28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing selegiline hydrochloride efficacy: Box Behnken-optimized liposomal delivery via intranasal route for Parkinson’s disease intervention

, , , , , & show all
Received 14 Feb 2024, Accepted 25 Mar 2024, Published online: 09 Apr 2024

References

  • Gupta BM, Bala A. Parkinson’s disease in India: an analysis of publications output during 2002–2011. Int J Nutr Pharmacol Neurol Dis. 2013;3(3):254–262. doi: 10.4103/2231-0738.114849.
  • Jellinger KA. Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med. 2010;14(3):457–487. doi: 10.1111/j.1582-4934.2010.01010.x.
  • Khot KB, Gopan G, Bandiwadekar A, et al. Current advancements related to phytobioactive compounds based liposomal delivery for neurodegenerative diseases. Ageing Res Rev. 2023;83:101806. doi: 10.1016/j.arr.2022.101806.
  • Bandiwadekar A, Khot KB, Gopan G, et al. Microneedles: a versatile drug delivery carrier for phytobioactive compounds as a therapeutic modulator for targeting mitochondrial dysfunction in the management of neurodegenerative diseases. Curr Neuropharmacol. 2024;22(6):1110–1128. doi: 10.2174/1570159X20666221012142247.
  • Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for Parkinson’s disease: recent advancement. Neurosci Bull. 2017;33(5):585–597. doi: 10.1007/s12264-017-0183-5.
  • Jenner P, Hunot O, Beal K, et al. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53 Suppl 3(S3):S26–S38. doi: 10.1002/ana.10483.
  • Abbas MM, Xu Z, Tan LCS. Epidemiology of Parkinson’s disease—east versus west. Movement Disord Clin Pract. 2018;5(1):14–28. doi: 10.1002/mdc3.12568.
  • Ray Dorsey E, Elbaz A, Nichols E, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2018;17(11):939–953. doi: 10.1016/S1474-4422(18)30295-3.
  • Willis AW, Roberts E, Beck JC, et al. Incidence of Parkinson disease in North America. NPJ Parkinsons Dis. 2022;8(1):170.
  • Cerri S, Mus L, Blandini F. Parkinson’s disease in women and men: what’s the difference? J Parkinsons Dis. 2019;9(3):501–515. doi: 10.3233/JPD-191683.
  • Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–376. doi: 10.1136/jnnp.2007.131045.
  • Joy D, Jose J, Bibi S, et al. Development of microneedle patch loaded with Bacopa monnieri solid lipid nanoparticles for the effective management of Parkinson’s disease. Bioinorg Chem Appl. 2022;2022:9150205. doi: 10.1155/2022/9150205.
  • Josephs KA, Matsumoto JY, Ahlskog JE. Benign tremulous Parkinsonism. Arch Neurol. 2006;63(3):354–357. doi: 10.1001/archneur.63.3.354.
  • Mahul-Mellier AL, Burtscher J, Maharjan N, et al. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc Natl Acad Sci USA. 2020;117(9):4971–4982. doi: 10.1073/pnas.1913904117.
  • Stoker TB, Barker RA. Recent developments in the treatment of Parkinson’s disease. F1000Research. 2020;9:862. doi: 10.12688/f1000research.25634.1.
  • Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of Parkinsonism. N Engl J Med. 1967;276(7):374–379. doi: 10.1056/NEJM196702162760703.
  • Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet. 2004;363(9423):1783–1793. doi: 10.1016/S0140-6736(04)16305-8.
  • Moore TJ, Glenmullen J, Mattison DR. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Intern Med. 2014;174(12):1930–1933. doi: 10.1001/jamainternmed.2014.5262.
  • Alborghetti M, Nicoletti F. Different generations of Type-B monoamine oxidase inhibitors in Parkinson’s disease: from bench to bedside. Curr Neuropharmacol. 2019;17(9):861–873. doi: 10.2174/1570159X16666180830100754.
  • Graves SM, Xie Z, Stout KA, et al. Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nat Neurosci. 2020;23(1):15–20. doi: 10.1038/s41593-019-0556-3.
  • Goldenberg MM. Medical management of Parkinson’s disease. P and T. 2008;33(10):590.
  • Robakis D, Fahn S. Defining the role of the monoamine oxidase-B inhibitors for Parkinson’s disease. CNS Drugs. 2015;29(6):433–441. doi: 10.1007/s40263-015-0249-8.
  • Jiang L, Ding L, Liu G. Nanoparticle formulations for therapeutic delivery, pathogen imaging and theranostic applications in bacterial infections. Theranostics. 2023;13(5):1545–1570. doi: 10.7150/thno.82790.
  • Jagaran K, Singh M. Lipid nanoparticles: promising treatment approach for Parkinson’s disease. Int J Mol Sci. 2022;23(16):9361. doi: 10.3390/ijms23169361.
  • Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27(4):1372doi: 10.3390/molecules27041372.
  • Tosi G, Ruozi B, Vandelli MA. Brain targeting with polymeric nanoparticles: which administration route should we take? Nanomedicine. 2013;8(9):1361–1363. doi: 10.2217/nnm.13.135.
  • Emad NA, Ahmed B, Alhalmi A, et al. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Sci Technol. 2021;64:102642. doi: 10.1016/j.jddst.2021.102642.
  • Feng Y, He H, Li F, et al. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today. 2018;23(5):1079–1088. doi: 10.1016/j.drudis.2018.01.005.
  • Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci. 2007;96(3):473–483. doi: 10.1002/jps.20718.
  • Lee D, Minko T. Nanotherapeutics for nose-to-brain drug delivery: an approach to bypass the blood brain barrier. Pharmaceutics. 2021;13(12):2049. doi: 10.3390/pharmaceutics13122049.
  • Costantino HR, Illum L, Brandt G, et al. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1–2):1–24.
  • Narayan R, Singh M, Ranjan OP, et al. Development of risperidone liposomes for brain targeting through intranasal route. Life Sci. 2016;163:38–45. doi: 10.1016/j.lfs.2016.08.033.
  • Yuwanda A, Surini S, Harahap Y, et al. Study of valproic acid liposomes for delivery into the brain through an intranasal route. SSRN J. 2021;8(3):e09030. doi: 10.2139/ssrn.3916202.
  • Krishnaiah YSR, Jayaram B, Rama B, et al. Reverse-phase HPLC method for the estimation of selegiline hydrochloride in pharmaceutical dosage forms. Asian J Chem. 2003;15(3–4):1291–1296.
  • Khute S, Jangde RK. Optimization of nasal liposome formulation of venlafaxine hydrochloride using a Box-Behnken experimental design. Curr Ther Res Clin Exp. 2023;99:100714. doi: 10.1016/j.curtheres.2023.100714.
  • Sailor G, Seth AK, Parmar G, et al. Formulation and in vitro evaluation of berberine containing liposome optimized by 32 full factorial designs. J App Pharm Sci. 2015;5(7):023–028. doi: 10.7324/JAPS.2015.50704.
  • Okafor NI, Nkanga CI, Walker RB, et al. Encapsulation and physicochemical evaluation of efavirenz in liposomes. J Pharm Investig. 2020;50(2):201–208. doi: 10.1007/s40005-019-00458-8.
  • Chandran IS, Prasanna PM. Drug-excipient interaction studies of loperamide loaded in polsorbate 80 liposomes. Orient J Chem. 2015;31(4):2201–2206. doi: 10.13005/ojc/310443.
  • Yang B. Preclinical study of doxorubicine-loaded liposomal drug delivery for the treatment of head and neck cancer: optimization by Box-Behnken statistical design. Acta Biochim Pol. 2020;67(2):149–155. doi: 10.18388/abp.2020_5142.
  • Ramalingam M, Huh YJ, Lee YI. The impairments of α-synuclein and mechanistic target of rapamycin in rotenone-induced SH-SY5Y cells and mice model of Parkinson’s disease. Front Neurosci. 2019;13:1028. doi: 10.3389/fnins.2019.01028.
  • Hoseinah SS, Akbarzadeh A, Attar H. Effect of cytotoxicity of pegylated liposomal recombinant human erythropoietin-alfa on neuroblastoma cell line SH-SY5Y. Trop J Pharm Res. 2015;14(6):977–981. doi: 10.4314/tjpr.v14i6.6.
  • Al Asmari AK, Ullah Z, Tariq M, et al. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther. 2016;10:205–215. doi: 10.2147/DDDT.S93937.
  • Wang Y, Yu X, Zhang P, et al. Neuroprotective effects of pramipexole transdermal patch in the MPTP-induced mouse model of Parkinson’s disease. J Pharmacol Sci. 2018;138(1):31–37. doi: 10.1016/j.jphs.2018.08.008.
  • Miyazaki I, Asanuma M. The rotenone models reproducing central and peripheral features of Parkinson’s disease. Neuroscience. 2020;1(1):1–14. doi: 10.3390/neurosci1010001.
  • Sridhar V, Gaud R, Bajaj A, et al. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine. 2018;14(8):2609–2618. doi: 10.1016/j.nano.2018.08.004.
  • Xiang Y, Wu Q, Liang L, et al. Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against the Parkinson’s disease in the MPTP-induced mice model. J Drug Target. 2012;20(1):67–75. doi: 10.3109/1061186X.2011.595490.
  • Bi Y, Qu PC, Wang QS, et al. Neuroprotective effects of alkaloids from piper longum in a MPTP-induced mouse model of Parkinson’s disease. Pharm Biol. 2015;53(10):1516–1524. doi: 10.3109/13880209.2014.991835.
  • Durak I, Yurtarslanl Z, Canbolat O, et al. A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazaolium (NBT) reduction. Clin Chim Acta. 1993;214(1):103–104. doi: 10.1016/0009-8981(93)90307-p.
  • Merghem M, Dahamna S, Khennouf S. In vivo antioxidant activity of Ruta montana L. extracts. J Mater Environ Sci. 2019;10(5):470–477.
  • Fikry H, Saleh LA, Abdel Gawad S. Neuroprotective effects of curcumin on the cerebellum in a rotenone-induced Parkinson’s disease model. CNS Neurosci Ther. 2022;28(5):732–748. doi: 10.1111/cns.13805.
  • Raj R, Wairkar S, Sridhar V, et al. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: development, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol. 2018;109:27–35. doi: 10.1016/j.ijbiomac.2017.12.056.
  • Arif M, Rauf K, Sewell RD, et al. 6-Methoxyflavone and donepezil behavioral plus neurochemical correlates in reversing chronic ethanol and withdrawal induced cognitive impairment. Drug Des Devel Ther. 2022;16:1573–1593. doi: 10.2147/DDDT.S360677.
  • Motawi TK, Sadik NAH, Hamed MA, et al. Potential therapeutic effects of antagonizing adenosine A2A receptor, curcumin and niacin in rotenone-induced Parkinson’s disease mice model. Mol Cell Biochem. 2020;465(1–2):89–102. doi: 10.1007/s11010-019-03670-0.
  • Rane S, Prabhakar B. Optimization of paclitaxel containing pH-sensitive liposomes by 3 factor, 3 level Box-Behnken design. Indian J Pharm Sci. 2013;75(4):420–426. doi: 10.4103/0250-474X.119820.
  • Mishra N, Sharma S, Deshmukh R, et al. Development and characterization of nasal delivery of selegiline hydrochloride loaded nanolipid carriers for the management of Parkinson’s disease. Cent Nerv Syst Agents Med Chem. 2019;19(1):46–56. doi: 10.2174/1871524919666181126124846.
  • Raman S, Khan AA, Mahmood S. Nose to brain delivery of selegiline loaded PLGA/lipid nanoparticles: synthesis, characterisation and brain pharmacokinetics evaluation. J Drug Deliv Sci Technol. 2022;77:103923. doi: 10.1016/j.jddst.2022.103923.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.