99
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review of recent preclinical and clinical research on ligand-targeted liposomes as delivery systems in triple negative breast cancer therapy

, &
Received 03 Nov 2023, Accepted 27 Feb 2024, Published online: 23 Mar 2024

References

  • Łaniewski P, Ilhan ZE, Herbst-Kralovetz MM. The microbiome and gynaecological cancer development, prevention and therapy. Nat Rev Urol. 2020;17(4):232–250. doi: 10.1038/s41585-020-0286-z.
  • Motallebi M, Bhia M, Rajani HF, et al. Naringenin: a potential flavonoid phytochemical for cancer therapy. Life Sci. 2022;305:120752. doi: 10.1016/j.lfs.2022.120752.
  • Subhan MA, Muzibur Rahman M. Recent development in metallic nanoparticles for breast cancer therapy and diagnosis. Chem Rec. 2022;22(7):e202100331. doi: 10.1002/tcr.202100331.
  • Li JJ, Tsang JY, Tse GM. Tumor microenvironment in breast cancer—updates on therapeutic implications and pathologic assessment. Cancers. 2021;13(16):4233. doi: 10.3390/cancers13164233.
  • Sher G, Salman NA, Khan AQ, et al. Epigenetic and breast cancer therapy: promising diagnostic and therapeutic applications. Semin Cancer Biol. 2022;83:152–165. doi: 10.1016/j.semcancer.2020.08.009.
  • Chang J, Mo L, Song J, et al. A pH-responsive mesoporous silica nanoparticle-based drug delivery system for targeted breast cancer therapy. J Mater Chem B. 2022;10(17):3375–3385. doi: 10.1039/d1tb02828f.
  • Jiang Y, Jiang Z, Wang M, et al. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev. 2022;180:114034. doi: 10.1016/j.addr.2021.114034.
  • Kumar H, Gupta NV, Jain R, et al. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res. 2023;54:271–292. doi: 10.1016/J.JARE.2023.02.005.
  • Tarantino P, Corti C, Schmid P, et al. Immunotherapy for early triple negative breast cancer: research agenda for the next decade. NPJ Breast Cancer. 2022;8(1):23. doi: 10.1038/s41523-022-00386-1.
  • Bianchini G, De Angelis C, Licata L, et al. Treatment landscape of triple-negative breast cancer—expanded options, evolving needs. Nat Rev Clin Oncol. 2021;19(2):91–113. doi: 10.1038/s41571-021-00565-2.
  • Zagami P, Carey LA. Triple negative breast cancer: pitfalls and progress. NPJ Breast Cancer. 2022;8(1):95. doi: 10.1038/s41523-022-00468-0.
  • Li Y, Zhang H, Merkher Y, et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol. 2022;15(1):1–30. doi: 10.1186/s13045-022-01341-0.
  • Liao M, Zhang J, Wang G, et al. Small-molecule drug discovery in triple negative breast cancer: current situation and future directions. J Med Chem. 2021;64(5):2382–2418. doi: 10.1021/acs.jmedchem.0c01180.
  • Jing Z, Du Q, Zhang X, et al. Nanomedicines and nanomaterials for cancer therapy: progress, challenge and perspectives. Chem Eng J. 2022;446:137147. doi: 10.1016/j.cej.2022.137147.
  • Li Y, Zheng X, Chu Q. Bio-based nanomaterials for cancer therapy. Nano Today. 2021;38:101134. doi: 10.1016/j.nantod.2021.101134.
  • Cheng Z, Li M, Dey R, et al. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85. doi: 10.1186/s13045-021-01096-0.
  • Fei W, Zhang M, Fan X, et al. Engineering of bioactive metal sulfide nanomaterials for cancer therapy. doi: 10.1186/s12951-021-00839-y.
  • Pourmadadi M, Mahdi Eshaghi M, Ostovar S, et al. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: drug delivery applications. J Drug Deliv Sci Technol. 2023;82:104357. doi: 10.1016/j.jddst.2023.104357.
  • Alavi M, Mozafari MR, Hamblin MR, et al. Industrial-scale methods for the manufacture of liposomes and nanoliposomes: pharmaceutical, cosmetic, and nutraceutical aspects. Micro Nano Bio Asp. 2022;1:26–35.
  • Fu S, Chang L, Liu S, et al. Temperature sensitive liposome based cancer nanomedicine enables tumour lymph node immune microenvironment remodelling. Nat Commun. 2023;14(1):1–17. doi: 10.1038/s41467-023-38014-6.
  • Hajimolaali M, Mohammadian H, Torabi A, et al. Application of chloroquine as an endosomal escape enhancing agent: new frontiers for an old drug. Expert Opin Drug Deliv. 2021;18(7):877–889. doi: 10.1080/17425247.2021.1873272.
  • Maghsoudnia N, Edalat M, Hajimolaali M, et al. Liposomal supplements. Liposomes Funct. Foods Nutraceuticals. 2022;:235–278.
  • Askarizadeh A, Mashreghi M, Mirhadi E, et al. Doxorubicin-loaded liposomes surface engineered with the matrix metalloproteinase-2 cleavable polyethylene glycol conjugate for cancer therapy. Cancer Nanotechnol. 2023;14(1):18. doi: 10.1186/s12645-023-00169-8.
  • Fu F, Wang W, Wu L, et al. Inhalable biomineralized liposomes for cyclic Ca2+-burst-centered endoplasmic reticulum stress enhanced lung cancer ferroptosis therapy. ACS Nano. 2023;17(6):5486–5502. doi: 10.1021/acsnano.2c10830.
  • Gopi S, Balakrishnan P. Liposomes for functional foods and nutraceuticals : from research to application. n.d.
  • Trapani A, Mandracchia D, Tripodo G, et al. Protection of dopamine towards autoxidation reaction by encapsulation into non-coated- or chitosan- or thiolated chitosan-coated-liposomes. Colloids Surf B Biointerfaces. 2018;170:11–19. doi: 10.1016/j.colsurfb.2018.05.049.
  • Aloisio C, Antimisiaris SG, Longhi MR. Liposomes containing cyclodextrins or meglumine to solubilize and improve the bioavailability of poorly soluble drugs. J Mol Liq. 2017;229:106–113. doi: 10.1016/j.molliq.2016.12.035.
  • Ashrafizadeh M, Delfi M, Zarrabi A, et al. Stimuli-responsive liposomal nanoformulations in cancer therapy: pre-clinical & clinical approaches. J Control Release. 2022;351:50–80. doi: 10.1016/j.jconrel.2022.08.001.
  • Li X, Widjaya AS, Liu J, et al. Cell-penetrating corosolic acid liposome as a functional carrier for delivering chemotherapeutic drugs. Acta Biomater. 2020;106:301–313. doi: 10.1016/j.actbio.2020.02.013.
  • Moosavian SA, Bianconi V, Pirro M, et al. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin Cancer Biol. 2021;69:337–348. doi: 10.1016/j.semcancer.2019.09.025.
  • Li J, Zhou S, Yu J, et al. Low dose shikonin and anthracyclines coloaded liposomes induce robust immunogenetic cell death for synergistic chemo-immunotherapy. J Control Release. 2021;335:306–319. doi: 10.1016/j.jconrel.2021.05.040.
  • Muñoz-Shugulí C, Vidal CP, Cantero-López P, et al. Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends Food Sci. Technol. 2021;108:177–186. doi: 10.1016/j.tifs.2020.12.020.
  • Papadia K, Markoutsa E, Antimisiaris SG. How do the physicochemical properties of nanoliposomes affect their interactions with the hCMEC/D3 cellular model of the BBB? Int J Pharm. 2016;509(1–2):431–438. doi: 10.1016/j.ijpharm.2016.06.019.
  • Meagher RB, Lewis ZA, Ambati S, et al. DectiSomes: C-type lectin receptor-targeted liposomes as pan-antifungal drugs. Adv Drug Deliv Rev. 2023;196:114776. doi: 10.1016/j.addr.2023.114776.
  • Shan H, Sun X, Liu X, et al. One-Step formation of targeted liposomes in a versatile microfluidic mixing device. Small. 2023;19(7):e2205498. doi: 10.1002/smll.202205498.
  • Zhu W, Yu H, Jia M, et al. Multi-targeting liposomal codelivery of cisplatin and rapamycin inhibits pancreatic cancer growth and metastasis through stromal modulation. Int J Pharm. 2023;644:123316. doi: 10.1016/j.ijpharm.2023.123316.
  • Luiz MT, Dutra JAP, Tofani, et al. Targeted liposomes: a nonviral gene delivery system for cancer therapy. Pharm. 2022;14(4):821. doi: 10.3390/pharmaceutics14040821.
  • Ismail M, Yang W, Li Y, et al. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma. Biomaterials. 2022;287:121608. doi: 10.1016/j.biomaterials.2022.121608.
  • Wang S, Chen Y, Guo J, et al. Liposomes for tumor targeted therapy: a review. Int J Mol Sci. 2023;24(3):2643. doi: 10.3390/ijms24032643.
  • Mukherjee A, Bisht B, Dutta S, et al. Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy. Acta Pharmacol Sin. 2022;43(11):2759–2776. doi: 10.1038/s41401-022-00902-w.
  • Mojarad-Jabali S, Farshbaf M, Walker PR, et al. An update on actively targeted liposomes in advanced drug delivery to glioma. Int J Pharm. 2021;602:120645. doi: 10.1016/j.ijpharm.2021.120645.
  • Moosavian SA, Kesharwani P, Singh V, et al. Aptamer-functionalized liposomes for targeted cancer therapy. Aptamers Eng Nanocarriers Cancer Ther. 2023;:141–172.
  • Saraf S, Jain A, Tiwari A, et al. Advances in liposomal drug delivery to cancer: an overview. J Drug Deliv Sci Technol. 2020;56:101549. doi: 10.1016/j.jddst.2020.101549.
  • Tenchov R, Bird R, Curtze AE, et al. Lipid nanoparticles from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982–17015. doi: 10.1021/acsnano.1c04996.
  • Nel J, Elkhoury K, Velot É, et al. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater. 2023;24:401–437. doi: 10.1016/j.bioactmat.2022.12.027.
  • Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021;601:120571. doi: 10.1016/j.ijpharm.2021.120571.
  • Jiang L, Zhou S, Zhang X, et al. Mitochondrion-specific dendritic lipopeptide liposomes for targeted sub-cellular delivery. Nat Commun. 2021;12(1):1–12. doi: 10.1038/s41467-021-22594-2.
  • Belfiore L, Saunders DN, Ranson M, et al. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: challenges and opportunities. J Control Release. 2018;277:1–13. doi: 10.1016/j.jconrel.2018.02.040.
  • George TA, Hsu CC, Meeson A, et al. Nanocarrier-based targeted therapies for myocardial infarction. Pharm. 2022;14(5):930. doi: 10.3390/pharmaceutics14050930.
  • Raza F, Evans L, Motallebi M, et al. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomater. 2023;157:1–23. doi: 10.1016/j.actbio.2022.12.013.
  • Sonju JJ, Dahal A, Singh SS, et al. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J Control Release. 2021;329:624–644. doi: 10.1016/j.jconrel.2020.09.055.
  • Charkhat Gorgich EA, Kasbiyan H, Shabani R, et al. Smart chlorotoxin-functionalized liposomes for sunitinib targeted delivery into glioblastoma cells. J Drug Deliv Sci Technol. 2022;77:103908. doi: 10.1016/j.jddst.2022.103908.
  • Zhang N, Shu G, Qiao E, et al. DNA-Functionalized liposomes in vivo fusion for NIR-II/MRI guided pretargeted ferroptosis therapy of metastatic breast cancer. ACS Appl Mater Interfaces. 2022;14(18):20603–20615. doi: 10.1021/acsami.2c01105.
  • Si Y, Zhang Y, Ngo HG, et al. Targeted liposomal chemotherapies to treat triple-negative breast cancer. Cancers. 2021;13(15):3749. doi: 10.3390/cancers13153749.
  • van der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthc Mater. 2022;11:2100639.
  • Abbasi H, Rahbar N, Kouchak M, et al. Functionalized liposomes as drug nanocarriers for active targeted cancer therapy: a systematic review. J Liposome Res. 2022;32(2):195–210. doi: 10.1080/08982104.2021.1903035.
  • Cheng Q, Yang Z, Quan X, et al. Tumor polyamines as guest cues attract host-functionalized liposomes for targeting and hunting via a bio-orthogonal supramolecular strategy. Theranostics. 2023;13(2):611–620. doi: 10.7150/thno.80857.
  • Liu Y, Castro Bravo KM, Liu J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horiz. 2021;6(2):78–94. doi: 10.1039/D0NH00605J.
  • Ibrahim M, Abuwatfa WH, Awad NS, et al. Encapsulation, release, and cytotoxicity of doxorubicin loaded in liposomes, micelles, and metal-organic frameworks: a review. Pharm. 2022;14(2):254. doi: 10.3390/pharmaceutics14020254.
  • Negro R, Mastrogiacomo R, Carrieri L, et al. Encapsulation of MCC950 in liposomes decorated with anti-frizzled 1 improves drug bioavailability and effectiveness in fatty liver disease. ACS Appl Mater Interfaces. 2023;15(28):33322–33334. doi: 10.1021/acsami.3c04206.
  • Palchetti S, Caputo D, Digiacomo L, et al. Protein corona fingerprints of liposomes: New opportunities for targeted drug delivery and early detection in pancreatic cancer. Pharm. 2019;11(1):31. doi: 10.3390/pharmaceutics11010031.
  • Ma Z, Xiang X, Li S, et al. Targeting hypoxia-inducible factor-1, for cancer treatment: recent advances in developing small-molecule inhibitors from natural compounds. Semin. Cancer Biol. 2022;80:379–390. doi: 10.1016/j.semcancer.2020.09.011.
  • Shah H, Madni A, Khan MM, et al. pH-responsive liposomes of dioleoyl phosphatidylethanolamine and cholesteryl hemisuccinate for the enhanced anticancer efficacy of cisplatin. Pharm. 2022;14(1):129. doi: 10.3390/pharmaceutics14010129.
  • Rommasi F, Esfandiari N. Liposomal nanomedicine: applications for drug delivery in cancer therapy. Nanoscale Res Lett. 2021;16:1–20.
  • Liu XL, Dong X, Yang SC, et al. Biomimetic liposomal nanoplatinum for targeted cancer chemophototherapy. Adv Sci. 2021;8(8):2003679. doi: 10.1002/advs.202003679.
  • Gkionis L, Campbell RA, Aojula H, et al. Manufacturing drug co-loaded liposomal formulations targeting breast cancer: influence of preparative method on liposomes characteristics and in vitro toxicity. Int J Pharm. 2020;590:119926. doi: 10.1016/j.ijpharm.2020.119926.
  • Peng T, Xu W, Li Q, et al. Pharmaceutical liposomal delivery—specific considerations of innovation and challenges. Biomater Sci. 2022;11(1):62–75. doi: 10.1039/d2bm01252a.
  • Chen C, Zhou Y, Chen C, et al. Quantification of available ligand density on the surface of targeted liposomal nanomedicines at the single-particle level. ACS Nano. 2022;16(4):6886–6897. doi: 10.1021/acsnano.2c02084.
  • Emami F, Duwa R, Banstola A, et al. Dual receptor specific nanoparticles targeting EGFR and PD-L1 for enhanced delivery of docetaxel in cancer therapy. Biomed Pharmacother. 2023;165:115023. doi: 10.1016/j.biopha.2023.115023.
  • Li Y, Cong H, Wang S, et al. Liposomes modified with bio-substances for cancer treatment. Biomater Sci. 2020;8(23):6442–6468. doi: 10.1039/D0BM01531H.
  • Khafoor AA, Karim AS, Sajadi SM. Recent progress in synthesis of nano based liposomal drug delivery systems: a glance to their medicinal applications. Results Surf Interf. 2023;11:100124. doi: 10.1016/j.rsurfi.2023.100124.
  • Noble GT, Stefanick JF, Ashley JD, et al. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32(1):32–45. doi: 10.1016/j.tibtech.2013.09.007.
  • Gierlich P, Mata AI, Donohoe C, et al. Ligand-targeted delivery of photosensitizers for cancer treatment. Mol. 2020;25(22):5317. doi: 10.3390/molecules25225317.
  • Eroğlu İ, İbrahim M. Liposome–ligand conjugates: a review on the current state of art. J. Drug Target. 2020;28(3):225–244. doi: 10.1080/1061186X.2019.1648479.
  • Naik H, Sonju JJ, Singh S, et al. Lipidated peptidomimetic ligand-functionalized HER2 targeted liposome as Nano-Carrier designed for doxorubicin delivery in cancer therapy. Pharm. 2021;14(3):221. doi: 10.3390/ph14030221.
  • Yan W, Leung SSY, To KKW. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine. 2019;15(3):303–318. doi: 10.2217/nnm-2019-0308.
  • Mesquita BS, Fens MHAM, Di Maggio A, et al. The impact of nanobody density on the targeting efficiency of PEGylated liposomes. Int J Mol Sci. 2022;23(23):14974. 10.3390/ijms232314974
  • Jiang Z, Guan J, Qian J, et al. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater Sci. 2019;7(2):461–471. doi: 10.1039/C8BM01340C.
  • El-Tanani M, Nsairat H, Aljabali AA, et al. Dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer. Expert Opin. Drug Deliv. 2024;21(2):309–324. doi: 10.1080/17425247.2024.2311812.
  • Shi L, Gu H. Cell membrane-camouflaged liposomes and neopeptide-loaded liposomes with TLR agonist R848 provides a prime and boost strategy for efficient personalized cancer vaccine therapy. Nanomedicine. 2023;48:102648. doi: 10.1016/j.nano.2022.102648.
  • Xu M, Yang Y, Yuan Z. Breast cancer cell membrane camouflaged lipid nanoparticles for tumor-targeted NIR-II phototheranostics. Pharmaceutics. 2022;14(7):1367. doi: 10.3390/pharmaceutics14071367.
  • Jin F, Qi J, Liu D, et al. Cancer-cell-biomimetic upconversion nanoparticles combining chemo-photodynamic therapy and CD73 blockade for metastatic triple-negative breast cancer. J Control Release. 2021;337:90–104. doi: 10.1016/j.jconrel.2021.07.021.
  • Xu CH, Ye PJ, Zhou YC, et al. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomater. 2020;105:1–14. doi: 10.1016/j.actbio.2020.01.036.
  • Zhang R, Wu S, Ding Q, et al. Recent advances in cell membrane-camouflaged nanoparticles for inflammation therapy. Drug Deliv. 2021;28(1):1109–1119. doi: 10.1080/10717544.2021.1934188.
  • Miao Y, Yang Y, Guo L, et al. Cell membrane-camouflaged nanocarriers with biomimetic deformability of erythrocytes for ultralong circulation and enhanced cancer therapy. ACS Nano. 2022;16(4):6527–6540. doi: 10.1021/acsnano.2c00893.
  • Zhao YZ, Shen BX, Li XZ, et al. Tumor cellular membrane camouflaged liposomes as a non-invasive vehicle for genes: specific targeting toward homologous gliomas and traversing the blood–brain barrier. Nanoscale. 2020;12(28):15473–15494. doi: 10.1039/d0nr04212a.
  • Dhas N, García MC, Kudarha R, et al. Advancements in cell membrane camouflaged nanoparticles: a bioinspired platform for cancer therapy. J. Control. Release. 2022;346:71–97. doi: 10.1016/j.jconrel.2022.04.019.
  • Zhu L, Zhong Y, Wu S, et al. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics. Mater Today Bio. 2022;14:100228. doi: 10.1016/j.mtbio.2022.100228.
  • Khan N, Dhritlahre RK, Saneja A, et al. Recent advances in dual-ligand targeted nanocarriers for cancer therapy. Drug Discov. Today. 2022;27(8):2288–2299., doi: 10.1016/j.drudis.2022.04.011.
  • Marqués-Gallego P, De Kroon AIPM. Ligation strategies for targeting liposomal nanocarriers. Biomed Res. Int. 2014;2014:1–12. doi: 10.1155/2014/129458.
  • Riaz MK, Riaz MA, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci. 2018;19(1):195. doi: 10.3390/ijms19010195.
  • Li J, Tan T, Zhao L, et al. Recent advancements in liposome-targeting strategies for the treatment of gliomas: a systematic review. ACS Appl Bio Mater. 2020;3(9):5500–5528. doi: 10.1021/acsabm.0c00705.
  • Almeida B, Nag OK, Rogers KE, et al. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Mol. 2020;25(23):5672. doi: 10.3390/molecules25235672.
  • Kumari L, Mishra L, Patel P, et al. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer. J. Drug Target. 2023;31(9):889–907. doi: 10.1080/1061186X.2023.2245579.
  • Sun X, Tang H, Chen Y, et al. Loss of the receptors ER, PR and HER2 promotes USP15-dependent stabilization of PARP1 in triple-negative breast cancer. Nat Cancer. 2023;4(5):716–733. doi: 10.1038/s43018-023-00535-w.
  • Barzaman K, Karami J, Zarei Z, et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol. 2020;84:106535. doi: 10.1016/j.intimp.2020.106535.
  • Rej RK, Thomas JE, Acharyya RK, et al. Targeting the estrogen receptor for the treatment of breast cancer: recent advances and challenges. J Med Chem. 2023;66(13):8339–8381. doi: 10.1021/acs.jmedchem.3c00136.
  • Mercogliano MF, Bruni S, Mauro FL, et al. Emerging targeted therapies for HER2-Positive breast cancer. Cancers (Basel). 2023;15(7):1987. doi: 10.3390/cancers15071987.
  • Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2022;22(2):101–126. doi: 10.1038/s41573-022-00579-0.
  • Si Y, Chen K, Ngo HG, et al. Targeted EV to deliver chemotherapy to treat triple-negative breast cancers. Pharm. 2022;14(1):146. doi: 10.3390/pharmaceutics14010146.
  • Agostinetto E, Gligorov J, Piccart M. Systemic therapy for early-stage breast cancer: learning from the past to build the future. Nat Rev Clin Oncol. 2022;19(12):763–774. doi: 10.1038/s41571-022-00687-1.
  • Egebe IA, Singh KK. Nanoparticle-Based therapeutics for triple negative breast cancer. Drug Ther. Dev. Triple Negat. Breast Cancer. 2023;:249–272.
  • Marra A, Trapani D, Viale G, et al. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer. 2020;6(1):54. doi: 10.1038/s41523-020-00197-2.
  • da Silva JL, Cardoso Nunes NC, Izetti P, et al. Triple negative breast cancer: a thorough review of biomarkers. Crit. Rev. Oncol. Hematol. 2020;145:102855. doi: 10.1016/j.critrevonc.2019.102855.
  • Azari M, Bahreini F, Uversky VN, et al. Current therapeutic approaches and promising perspectives of using bioengineered peptides in fighting chemoresistance in triple-negative breast cancer. Biochem Pharmacol. 2023;210:115459. doi: 10.1016/j.bcp.2023.115459.
  • Duffy C, Sorolla A, Wang E, et al. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precis Oncol. 2020;4:1–16.
  • Coussy F, Lavigne M, de Koning L, et al. Response to mTOR and PI3K inhibitors in enzalutamide-resistant luminal androgen receptor triple-negative breast cancer patient-derived xenografts. Theranostics. 2020;10(4):1531–1543. doi: 10.7150/thno.36182.
  • Wu HT, Lin J, Liu YE, et al. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. Phytomedicine. 2021;81:153437. doi: 10.1016/j.phymed.2020.153437.
  • Kaul K, Misri S, Ramaswamy B, et al. Contribution of the tumor and obese microenvironment to triple negative breast cancer. Cancer Lett. 2021;509:115–120. doi: 10.1016/j.canlet.2021.03.024.
  • Linares RL, Benítez JGS, Reynoso MO, et al. Modulation of the leptin receptors expression in breast cancer cell lines exposed to leptin and tamoxifen. Sci Rep. 2019;9(1):1–9. doi: 10.1038/s41598-019-55674-x.
  • Duarte-Sanmiguel S, Salazar-Puerta AI, Panic A, et al. ICAM-1-decorated extracellular vesicles loaded with miR-146a and Glut1 drive immunomodulation and hinder tumor progression in a murine model of breast cancer. Biomater Sci. 2023;11(20):6834–6847. doi: 10.1039/D3BM00573A.
  • Li D, Hemati H, Park Y, et al. ICAM-1-suPAR-CD11b axis is a novel therapeutic target for metastatic triple-negative breast cancer. Cancers. 2023;15(10):2734. doi: 10.3390/cancers15102734.
  • Chen X, Feng L, Huang Y, et al. Mechanisms and strategies to overcome PD-1/PD-L1 blockade resistance in triple-negative breast cancer. Cancers. 2022;15(1):104. doi: 10.3390/cancers15010104.
  • Qiu Y, Yang Y, Yang R, et al. Activated T cell-derived exosomal PD-1 attenuates PD-L1-induced immune dysfunction in triple-negative breast cancer. Oncogene. 2021;40(31):4992–5001. doi: 10.1038/s41388-021-01896-1.
  • Shamis SAK, McMillan DC, Edwards J. The relationship between hypoxia-inducible factor 1α (HIF-1α) and patient survival in breast cancer: Systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021;159:103231. doi: 10.1016/j.critrevonc.2021.103231.
  • Xiang L, Semenza GL. Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy. Adv Cancer Res. 2019;141:175–212. doi: 10.1016/bs.acr.2018.11.001.
  • Ma W, Yang Y, Zhu J, et al. Biomimetic Nanoerythrosome-Coated aptamer–DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv. Mater. 2022;34:2109609.
  • Wu Q, You L, Nepovimova E, et al. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol. 2022;15(1):77. doi: 10.1186/s13045-022-01292-6.
  • Malavia, N., Kuche, K., Ghadi, R., Jain, S., 2021. A bird’s eye view of the advanced approaches and strategies for overshadowing triple negative breast cancer. J Control Release 330, 72–100. doi: 10.1016/j.jconrel.2020.12.012.
  • Greer YE, Gilbert SF, Gril B, et al. MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21(1):1–17. doi: 10.1186/s13058-019-1116-1.
  • Liu L, Wang Y, Miao L, et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther. 2018;26(1):45–55. doi: 10.1016/j.ymthe.2017.10.020.
  • Yamashita N, Fushimi A, Morimoto Y, et al. Targeting MUC1-C suppresses chronic activation of cytosolic nucleotide receptors and STING in triple-negative breast cancer. Cancers. 2022;14(11):2580. doi: 10.3390/cancers14112580.
  • Zhang S, Chen X, Wu C, et al. Novel sphingosine kinase 1 inhibitor suppresses growth of solid tumor and inhibits the lung metastasis of triple-negative breast cancer. J Med Chem. 2022;65(11):7697–7716. doi: 10.1021/acs.jmedchem.2c00040.
  • Gu H, Shi R, Xu C, et al. EGFR-Targeted liposomes combined with ginsenoside Rh2 inhibit triple-negative breast cancer growth and metastasis. Bioconjugate Chem. 2023;34(6):1157–1165. doi: 10.1021/acs.bioconjchem.3c00207.
  • Ren H, He Y, Liang J, et al. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl Mater Interfaces. 2019;11(22):20304–20315. doi: 10.1021/acsami.8b22693.
  • Makwana V, Karanjia J, Haselhorst T, et al. Liposomal doxorubicin as targeted delivery platform: Current trends in surface functionalization. Int J Pharm. 2021;593:120117. doi: 10.1016/j.ijpharm.2020.120117.
  • Chaudhuri A, Kumar DN, Shaik RA, et al. Lipid-Based nanoparticles as a pivotal delivery approach in triple negative breast cancer (TNBC) therapy. IJMS. 2022;23(17):10068. doi: 10.3390/ijms231710068.
  • Wang J, Zhu M, Nie G. Biomembrane-based nanostructures for cancer targeting and therapy: from synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev. 2021;178:113974. doi: 10.1016/j.addr.2021.113974.
  • Takata H, Shimizu T, Yamade R, et al. Anti-PEG IgM production induced by PEGylated liposomes as a function of administration route. J Control Release. 2023;360:285–292. doi: 10.1016/j.jconrel.2023.06.027.
  • Wang H, Lin S, Wu X, et al. Interplay between liposomes and IgM: principles, challenges, and opportunities. Adv. Sci. 2023;10(20):2301777. doi: 10.1002/advs.202301777.
  • Parveen N, Abourehab MAS, Shukla R, et al. Immunoliposomes as an emerging nanocarrier for breast cancer therapy. Eur Polym J. 2023;184:111781. doi: 10.1016/j.eurpolymj.2022.111781.
  • Kasenda B, König D, Manni M, et al. Targeting immunoliposomes to EGFR-positive glioblastoma. ESMO Open. 2022;7(1):100365. doi: 10.1016/j.esmoop.2021.100365.
  • Nguyen VD, Min HK, Kim CS, et al. Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids Surf B Biointerfaces. 2019;173:539–548. doi: 10.1016/j.colsurfb.2018.10.013.
  • Chang R, Zou Q, Xing R, et al. Peptide-Based supramolecular nanodrugs as a new generation of therapeutic toolboxes against cancer. Adv. Ther. 2019;2:1900048.
  • Duro-Castano A, Borrás C, Herranz-Pérez V, et al. Targeting Alzheimer’s disease with multimodal polypeptide-based nanoconjugates. Sci Adv. 2021;7(13) doi: 10.1126/sciadv.abf9180.
  • Zhai B, Chen P, Wang W, et al. An ATF24 peptide-functionalized β-elemene-nanostructured lipid carrier combined with cisplatin for bladder cancer treatment. Cancer Biol Med. 2020;17(3):676–692. doi: 10.20892/j.issn.2095-3941.2020.0454.
  • Guo RC, Zhang XH, Ji L, et al. Recent progress of therapeutic peptide based nanomaterials: from synthesis and self-assembly to cancer treatment. Biomater Sci. 2020;8(22):6175–6189. doi: 10.1039/D0BM01358G.
  • Jash A, Ubeyitogullari A, Rizvi SSH. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. J Mater Chem B. 2021;9(24):4773–4792. doi: 10.1039/D1TB00126D.
  • Zamani P, Teymouri M, Nikpoor AR, et al. Nanoliposomal vaccine containing long multi-epitope peptide E75-AE36 pulsed PADRE-induced effective immune response in mice TUBO model of breast cancer. Eur J Cancer. 2020;129:80–96. doi: 10.1016/j.ejca.2020.01.010.
  • Zhu Y, Meng Y, Zhao Y, et al. Toxicological exploration of peptide-based cationic liposomes in siRNA delivery. Colloids Surf B Biointerfaces. 2019;179:66–76. doi: 10.1016/j.colsurfb.2019.03.052.
  • Lo Giudice C, Zhang H, Wu B, et al. Mechanochemical activation of Class-B G-protein-coupled receptor upon peptide-ligand binding. Nano Lett. 2020;20(7):5575–5582. doi: 10.1021/acs.nanolett.0c02333.
  • Newman MR, Benoit DSW. In vivo translation of peptide-targeted drug delivery systems discovered by phage display. Bioconjug Chem. 2018;29(7):2161–2169. doi: 10.1021/acs.bioconjchem.8b00285.
  • Fatima M, Abourehab MAS, Aggarwal G, et al. Advancement of cell-penetrating peptides in combating triple-negative breast cancer. Drug Discov Today. 2022;27(11):103353. doi: 10.1016/j.drudis.2022.103353.
  • Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Deliv Rev. 2017;110-111:80–101. doi: 10.1016/j.addr.2016.08.005.
  • González-Cruz AO, Hernández-Juárez J, Ramírez-Cabrera MA, et al. Peptide-based drug-delivery systems: a new hope for improving cancer therapy. J Drug Deliv Sci Technol. 2022;72:103362. doi: 10.1016/j.jddst.2022.103362.
  • Wang Q, Jiang N, Fu B, et al. Self-assembling peptide-based nanodrug delivery systems. Biomater Sci. 2019;7(12):4888–4911. doi: 10.1039/c9bm01212e.
  • Liu D, Guo P, McCarthy C, et al. Peptide density targets and impedes triple negative breast cancer metastasis. Nat Commun. 2018;9(1):1–11. doi: 10.1038/s41467-018-05035-5.
  • Liu C, Zhao Z, Gao R, et al. Matrix metalloproteinase-2-responsive surface-Changeable liposomes decorated by multifunctional peptides to overcome the drug resistance of triple-negative breast cancer through enhanced targeting and penetrability. ACS Biomater Sci Eng. 2022;8(7):2979–2994. doi: 10.1021/acsbiomaterials.2c00295.
  • Li S, Xie X, Wang W, et al. Choline phosphate lipid as an intra-crosslinker in liposomes for drug and antibody delivery under guard. Nanoscale. 2022;14(6):2277–2286. doi: 10.1039/d1nr07103c.
  • Chen Z, Kankala RK, Yang Z, et al. Antibody-based drug delivery systems for cancer therapy: mechanisms, challenges, and prospects. Theranostics. 2022;12(8):3719–3746. doi: 10.7150/thno.72594.
  • Ju Y, Lee WS, Pilkington EH, et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano. 2022;16(8):11769–11780. doi: 10.1021/acsnano.2c04543.
  • Jin S, Sun Y, Liang X, et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther. 2022;7:1–28.
  • Marques AC, Costa PC, Velho S, et al. Lipid nanoparticles functionalized with antibodies for anticancer drug therapy. Pharm. 2023;15(1):216. doi: 10.3390/pharmaceutics15010216.
  • Bu J, Nair A, Iida M, et al. An avidity-based PD-L1 antagonist using nanoparticle-antibody conjugates for enhanced immunotherapy. Nano Lett. 2020;20(7):4901–4909. doi: 10.1021/acs.nanolett.0c00953.
  • Marques AC, Costa PJ, Velho S, et al. Functionalizing nanoparticles with cancer-targeting antibodies: a comparison of strategies. J Control Release. 2020;320:180–200. doi: 10.1016/j.jconrel.2020.01.035.
  • Juan A, Cimas FJ, Bravo I, et al. An overview of antibody conjugated polymeric nanoparticles for breast cancer therapy. Pharm. 2020;12(9):802. doi: 10.3390/pharmaceutics12090802.
  • Münter R, Stavnsbjerg C, Christensen E, et al. Unravelling heterogeneities in complement and antibody opsonization of individual liposomes as a function of surface architecture. Small. 2022;18(14):e2106529. doi: 10.1002/smll.202106529.
  • Tao X, Wang X, Liu B, et al. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens Bioelectron. 2020;168:112537. doi: 10.1016/j.bios.2020.112537.
  • Liao WS, Ho Y, Lin YW, et al. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater. 2019;86:395–405. doi: 10.1016/j.actbio.2019.01.025.
  • Marmé F, Schneeweiss A. Targeted therapies in triple-negative breast cancer. Breast Care. 2015;10(3):159–166. doi: 10.1159/000433622.
  • Kwapisz D. Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunol Immunother. 2021;70(3):607–617. doi: 10.1007/s00262-020-02736-z.
  • Emens LA, Adams S, Barrios CH, et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann Oncol. 2021;32(12):1650–1993. doi: 10.1016/j.annonc.2021.05.355.
  • Nabholtz JM, Abrial C, Mouret-Reynier MA, et al. Multicentric neoadjuvant phase II study of panitumumab combined with an anthracycline/taxane-based chemotherapy in operable triple-negative breast cancer: identification of biologically defined signatures predicting treatment impact. Ann Oncol. 2014;25(8):1570–1577. doi: 10.1093/annonc/mdu183.
  • Yin L, Duan JJ, Bian XW, et al. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. doi: 10.1186/s13058-020-01296-5.
  • Al-Mahmood S, Sapiezynski J, Garbuzenko OB, et al. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res. 2018;8(5):1483–1507. doi: 10.1007/s13346-018-0551-3.
  • Facca VJ, Cai Z, Ku A, et al. Adjuvant auger electron-emitting radioimmunotherapy with [111In]in-DOTA-Panitumumab in a mouse model of local recurrence and metastatic progression of human triple-negative breast cancer. Mol Pharmaceutics. 2023;20(12):6407–6419. doi: 10.1021/acs.molpharmaceut.3c00780.
  • Carey LA, Loirat D, Punie K, et al. Sacituzumab govitecan as second-line treatment for metastatic triple-negative breast cancer—phase 3 ASCENT study subanalysis. NPJ Breast Cancer. 2022;8(1):72. doi: 10.1038/s41523-022-00439-5.
  • Olivier T, Prasad V. Sacituzumab govitecan in metastatic triple negative breast cancer (TNBC): four design features in the ASCENT trial potentially favored the experimental arm. Transl Oncol. 2022;15(1):101248. doi: 10.1016/j.tranon.2021.101248.
  • Guo P, Yang J, Liu D, et al. Dual complementary liposomes inhibit triple-negative breast tumor progression and metastasis. Sci Adv. 2019;5(3). doi: 10.1126/sciadv.aav5010.
  • Paoletti A, Ly B, Cailleau C, et al. Liposomal antagomiR-155-5p restores anti-inflammatory macrophages and improves arthritis in pre-clinical models of rheumatoid arthritis. Arthritis Rheumatol. 2023;76(1):18–31. doi: 10.1002/ART.42665.
  • De Leo V, Milano F, Agostiano A, et al. Recent advancements in polymer/liposome assembly for drug delivery: from surface modifications to hybrid vesicles. Polym. 2021;13(7):1027. doi: 10.3390/polym13071027.
  • Lai WF, Wong WT, Rogach AL. Molecular design of layer-by-layer functionalized liposomes for oral drug delivery. ACS Appl Mater Interfaces. 2020;12(39):43341–43351. doi: 10.1021/acsami.0c13504.
  • Willes KL, McFarland SA, Johnson TE, et al. Modulating and modeling the surface ζ potential of hybrid lipid/polymer nanovesicles: implications for surface modification and drug delivery. ACS Appl Nano Mater. 2022;5(10):13820–13828. doi: 10.1021/acsanm.2c01407.
  • Behera A, Padhi S, Nayak AK. Engineered liposomes as drug delivery and imaging agents. Des. Appl. Theranostic Nanomedicines. 2023;75–108.
  • Cao Y, Dong X, Chen X. Polymer-modified liposomes for drug delivery: from fundamentals to applications. Pharm. 2022;14(4):778. doi: 10.3390/pharmaceutics14040778.
  • Singh A, Neupane YR, Shafi S, et al. PEGylated liposomes as an emerging therapeutic platform for oral nanomedicine in cancer therapy: in vitro and in vivo assessment. J Mol Liq. 2020;303:112649. doi: 10.1016/j.molliq.2020.112649.
  • Ghosh B, Biswas S. Polymeric micelles in cancer therapy: state of the art. J Control Release. 2021;332:127–147. doi: 10.1016/j.jconrel.2021.02.016.
  • Wang S, Cheng K, Chen K, et al. Nanoparticle-based medicines in clinical cancer therapy. Nano Today. 2022;45:101512. doi: 10.1016/j.nantod.2022.101512.
  • Aguilera-Garrido A, Molina-Bolívar JA, Gálvez-Ruiz MJ, et al. Mucoadhesive properties of liquid lipid nanocapsules enhanced by hyaluronic acid. J Mol Liq. 2019;296:111965. doi: 10.1016/j.molliq.2019.111965.
  • Jana Sougata Jana Subrata Domb AJ, Abraham J. Polysaccharide-based biomaterials : delivery of therapeutics and biomedical applications. R Soc Chem. 2022;13:604.
  • Maghsoudnia N, Baradaran Eftekhari R, Roshandel M, et al. 2022. Hyaluronic acid in drug delivery. In: Polysaccharide-based biomaterials: delivery of therapeutics and biomedical applications. Royal Society of Chemistry, p. 126.
  • Liu J, Ye Z, Xiang M, et al. Functional extracellular vesicles engineered with lipid-grafted hyaluronic acid effectively reverse cancer drug resistance. Biomaterials. 2019;223:119475. doi: 10.1016/j.biomaterials.2019.119475.
  • Mahmoudi S, Ghorbani M, Sabzichi M, et al. Targeted hyaluronic acid-based lipid nanoparticle for apigenin delivery to induce Nrf2-dependent apoptosis in lung cancer cells. J Drug Deliv Sci Technol. 2019;49:268–276. doi: 10.1016/j.jddst.2018.11.013.
  • Bhattacharya S, Ghosh A, Maiti S, et al. Delivery of thymoquinone through hyaluronic acid-decorated mixed pluronic® nanoparticles to attenuate angiogenesis and metastasis of triple-negative breast cancer. J Control Release. 2020;322:357–374. doi: 10.1016/j.jconrel.2020.03.033.
  • Zhang T, Fu C, Alradwan I, et al. Targeting signaling pathways of hyaluronic acid and integrin receptors by synergistic combination nanocomposites inhibits systemic metastases and primary triple negative breast cancer. Adv Ther. 2021;4:2100022.
  • Wang X, Song Y, Yu L, et al. Co-delivery of hesperetin and cisplatin via hyaluronic acid-modified liposome for targeted inhibition of aggression and metastasis of triple-negative breast cancer. ACS Appl Mater Interfaces. 2023;15(29):34360–34377. doi: 10.1021/acsami.3c03233.
  • Ding Y, Yang R, Yu W, et al. Chitosan oligosaccharide decorated liposomes combined with TH302 for photodynamic therapy in triple negative breast cancer doi: 10.1186/s12951-021-00891-8.
  • Dong S, Bi Y, Sun X, et al. Dual-Loaded liposomes tagged with hyaluronic acid have synergistic effects in triple-negative breast cancer. Small. 2022;18(16):2107690. doi: 10.1002/smll.202107690.
  • Kar A, Rout SR, Giri L, et al. Aptamer-functionalized nanoparticles for targeted cancer therapy. Aptamers Eng Nanocarriers Cancer Ther. 2023;:191–218.
  • Wan Q, Zeng Z, Qi J, et al. Aptamer-armed nanostructures improve the chemotherapy outcome of triple-negative breast cancer. Mol Ther. 2022;30(6):2242–2256. doi: 10.1016/j.ymthe.2022.02.004.
  • Lafi Z, Alshaer W, Hatmal MM, et al. Aptamer-functionalized pH-sensitive liposomes for a selective delivery of echinomycin into cancer cells. RSC Adv. 2021;11(47):29164–29177. doi: 10.1039/D1RA05138E.
  • Sheikh A, Md S, Kesharwani P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother. 2022;146:112530. doi: 10.1016/j.biopha.2021.112530.
  • Sheikh A, Abourehab MAS, Tulbah, et al. Aptamer-grafted, cell membrane-coated dendrimer loaded with doxorubicin as a targeted nanosystem against epithelial cellular adhesion molecule (EpCAM) for triple negative breast cancer therapy. J. Drug Deliv Sci Technol. 2023;86:104745. doi: 10.1016/j.jddst.2023.104745.
  • Kim MW, Jeong HY, Kang SJ, et al. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer. Theranostics. 2019;9(3):837–852. doi: 10.7150/thno.30228.
  • Sauvage F, Fattal E, Al-Shaer W, et al. Antitumor activity of nanoliposomes encapsulating the novobiocin analog 6BrCaQ in a triple-negative breast cancer model in mice. Cancer Lett. 2018;432:103–111. doi: 10.1016/j.canlet.2018.06.001.
  • Alshaer W, Hillaireau H, Vergnaud J, et al. Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. J Control Release. 2018;271:98–106. doi: 10.1016/j.jconrel.2017.12.022.
  • Hu H, Yu L, Ding Z, et al. Chemo–immunotherapy for chemo-resistance and metastasis of triple-negative breast cancer by combination of iron-oxide nanoparticles and dual-targeting doxorubicin liposomes. Chinese Chem Lett. 2023;34(10):108592. doi: 10.1016/j.cclet.2023.108592.
  • Li X, Zhang Z, Gao F, et al. c-Myc-Targeting PROTAC based on a TNA-DNA bivalent binder for combination therapy of triple-negative breast cancer. J Am Chem Soc. 2023;145(16):9334–9342. doi: 10.1021/jacs.3c02619.
  • Fan Y, Wang Q, Lin G, et al. Combination of using prodrug-modified cationic liposome nanocomplexes and a potentiating strategy via targeted co-delivery of gemcitabine and docetaxel for CD44-overexpressed triple negative breast cancer therapy. Acta Biomater. 2017;62:257–272. doi: 10.1016/j.actbio.2017.08.034.
  • Chen M, Miao Y, Qian K, et al. Detachable liposomes combined immunochemotherapy for enhanced triple-negative breast cancer treatment through reprogramming of tumor-associated macrophages. Nano Lett. 2021;21(14):6031–6041. doi: 10.1021/acs.nanolett.1c01210.
  • Chen M, Wang S, Qi Z, et al. Deuterated colchicine liposomes based on oligomeric hyaluronic acid modification enhance anti-tumor effect and reduce systemic toxicity. Int J Pharm. 2023;632:122578. doi: 10.1016/j.ijpharm.2022.122578.
  • Pu Y, Zhang H, Peng Y, et al. Dual-targeting liposomes with active recognition of GLUT5 and αvβ3 for triple-negative breast cancer. Eur J Med Chem. 2019;183:111720. doi: 10.1016/j.ejmech.2019.111720.
  • Matusewicz L, Filip-Psurska B, Psurski M, et al. EGFR-targeted immunoliposomes as a selective delivery system of simvastatin, with potential use in treatment of triple-negative breast cancers. Int J Pharm. 2019;569:118605. doi: 10.1016/j.ijpharm.2019.118605.
  • Gharaibeh L, Alshaer W, Wehaibi S, et al. Fabrication of aptamer-guided siRNA loaded lipopolyplexes for gene silencing of notch 1 in MDA-mb-231 triple negative breast cancer cell line. J Drug Deliv Sci Technol. 2021;65:102733. doi: 10.1016/j.jddst.2021.102733.
  • Meng L, Ren J, Liu Z, et al. Hyaluronic acid-coated shikonin liposomes for the treatment of triple-negative breast cancer via targeting tumor cells and amplification of oxidative stress. J Drug Deliv Sci Technol. 2022;70:103193. doi: 10.1016/j.jddst.2022.103193.
  • Guo P, Yang J, Jia D, et al. ICAM-1-targeted, Lcn2 siRNA-encapsulating liposomes are potent anti-angiogenic agents for triple negative breast cancer. Theranostics. 2016;6(1):1–13. doi: 10.7150/thno.12167.
  • d‘Avanzo N, Torrieri G, Figueiredo P, et al. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int J Pharm. 2021;597:120346., doi: 10.1016/j.ijpharm.2021.120346.
  • Yue G, Wang C, Liu B, et al. Liposomes co-delivery system of doxorubicin and astragaloside IV co-modified by folate ligand and octa-arginine polypeptide for anti-breast cancer. RSC Adv. 2020;10(20):11573–11581. doi: 10.1039/c9ra09040a.
  • De Vita A, Liverani C, Molinaro R, et al. Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer. Sci Rep. 2021;11(1):1–12. doi: 10.1038/s41598-021-84492-3.
  • Jyotsana N, Zhang Z, Himmel LE, et al. Minimal dosing of leukocyte targeting TRAIL decreases triple-negative breast cancer metastasis following tumor resection. Sci Adv. 2019;5(7):4197–4221. doi: 10.1126/sciadv.aaw4197.
  • Zhou F, Feng B, Wang T, et al. Programmed multiresponsive vesicles for enhanced tumor penetration and combination therapy of triple-negative breast cancer. Adv Funct Mater. 2017;27:1606530.
  • Chen C, Shen M, Liao H, et al. A paclitaxel and microRNA-124 coloaded stepped cleavable nanosystem against triple negative breast cancer. J Nanobiotechnol. 2021;19(1):1–17. doi: 10.1186/s12951-021-00800-z.
  • Lu G, Qiu Y, Su X. Targeting CXCL12-CXCR4 signaling enhances immune checkpoint blockade therapy against triple negative breast cancer. Eur J Pharm Sci. 2021;157:105606. doi: 10.1016/j.ejps.2020.105606.
  • Xia J, Zhang S, Zhang R, et al. Targeting therapy and tumor microenvironment remodeling of triple-negative breast cancer by ginsenoside Rg3 based liposomes. J Nanobiotechnology. 2022;20(1):414. doi: 10.1186/s12951-022-01623-2.
  • Doddapaneni R, Patel K, Owaid IH, et al. Tumor neovasculature-targeted cationic PEGylated liposomes of gambogic acid for the treatment of triple-negative breast cancer. Drug Deliv. 2015;23(4):1232–1241. doi: 10.3109/10717544.2015.1124472.
  • Chaudhari D, Katari O, Ghadi R, et al. Unfolding the potency of adenosine in targeting triple negative breast cancer via paclitaxel-incorporated pH-responsive stealth liposomes. ACS Biomater Sci Eng. 2022;8(8):3473–3484. doi: 10.1021/acsbiomaterials.2c00594.
  • Cadinoiu AN, Rata DM, Atanase LI, et al. Aptamer-functionalized liposomes as a potential treatment for basal cell carcinoma. Polym. 2019;11(9):1515. doi: 10.3390/polym11091515.
  • Kim M, Lee JS, Kim W, et al. Aptamer-conjugated nano-liposome for immunogenic chemotherapy with reversal of immunosuppression. J Control Release. 2022;348:893–910. doi: 10.1016/j.jconrel.2022.06.039.
  • Khodarahmi M, Abbasi H, Kouchak M, et al. Nanoencapsulation of aptamer-functionalized 5-fluorouracil liposomes using alginate/chitosan complex as a novel targeting strategy for colon-specific drug delivery. J Drug Deliv Sci Technol. 2022;71:103299. doi: 10.1016/j.jddst.2022.103299.
  • Zhao Y, Xu J, Le VM, et al. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer. Mol Pharm. 2019;16(11):4696–4710. doi: 10.1021/acs.molpharmaceut.9b00867.
  • Zeng Y, Zhao L, Li K, et al. Aptamer-functionalized nanoplatforms overcoming temozolomide resistance in synergistic chemo/photothermal therapy through alleviating tumor hypoxia. Nano Res. 2023;16(7):9859–9872. doi: 10.1007/s12274-023-5742-7.
  • Lamprou E, Mourtas S, Mantzari M, et al. Folic acid—targeted doxorubicin drug delivery system for triple-negative breast cancer treatment. Proc. 2020;78:4.
  • Mantzari M, Gartziou F, Lambrou E, et al. Novel TNBC-targeted DOX-arsonoliposomes. Proc. 2020;78:17.
  • Tang B, Peng Y, Yue Q, et al. Design, preparation and evaluation of different branched biotin modified liposomes for targeting breast cancer. Eur J Med Chem. 2020;193:112204. doi: 10.1016/j.ejmech.2020.112204.
  • Kaur N, Popli P, Tiwary N, et al. Small molecules as cancer targeting ligands: shifting the paradigm. J Control Release. 2023;355:417–433. doi: 10.1016/j.jconrel.2023.01.032.
  • Dutt Y, Pandey RP, Dutt M, et al. Liposomes and phytosomes: nanocarrier systems and their applications for the delivery of phytoconstituents. Coord Chem Rev. 2023;491:215251. doi: 10.1016/j.ccr.2023.215251.
  • Belfiore L, Saunders DN, Ranson M, et al. N-alkylisatin-loaded liposomes target the urokinase plasminogen activator system in breast cancer. Pharm. 2020;12(7):641. doi: 10.3390/pharmaceutics12070641.
  • Luo K, Yang L, Yan C, et al. A dual-targeting liposome enhances triple-negative breast cancer chemoimmunotherapy through inducing immunogenic cell death and inhibiting STAT3 activation. Small. 2023;19(40):2302834. doi: 10.1002/smll.202302834.
  • Hattab D, Bakhtiar A. Bioengineered siRNA-based nanoplatforms targeting molecular signaling pathways for the treatment of triple negative breast cancer: preclinical and clinical advancements. Pharm. 2020;12(10):929. doi: 10.3390/pharmaceutics12100929.
  • Ghosh S, Javia A, Shetty S, et al. Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J. Control. Release. 2021;337:27–58. doi: 10.1016/j.jconrel.2021.07.014.
  • Haque S, Cook K, Sahay G, et al. RNA-based therapeutics: current developments in targeted molecular therapy of triple-negative breast cancer. Pharm. 2021;13(10):1694. doi: 10.3390/pharmaceutics13101694.
  • Sahu R, Jha S, Pattanayak SP. Therapeutic silencing of mTOR by systemically administered siRNA-loaded neutral liposomal nanoparticles inhibits DMBA-induced mammary carcinogenesis. Br J Cancer. 2022;127(12):2207–2219. doi: 10.1038/s41416-022-02011-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.