019-1919-x
  • Hao, L. I., Ruiying, Q. I. N., Xiaoshuang, L. I. U., Shengxiang, L., Rongfang, X. U., Jianbo, Y., & Pengcheng, W. E. I. (2019). CRISPR/Cas9-mediated adenine base editing in rice genome. Rice Science, 26(2), 125–128. doi:10.1016/j.rsci.2018.07.002
  • Haque, E., Taniguchi, H., Hassan, M. M., Bhowmik, P., Karim, M. R., Śmiech, M., … Islam, T. (2018). Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: Recent progress, prospects, and challenges. Frontiers in Plant Science, 9, 617. doi:10.3389/fpls.2018.00617
  • Hendrick, T. A. M., Fischer, A. R. H., Tobi, H., & Frewer, L. J. (2013). Self‐reported attitude scales: Current practice in adequate assessment of reliability, validity, and dimensionality. Journal of Applied Social Psychology, 43(7), 1538–1552. doi:10.1111/jasp.12147
  • Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278. doi:10.1016/j.cell.2014.05.010.24906146
  • Huang, L., Li, Q., Zhang, C., Chu, R., Gu, Z., Tan, H., … Liu, Q. (2020). Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnology Journal, 18(11), 2164–2166. doi:10.1111/pbi.13391
  • Huang, S., Weigel, D., Beachy, R. N., & Li, J. (2016). A proposed regulatory framework for genome-edited crops. Nature Genetics, 48(2), 109–111.
  • Isaaa, B. (2017). Global status of commercialized biotech. GM Crops In.
  • Ishii, T., & Araki, M. (2016). Consumer acceptance of food crops developed by genome editing. Plant Cell Reports, 35(7), 1507–1518.
  • Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188. e188.
  • Jouanin, A., Boyd, L., Visser, R. G. F., & Smulders, M. J. M. (2018). Development of wheat with hypoimmunogenic gluten obstructed by the gene editing policy in Europe. Frontiers in Plant Science, 9, 1523.
  • Jung, Y. J., Lee, H. J., Bae, S., Kim, J. H., Kim, D. H., Kim, H. K., … Kang, K. K. (2019). Acquisition of seed dormancy breaking in rice (Oryza sativa L.) via CRISPR/Cas9 - targeted mutagenesis of OsVP1 gene. Plant Biotechnology Reports, 13(5), 511–520. doi:10.1007/s11816-019-00580-x
  • Jung, Y. J., Kim, J. H., Lee, H. J., Kim, D. H., Yu, J., Bae, S., … Kang, K. K. (2020). Generation and transcriptome profiling of Slr1-d7 and Slr1-d8 mutant lines with a new Semi-Dominant Dwarf Allele of SLR1 using the CRISPR/Cas9 System in Rice. International Journal of Molecular Sciences, 21(15), 5492. doi:10.3390/ijms21155492
  • Jung, Y. J., Lee, H. J., Kim, J. H., Kim, D. H., Kim, H. K., Cho, Y.-G., … Kang, K. K. (2019). CRISPR/Cas9-targeted mutagenesis of F3′ H, DFR and LDOX, genes related to anthocyanin biosynthesis in black rice (Oryza sativa L). Plant Biotechnology Reports, 13(5), 521–531. doi:10.1007/s11816-019-00579-4
  • Khandagale, K., & Nadaf, A. (2016). Genome editing for targeted improvement of plants. Plant Biotechnology Reports, 10(6), 327–343. doi:10.1007/s11816-016-0417-4
  • Kim, Y., Moon, H., & Park, C. (2019). CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. Rice, 12(1), 67. doi:10.1186/s12284-019-0325-7
  • Korotkova, A., Gerasimova, S. V., & Khlestkina, E. K. (2019). Current achievements in modifying crop genes using CRISPR/Cas system Текущие достижения в области модификации генов культурных растений с использованием системы CRISPR/Cas. Vavilov Journal of Genetics and Breeding 23(1), 29–37. doi:10.18699/VJ19.458
  • Kumar, V. V. S., Verma, R. K., Yadav, S. K., Yadav, P., Watts, A., Rao, M. V., & Chinnusamy, V. (2020). CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in Indica mega rice cultivar MTU1010 CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants, 26(6):1099–1110. doi:10.1007/s12298-020-00819-w
  • Lassoued, R., Macall, D. M., Smyth, S. J., Phillips, P. W. B., & Hesseln, H. (2019). Risk and safety considerations of genome edited crops: Expert opinion. Current Research in Biotechnology, 1, 11–21. doi:10.1016/j.crbiot.2019.08.001
  • Layton, R., Smith, J., Macdonald, P., Letchumanan, R., Keese, P., & Lema, M. (2015). Building better environmental risk assessments. Frontiers in Bioengineering and Biotechnology, 3, 110.
  • Liao, S., Qin, X., Luo, L., Han, Y., Wang, X., Usman, B., … Li, R. (2019). CRISPR/Cas9-induced mutagenesis of semi-rolled leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in Rice (Oryza sativa L.). Agronomy, 9(11), 728. doi:10.3390/agronomy9110728
  • Li, M., Li, X., Zhou, Z., Wu, P., Fang, M., Pan, X., … Li, H. (2016). Reassessment of the four yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System). Frontiers in Plant Science, 7(March), 377–313. doi:10.3389/fpls.2016.00377
  • Li, J., Zhang, X., Sun, Y., Zhang, J., Du, W., Guo, X., … Xia, L. (2018). Efficient allelic replacement in rice by gene editing: A case study of the NRT1.1B gene. Journal of Integrative Plant Biology, 60(7), 536–540. doi:10.1111/jipb.12650
  • Li, X., Zhou, W., Ren, Y., Tian, X., Lv, T., Wang, Z., … Bu, Q. (2017). High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 44(3), 175–178. doi:10.1016/j.jgg.2017.02.001
  • Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., & Zhang, R. (2018). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biology, 19, 1–9.
  • Lou, D., Wang, H., Liang, G., & Yu, D. (2017). OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Frontiers in Plant Science, 8(June), 993–915. doi:10.3389/fpls.2017.00993
  • Lucht, J. M. (2015). Public acceptance of plant biotechnology and GM crops. Viruses, 7(8), 4254–4281. doi:10.3390/v7082819
  • Lu, H.-P., Liu, S.-M., Xu, S.-L., Chen, W.-Y., Zhou, X., Tan, Y.-Y., … Shu, Q.-Y. (2017). CRISPR-S: An active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants. Plant Biotechnology Journal, 15(11), 1371–1373. doi:10.1111/pbi.12788
  • Lusk, J. L., Jamal, M., Kurlander, L., Roucan, M., & Taulman, L. (2005). A meta-analysis of genetically modified food valuation studies. Journal of Agricultural and Resource Economics, 28–44.
  • Lusk, J. L., McFadden, B. R., & Rickard, B. J. (2015). Which biotech foods are most acceptable to the public? Biotechnology Journal, 10(1), 13–16.
  • Lusk, J. L., McFadden, B. R., & Wilson, N. (2018). Do consumers care how a genetically engineered food was created or who created it? Food Policy., 78, 81–90. doi:10.1016/j.foodpol.2018.02.007
  • Lusk, J. L., & Rozan, A. (2006). Consumer acceptance of ingenic foods. Biotechnology Journal, 1(12), 1433–1434. doi:10.1002/biot.200600187
  • Lu, K., Wu, B., Wang, J., Zhu, W., Nie, H., Qian, J., … Fang, Z. (2018). Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnology Journal, 16(10), 1710–1722. doi:10.1111/pbi.12907
  • Lu, Y., Ye, X., Guo, R., Huang, J., Wang, W., Tang, J., … Qian, Y. (2017). Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Molecular Plant, 10(9), 1242–1245. doi:10.1016/j.molp.2017.06.007
  • Ma, J., Chen, J., Wang, M., Ren, Y., Wang, S., Lei, C., & Cheng, Z. (2018). Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. 69(5), 1051–1064. doi:10.1093/jxb/erx458
  • Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., Slamet-Loedin, I., Čermák, T., … Chadha-Mohanty, P. (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal, 16(11), 1918–1927. doi:10.1111/pbi.12927
  • Mallapaty, S. (2019). Australian gene-editing rules adopt’middle ground. Nature, 2019, 8. doi:10.1038/d41586-019-01282-8
  • Marchant, G. E., Cardineau, G. A., & Redick, T. P. (2010). Thwarting consumer choice: The case against mandatory labeling for genetically modified foods. Washington D.C.: Government Institutes.
  • Marette, S., Disdier, A., Beghin, J., Marette, S., Disdier, A., Beghin, J., & Comparison, A. (2020). A comparison of EU and US consumers’ willingness to pay for gene-edited food: Evidence from apples To cite this version: HAL Id: halshs-02872222.
  • McFadden, B. R. (2017). The unknowns and possible implications of mandatory labeling. Trends in Biotechnology, 35(1), 1–3. doi:10.1016/j.tibtech.2016.09.009
  • McFadden, B. R., & Lusk, J. L. (2016). What consumers don’t know about genetically modified food, and how that affects beliefs. FASEB Journal, 30(9), 3091–3096.
  • Medvedieva, M. O., & Blume, Y. B. (2018). Legal regulation of plant genome editing with the CRISPR/Cas9 technology as an example. Cytology and Genetics, 52(3), 204–212. doi:10.3103/S0095452718030106
  • Mertens, M., (2008). Assessment of Environmental Impacts of Genetically Modified Plants. Implementation of the Biosafety Protocol Development of Assessment Bases FKZ 201 67 430/07, Bundesamt für Naturschutz (BfN) - https://www.bfn.de/fileadmin/MDB/documents/service/skript217.pdf.
  • Miao, C., Xiao, L., Hua, K., Zou, C., Zhao, Y., Bressan, R. A., & Zhu, J. (2018). Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. PNAS 115(23), 58–63. doi:10.1073/pnas.1804774115
  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097.
  • Muringai, V., Fan, X., & Goddard, E. (2020). Canadian consumer acceptance of gene‐edited versus genetically modified potatoes: A choice experiment approach. Canadian Journal of Agricultural Economics/Revue Canadienne D’agroeconomie, 68(1), 47–63. doi:10.1111/cjag.12221
  • Nauheim, D. A. (2009). Food labeling and the consumer’s right to know: give the people what they want. Liberty UL Rev, 4, 97.
  • Nawaz, G., Usman, B., Peng, H., Zhao, N., Yuan, R., Liu, Y., & Li, R. (2020). Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae Resistance in Elite Rice Line. Genes, 11(7), 735. doi:10.3390/genes11070735
  • Nawaz, G., Usman, B., Zhao, N., Han, Y., Li, Z., Wang, X., … Li, R. (2020). CRISPR/Cas9 directed mutagenesis of OsGA20ox2 in High Yielding Basmati Rice (Oryza sativa L.) line and comparative proteome profiling of unveiled changes triggered by mutations. International Journal of Molecular Sciences, 21(17), 6170. doi:10.3390/ijms21176170
  • Nicolia, A., Manzo, A., Veronesi, F., & Rosellini, D. (2014). An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology, 34(1), 77–88.
  • Nieves-Cordones, M., Mohamed, S., Tanoi, K., Kobayashi, N. I., Takagi, K., Vernet, A., … Véry, A.-A. (2017). Production of low-Cs + rice plants by inactivation of the K + transporter OsHAK1 with the CRISPR-Cas system. The Plant Journal, 92(1), 43–56. doi:10.1111/tpj.13632
  • Ogata, T., Ishizaki, T., Fujita, M., & Fujita, Y. (2020). CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS One, 15(12), e0243376. doi:10.1371/journal.pone.0243376
  • Pacher, M., & Puchta, H. (2017). From classical mutagenesis to nuclease‐based breeding–Directing natural DNA repair for a natural end‐product. The Plant Journal, 90(4), 819–833.
  • Parrott, W. (2018). Outlaws, old laws and no laws: The prospects of gene editing for agriculture in United States. Physiologia Plantarum, 164(4), 406–411. doi:10.1111/ppl.12756
  • Pfeiffer, M., Quetier, F., & Ricroch, A. (2018). Genome editing in agricultural biotechnology. In Advances in Botanical Research (Vol. 86, pp. 245–286). Amsterdam: Elsevier.
  • Pinholster, G. (2012). AAAS Board of Directors: Legally mandating gm food labels could “Mislead and Falsely Alarm Consumers.” Retrieved From.
  • Raab, C. A., & Grobe, D. (2003). Labeling genetically engineered food: The consumer’s right to know? AgBioForum, 6(4), 155–161.
  • Rollin, F., Kennedy, J., & Wills, J. (2011). Consumers and new food technologies. Trends in Food Science & Technology, 22(2–3), 99–111. doi:10.1016/j.tifs.2010.09.001
  • Ryffel, G. U. (2014). Transgene flow: Facts, speculations and possible countermeasures. GM Crops & Food, 5(4), 249–258.
  • Sánchez, M. A., & León, G. (2016). Status of market, regulation and research of genetically modified crops in Chile. New Biotechnology, 33(6), 815–823.
  • Santoso, T. J., Trijatmiko, K. R., Char, S. N., Yang, B., & Wang, K. (2020). Targeted mutation of GA20ox-2 gene using CRISPR/Cas9 system generated semi-dwarf phenotype in rice. IOP Conference Series: Earth and Environmental Science, 482(1), 012027. doi:10.1088/1755-1315/482/1/012027
  • Sexton, S. (2012). How California’s GMO Labeling Law Could Limit Your Food Choices and Hurt the Poor. Freakonomics: The Hidden Side of Everything.
  • Sheng, X., Sun, Z., Wang, X., Tan, Y., Yu, D., Yuan, G., … Duan, M. (2020). Improvement of the rice “Easy-to-Shatter” Trait via CRISPR/Cas9-mediated mutagenesis of the qSH1 Gene. Frontiers in Plant Science, 11, 619. doi:10.3389/fpls.2020.00619
  • Shen, L., Hua, Y., Fu, Y., Li, J., Liu, Q., Jiao, X., … Wang, K. (2017). Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Science China. Life Sciences, 60(5), 506–515. doi:10.1007/s11427-017-9008-8
  • Shen, C., Que, Z., Xia, Y., Tang, N., Li, D., He, R., & Cao, M. (2017). Knock out of the Annexin Gene OsAnn3 via CRISPR/Cas9-mediated Genome Editing Decreased Cold Tolerance in Rice. Journal of Plant Biology, 60(6), 539–547. doi:10.1007/s12374-016-0400-1
  • Shen, R., Wang, L., Liu, X., Wu, J., Jin, W., Zhao, X., … Liu, Y.-G. (2017). Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nature Communications, 8(1), 1–10. doi:10.1038/s41467-017-01400-y
  • Shew, A. M., Nalley, L. L., Danforth, D. M., Dixon, B. L., Nayga, R. M., Jr, Delwaide, A., & Valent, B. (2016). Are all GMO s the same? Consumer acceptance of cisgenic rice in India. Plant Biotechnology Journal, 14(1), 4–7. doi:10.1111/pbi.12442
  • Shew, A. M., Nalley, L. L., Snell, H. A., Nayga, R. M., & Dixon, B. L. (2018). CRISPR versus GMOs: Public acceptance and valuation. Global Food Security, 19(September), 71–80. doi:10.1016/j.gfs.2018.10.005
  • Shimatani, Z., Fujikura, U., Ishii, H., Matsui, Y., Suzuki, M., Ueke, Y., … Kondo, A. (2018). Plant Physiology and Biochemistry Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiology and Biochemistry, 131(February), 78–83. doi:10.1016/j.plaphy.2018.04.028
  • Shimatani, Z., Fujikura, U., Ishii, H., Terada, R., Nishida, K., & Kondo, A. (2018). Data in brief herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice. Data in Brief, 20, 1325–1331. doi:10.1016/j.dib.2018.08.124
  • Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., … Kondo, A. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology, 35(5), 441–443. doi:10.1038/nbt.3833
  • Shufen, C., Yicong, C., Baobing, F., Guiai, J., Zhonghua, S., Ju, L., … Xiangjin, W. (2019). Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation. Rice Science, 26(2), 77–87. doi:https://doi.org/10.1016/j.rsci.2018.07.001
  • Srivastava, V., Underwood, J. L., & Zhao, S. (2017). Dual-targeting by CRISPR/Cas9 for precise excision of transgenes from rice genome. Plant Cell, Tissue and Organ Culture, 129(1), 153–160. doi:10.1007/s11240-016-1166-3
  • Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J., & Mateo, J. L. (2015). CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool. PloS One, 10(4), e0124633 doi:10.1371/journal.pone.0124633. PMC: 25909470
  • Sun, Y., Jiao, G., Liu, Z., Zhang, X., Li, J., & Guo, X. (2017). Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science, 8(March), 1–15. doi:10.3389/fpls.2017.00298
  • Tang, L., Mao, B., Li, Y., Lv, Q., Zhang, L., Chen, C., … Zhao, B. (2017). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports, 7(1), 1–12. doi:10.1038/s41598-017-14832-9
  • Tsatsakis, A. M., Nawaz, M. A., Kouretas, D., Balias, G., Savolainen, K., Tutelyan, V. A., … Chung, G. (2017). Environmental impacts of genetically modified plants: A review. Environmental Research, 156, 818–833. doi:10.1016/j.envres.2017.03.011
  • Usman, B., Nawaz, G., Zhao, N., Liu, Y., & Li, R. (2020). (Oryza sativa L.) Lines by CRISPR/Cas9 Targeted P450 Gene Family and OsBADH2 and Transcriptome and Proteome Profiling of Revealed Changes, 1–27.
  • Wang, F.-Z., Chen, M.-X., Yu, L.-J., Xie, L.-J., Yuan, L.-B., Qi, H., … Chen, Q.-F. (2017). OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Frontiers in Plant Science, 8, 1868. doi:10.3389/fpls.2017.01868
  • Wang, Y., Geng, L., Yuan, M., Wei, J., Jin, C., Li, M., … Li, X. (2017). Deletion of a target gene in Indica rice via CRISPR/Cas9. Plant Cell Reports, 36(8), 1333–1343. doi:10.1007/s00299-017-2158-4
  • Wang, C., Liu, Q., Shen, Y., Hua, Y., Wang, J., & Lin, J. (2018). Clonal seeds in hybrid rice using CRISPR/Cas9, 1–19.
  • Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., & Gao, Y. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922 PLoS One, 11 (4), e0154027. doi: 10.1371/journal.pone.0154027
  • Wang, G., Wang, C., Lu, G., Wang, W., Mao, G., Habben, J. E., … Greene, T. W. (2020). Knockouts of a late flowering gene via CRISPR–Cas9 confer early maturity in rice at multiple field locations. Plant Molecular Biology, 104(1–2), 137–114. doi:10.1007/s11103-020-01031-w
  • Weirich, P. (2007). Labeling genetically modified food: The philosophical and legal debate. New York: Oxford University Press.
  • Whelan, A. I., & Lema, M. A. (2015). Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops & Food, 6(4), 253–265.
  • Wolter, F., & Puchta, H. (2017). Knocking out consumer concerns and regulator ’ s rules: Efficient use of CRISPR/Cas ribonucleoprotein complexes for genome editing in cereals. Genome Biology, 18, 17–19. doi:10.1186/s13059-017-1179-1
  • Wunderlich, S., & Gatto, K. A. (2015). Consumer perception of genetically modified organisms and sources of information. Advances in Nutrition, 6(6), 842–851.
  • Xie, Y., Niu, B., Long, Y., Li, G., Tang, J., Zhang, Y., … Chen, L. (2017). Suppression or knockout of SaF/SaM overcomes the Sa-mediated hybrid male sterility in rice. Journal of Integrative Plant Biology, 59(9), 669–679. doi:10.1111/jipb.12564
  • Xu, Y., Wang, F., Chen, Z., Wang, J., Li, W., Fan, F., … Yang, J. (2020). CRISPR/Cas9-targeted mutagenesis of the OsROS1 gene induces pollen and embryo sac defects in rice. Plant Biotechnology Journal, 18(10), 1–3. doi:10.1111/pbi.13388
  • Xu, R., Yang, Y., Qin, R., Li, H., Qiu, C., Li, L., … Yang, J. (2016). Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 43(8), 529–532. doi:10.1016/j.jgg.2016.07.003
  • Yang, Y., & Hobbs, J. E. (2020). How do cultural worldviews shape food technology perceptions? Evidence from a discrete choice experiment. Journal of Agricultural Economics, 71(2), 465–492. doi:10.1111/1477-9552.12364
  • Young, F., Ho, D., Glynn, D., & Edwards, V. (2015). Endocrine disruption and cytotoxicity of glyphosate and roundup in human JAr cells in vitro. Synthesis, 14, 17.
  • Zafar, K., Khan, M. Z., Amin, I., Mukhtar, Z., Yasmin, S., Arif, M., … Mansoor, S. (2020). Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Frontiers in Plant Science, 11(June), 575–511. doi:10.3389/fpls.2020.00575
  • Zaib, S., Saleem, M., & Khan, I. (2021). CRISPR-Cas9 genome engineering: trends in medicine and health. Mini Reviews in Medicinal Chemistry. doi:10.2174/1389557521666210913112030.
  • Zeng, Y., Wen, J., Zhao, W., Wang, Q., & Huang, W. (2019). Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 With the CRISPR–Cas9 System. Frontiers in Plant Science, 10, 1663.
  • Zhang, C., Srivastava, A. K., & Sadanandom, A. (2019). Targeted mutagenesis of the SUMO protease, Overly Tolerant to Salt1 in rice through CRISPR/Cas9-mediated genome editing reveals a major role of this SUMO protease in salt tolerance. BioRxiv, 555706.
  • Zhang, X.-H., Tee, L. Y., Wang, X.-G., Huang, Q.-S., & Yang, S.-H. (2015). Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy. Nucleic Acids, 4, e264.
  • Zhang, J., Zhang, H., Botella, J. R., & Zhu, J. (2018). Generation of new glutinous rice by CRISPR/Cas9‐targeted mutagenesis of the Waxy gene in elite rice varieties. Journal of Integrative Plant Biology, 60(5), 369–375.
  • Zhou, H., He, M., Li, J., Chen, L., Huang, Z., & Zheng, S. (2016). Development of Commercial Thermo-sensitive Genic Male Sterile Rice Accelerates Hybrid Rice Breeding Using the CRISPR/Cas9- mediated TMS5 Editing System. Scientific reports, 6(1), 1-12. doi:10.1038/srep37395
  • Zhou, X., Liao, H., Chern, M., Yin, J., Chen, Y., Wang, J., … Chen, X. (2018). Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 3174–3179. doi:10.1073/pnas.1705927115
  • Zhou, J., Peng, Z., Long, J., Sosso, D., Liu, B., Eom, J.-S., … Yang, B. (2015). Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. The Plant Journal, 82(4), 632–643. doi:10.1111/tpj.12838
  • Zhou, J., Xin, X., He, Y., Chen, H., Li, Q., Tang, X., … Zhang, Y. (2019). Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Reports, 38(4), 475–485. doi:10.1007/s00299-018-2340-3
  • Zilberman, D., Holland, T. G., & Trilnick, I. (2018). Agricultural GMOs—what we know and where scientists disagree. Sustainability, 10(5), 1514. doi:10.3390/su10051514
  • Zischewski, J., Fischer, R., & Bortesi, L. (2017 Jan- Feb). Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnology Advances, 35(1), 95–104. doi:10.1016/j.biotechadv.2016.12.003. 28011075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.